Bayesian Optimization in Julia

Google Summer of Code 2023
Name of the project: Implementing Scalable Bayesian Optimization in Julia
Organization: The Julia Language
Supervisor: Johanni Brea

PROJECT TASKS
Implement Trust Region Bayesian Optimization (TuRBO) algorithm and integrate it into existing package BayesianOptimization.jl, currently implementing traditional Bayesian optimization algorithms in Julia.

RESULTS
BayesianOptimization.jl was refactored into multiple packages such that they
• serve as a framework for implementing BO-like algorithms
• making it easier to research, test and develop novel BO-like algorithms in Julia
• provide implementations of some successful BO-like algorithms
• traditional methods that work well in low dimensions
• recent developments aiming to work well in higher dimensions (TuRBO)
The project is currently still in an experimental, partly documented stage but it is already working on examples. All related packages to this project are available in JuliaBayesianOptimization organization on github.

Moving the Gaussian process surrogate where it belongs
• TuRBO as well as traditional BO methods depend crucially on Gaussian processes (GPs) with hyperparameter optimization
• there is a package AbstractGPs.jl that provides tools for working with GPs but there are some utilities that need to be added
• idea: isolate them into a package and integrate the package into an existing system of surrogates
• refactor existing SurrogatesAbstractGPs module in Surrogates.jl package (SciML org) into own package and extend it
• Surrogates.jl formalizes what a deterministic surrogate is, via the AbstractSurrogate interface
• idea: extend the interface to include stochastic surrogates, in particular SurrogatesAbstractGP.jl should use the same, unified surrogate API
• move and rework AbstractSurrogate interface into SurrogatesBase.jl, where only surrogate-related generic function definitions are provided
• this is currently work-in-progress

Bayesian optimization (BO) algorithms
• a family of methods for sample efficient search for global optimizers
• useful for optimizing objective functions that exhibit one or more of the following properties:
 • are expensive to evaluate
 • are restricted by a limited evaluation budget
 • evaluations can be corrupted by noise
 • are non-convex
 • are black box functions, i.e., lack a closed-form expression
 • there is no efficient mechanism for estimating the gradient
• traditional methods work well for continuous domains of less than 20 dimensions, as mentioned in [1]
• “killer app”: hyperparameter tuning
• commonly used with a Gaussian process surrogate, for details of the algorithms, please see below

BayesianOptimization.jl
• implements a prototypical BO-like algorithm using abstract data types
• is motivated by a mathematical framework introduced in chapter 1 of the book [3]
• implements an OptimizationHelper that provides basic utilities for defining unconstrained problems and logging progress
• currently supports gradient free optimization only
• up to some details, it implements the following while loop inside exported function optimize!
 (dsn, policy, oh, verbose=true)
 while true
 optimize!(dsn, oh)
 xs = next_batch!(policy, dsm, oh)
 ys = evaluate_objective!(oh, xs)
 update!(dsn, oh, xs, ys)
 end

AbstractBayesianOptimization.jl
• implements a unified interface for getting results, history etc..
• Notable functions from the interface:
 • initialize!(dsn, oh)
 • next_batch!(policy, dsm, oh)
 • update!(dsn, oh, xs, ys)

Trust Region Bayesian Optimization (TuRBO) algorithm
• belongs to recent advances in Bayesian optimization that aim to work well in higher dimensions
• was first introduced in [2]
• maintains local Gaussian process surrogates in parallel that are accurate inside respective trust regions that adapt in size and position based on performance
• improved approximating capability of heterogeneous objective functions (different hyperparameters for each trust region)
• effectively deal with large posterior uncertainty in higher dimensional problems and related over exploitation behavior occurring in traditional methods
• enjoy local Bayesian optimization properties:
 • robust to noise, sample efficient
 • for details of the algorithm, please see below

TrustRegionBayesianOptimization.jl
• evaluate objective in batches
• implements a method initialized for initializing local models, i.e., performing initial sampling
• implements Turbo <: AbstractDecisionSupportModel
 • maintains a global Gaussian process surrogate
• implements various policies that are of the following form:
 • evaluate the objective at a maximizer of an acquisition function, that is defined on the domain of the objective function using aggregated information in BasicGP
 • acquisition functions quantify how useful an evaluation at a point in the domain could be
 • search for the optimal compromise between exploration and exploitation, i.e., sampling where we are uncertain about the objective and sampling where we expect high objective values, respectively
 • currently implemented acquisition functions:
 • expected improvement
 • max mean
 • mutual information
 • probability of improvement
 • Thompson sampling
 • upper confidence bound

LITERATURE
[1] Peter I. Frazier. A Tutorial on Bayesian Optimization. 2018