

 $W(\cdot, F) = \infty$

- Mécanique du contact et indentation
 - Contact élastique Hertz
 - Nano-indentation Oliver and Pharr
 - o Domaines de validité, adhésion, anisotropie

Courbe force-distance

- o Principe et prérequis
- o Traitement des courbes
- Contact résonant
 - o Principe

 $I_{\varepsilon}(\varphi) =$

- o Dynamique du levier et effet de la raideur latérale
- o Préparation de la surface et calibrations

• Hertz's theory (1882)

Examples in the case of Si-AFM probe (R₂=10nm, E₂≈150GPa) in contact with the planar surface (R₁→∞) of different materials [www.ntmdt.com]

Material and its Young's modulus	Contact area	radius <i>a</i> , nm	Penetration due to de	eformation 🍌 , nm	Contact pres	sure P , GPa				
Elastomer, <i>E</i> = 0.65 GPa	3.74	8.04	1.04	6.46	0.11	0.25				
PS, <i>E</i> = 1GPa	3.24	6.98	1.05	4.87	0.15	0.33				
Copper, E = 120GPa	0.79	1.7	0.062	0.29	2.55	5.51				
Tungsten, E = 400 GPa	0.68	1.46	0.046	0.21	3.44	7.47				
Diamond, E = 1000 GPa	0.64	1.38	0.041	0.19	3.88	8.36				
at loading force 📕 , nN										
	5	50	5	50	5	50				
						7				

φ) = Contact mechanics – NI vs AFM

Tip deformation on (very) stiff material and high load (set-point) ! www.microstartech.com] NEAR SURFACE measurements -> sample surface preparation!!!

[Kopycinska-Müller et al, Ultramicroscopy, 2006; Nanotechnology, 2016]

Contact mechanics - Anisotropy

Carteria Extension of the theory to the case of anisotropic solids → Green's function? [Willis, J. Mech. Phys. Solids, 1966; Vlassak *et al.*, J. Mech. Phys. Solids, 1994/2003; Swadener *et al.*, *Philos. Mag. A*, 2002...]

$$\frac{E}{1-\nu^2} = \frac{C_{11}^2 - C_{12}^2}{C_{11}} \to M$$

1=2=3

Closed form solution of M only available in particular case... \rightarrow transversely isotropic // contact surface [Hanson, J. Appl. Mech., 1992] $M_{3} = 2\sqrt{\frac{C_{11}C_{33} - C_{13}^{2}}{C_{11}}} \left(\frac{1}{C_{44}} + \frac{2}{\sqrt{C_{11}C_{33}} + C_{13}}}\right)^{-1}$ $I = 2: \quad C_{22} \quad C_{23} \quad G_{13} = G_{23}$ [Delafargue *et al.*, Int. J. Sol. Struct., 2004] **k**_{t} = ?

 $\frac{\varphi(\varphi)}{\varphi(\varphi)} = Solve + Sommaire$

- Mécanique du contact et indentation
 - o Contact élastique Hertz
 - o Nano-indentation Oliver and Pharr
 - o Domaines de validité, adhésion, anisotropie

Courbe force-distance

- Principe et prérequis
- Traitement des courbes
- Contact résonant
 - o Principe
 - o Dynamique du levier et effet de la raideur latérale

o Préparation de la surface et calibrations

15

$I_{\epsilon}(\varphi) = W(Q,P) = \infty$ Cantilever dynamic: flexural and torsional resonance

Measur resonar	rement o nce atom	f Poiss ic force	on's ra e	itio with	Contact-		[Hurley and T	[Hurley and Turner, 2007]			
microscopy			Yo	ung's m	odulus	Shear modulus					
Li Li Li				$k = 2aE^*$		$\kappa = 8G^*a$	$\kappa = 8G^{*}a$ Contact $N = G/(2-\nu)$ area				
			N	I = E/(1 - E)	ν^2)	$N=G/(2-\nu)$					
=	ן <i>א</i> יין			E_s^* =	$= E_{\rm ref}^* \left(\frac{k_s}{k_{\rm ref}} \right)$	$\Big)^m$	$G_s^* = G_{ref}^* \left(\frac{\kappa_s}{\kappa_{ref}}\right) \left(\frac{k_s}{k_{ref}}\right)^{m-1}$	Hertzian Contact m=3/2 Flat punch m=1			
k and <mark>flexura</mark> resona	K provid al and to ance res	ed by <mark>rsiona</mark> pective	l ely	$\frac{1}{E_{z}^{2}}$	$\frac{1}{m_{\rm tip}} = \frac{1}{M_{\rm tip}} +$	$\frac{1}{M_s}$	$\frac{1}{G_s^*} = \frac{1}{N_{\rm tip}} + \frac{1}{N_s}$				
Reference sample											
Material	Source	М	Ν	$\nu = \frac{M-4N}{M-2N}$	$G=N(2-\nu)$	$E = M(1 - \nu^2)$	M	-4N			
SiO ₂ Glass	Literature Literature Expt. m=1 Expt. m=3/2	74.9 84.7 81±5 85±8	17.0 18.7 18±2 19±3	0.171 0.206 0.21±0.11 0.17±0.16	31.1 33.6 32±5 35±8	72.7 81.1 76±6 79±10	$\nu = \frac{M}{M}$	-2N			
	"Unkne	own"	mate	rial			=				

 $W(\cdot, F) = \infty$

lim/ **Calibrations**

Probe calibrations

 $I_{\varepsilon}(\varphi)$

Cantilever stiffness calibration methods: added mass, SEM imaging and mechanical beam model, Sader method, Thermal noise method, Reference cantilever array, ...

- Tip shape: SEM imaging, gratings (TipCheck, TGT), reference material(s)
- Tip position: SEM imaging, reference material(s)

$(\varphi) =$ Solutions – Questions ouvertes

- Respecter/vérifier les domaines de validité des modèles d'indentation suivant les conditions expérimentales (transition entre modèles ?)
- Attention au comportement anisotrope ($E \neq M$) surtout aux échelles nano
- Indentation non normale... raideur tangentiel en anisotrope ? Comment la mesurer ?
- Utilisation de la courbe d'approche ou de retrait ou ... ? Et effet de la viscosité ?
- Choix de la forme optimale de la pointe / rugosité ou hétérogénéité de la surface (+ tenue à l'usure)
- Choix de la raideur (et facteur de qualité) du levier / matériau à tester
- Effet de la topographie et de la profondeur de mesure par rapport aux effets de surface (liés à la préparation des échantillons + comportement matériaux)
- Mesure « intégrant » plus en profondeur ?
- Calibration des échantillons de référence en terme d'échelle, de fréquence (TTSP ?) et de mode de sollicitation ? Idem pour le matériau mesuré...
- Problème de la vitesse de sollicitation / comportement viscoélastique
- Mesure en milieu liquide, problème de l'adhésion (CR-AFM), mesure visco (Q)...