
Deisa
Dask-enabled in situ analytics
Analyze your MPI Simulation Outputs with Dask

Julien Bigot
Virginie Grandgirard
Amal Gueroudji
Bruno Raffin

HPC Numerical simulations

● Typically numerical simulation
○ Not data analysis
○ Number crunching

● Written in Fortran (now, more & more C++)
○ Using MPI for parallelization over multiple

nodes
■ and OpenMP for shared memory

parallelism
■ … and GPU

● Iterate over time
● Manipulate very structured data

○ multi-dimensional arrays
○ compute the next state from time-step to

time-step

2

The example of GYSELA

Developed @ CEA/IRFM, lead developer: Virginie Grandgirard

● To optimize performance and minimize risks, each ITER scenario will have to be numerically
validated.

● A complete chain of numerical tools will be required, ranging from scale models, which can be used
in real time, to first-principles simulations, which are more costly but more reliable.

● Turbulent transport mainly governs confinement in Tokamaks
● Tokamak plasmas weakly collisional 🡪 Kinetic approach mandatory

○ Fusion plasma turbulence is low frequency 🡪 fast gyro-motion is averaged out
○ Gyrokinetic approach: phase space reduction from 6D to 5D

ITER
project

GYSELA
simulation

3

The example of GYSELA

● Gyrokinetic codes require state-of-the-art HPC techniques
and must run efficiently on several thousand processors

○ Non-linear 5D simulations (3D in space + 2D in velocity)
+ multi-scale problem in space and time

● Even more resources required when modelling both core
& edge plasmas like GYSELA

● GYSELA = Fortran 90 code with hybrid MPI/OpenMP
parallelisation optimized up to 1,460,000 threads

○ Relative efficiency of 85% on more than 1M threads and 63% on
1.46M threads on CEA-HF (AMD EPYC 7763)

● Intensive use of petascale resources:
○ ~ 150M hour.core / year
○ (GENCI + PRACE + HPC Fusion resources)

4

Data in GYSELA

In GYSELA, 3D means “small”

● ~GB or so

5D is where the real space usage is

● 1 single variable f fills ¼ of RAM
○ Of the full cluster
○ That’s ~100TB on Joliot Curie

● 2 or 3 copies fill the whole RAM

● You don’t write that to disk
○ (or not too often)
○ Diagnostics instead

3D

5

5D

Diagnostics in GYSELA

● In the code (in Fortran)
○ Reduce data from 5D to 3D, 2D, 1D, 0D…
○ To a single node each

● Write the result to files
○ HDF5

● Analyze the files post hoc
○ In python
○ Interactively
○ FFTs, more reductions, combining data
○ generating graphs, images, videos, …

6

limiter

In 2020, a new diagnostic?

Principal Component Analysis computation on 5D distribution function

● Yuuichi Asahi et al.
● Done on GT5D

Hard to implement in Fortran+MPI+OpenMP

● Parallel PCA already available in Scikit-learn
● => Let’s reuse it!

Asahi, Yuuichi & Fujii, Keisuke & Heim, Dennis & Maeyama, Shinya & Garbet, Xavier & Grandgirard,
Virginie & Sarazin, Yanick & Dif-Pradalier, G. & Idomura, Yasuhiro & Yagi, Masatoshi. (2021).
Compressing the time series of five dimensional distribution function data from gyrokinetic simulation
using principal component analysis. Physics of Plasmas. 28. 012304. 10.1063/5.0023166.

7

Sequential python using scikit-learn for PCA

Post hoc data analytics with python

Requires a single node

computer with ~100TB RAM

8

Post hoc data analytics with Dask

9

Dask distributed?

A scheduler/workers (+client) model to run work (each on its own process/node)

A task-based model to describe work

Many tools ported to dask
for ease of use

● Numpy / SciPy
● Scikit-learn
● Pandas
● ...

10

Dask for post hoc analytics

Dask
scheduler

Analytics
client

Worker #1 Worker #NWorker #2 …

3. task-graph
submission

4. tasks
execution

PFS

2. metadata
read

5. data read

M
P

I
P0

P1

PM

PDI

PDI

PDI

...

HDF5

HDF5

HDF5 1. data write

● File-system requirements are huge
● File-system IO performance is still an issue

○ Let’s run simulation & analysis at the same time
○ Erase files as soon as they are not required

anymore

h5py

11

Can we do better? In situ analytics

12

Usually MPI-based
Complex to setup

Damaris
Sensei
SmartSim
Visit[libsim]
Paraview[catalyst]
ADIOS [I, II]
…

12

General context

● Python analytics are nice and many tools are available :)
○ Dask offers a great parallel task-based programming model :)
○ But file-system performance is a bottleneck :/

● In situ analytics solve performance issues :)
○ Typically close to the application (MPI) programming mode
○ MPI is not well suited to writing data analytics :/

Let’s combine these!

Dask-Enabled In Situ Analytics

● PhD work by Amal Gueroudji, advised by J. Bigot & B. Raffin

Can we do even better? Deisa!

Amal Gueroudji. Distributed Task-Based In Situ Data
Analytics for High-Performance Simulations. Université
Grenoble Alpes [2020-..], 2023. English.

13

Dask for post hoc analytics

Dask
scheduler

Analytics
client

Worker #1 Worker #NWorker #2 …

3. task-graph
submission

4. tasks
execution

PFS

2. metadata
read

5. data read
M

P
I

P0

P1

PM

PDI

PDI

PDI

...

HDF5

HDF5

HDF5 1. data write

h5py

14

Code Code Code

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

HPC Library
API API API

?

15

What is PDI?

PDI annotations: a purely declarative API

Plugins for access to existing libraries

MPI

. . .

Code Code Code

I/O Library
API API API

pluginpluginplugin pluginpluginplugin pluginpluginplugin

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

HPC Library
API API API

PDI PDI PDI

. . .

. . .

. . .

plugins:
 decl_hdf5:
 - file: meta${pcoord[0]}x${pcoord[1]}.h5
 write: [dsize, psize]

16

PDI annotations: a purely declarative API

PDI YAML spec. tree:

● What to do with data

Plugins for access to existing libraries

What is PDI?

MPI

?
Code Code Code

I/O Library
API API API

pluginpluginplugin pluginpluginplugin pluginpluginplugin

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

I/O Library
API API API

HPC Library
API API API

MPI

Data
references

PDI PDI PDI

PDI Data
Store

. . .

. . .

. . .
Events

17

metadata:
 ii: int
 dsize: { type: int, size: 2 }
 psize: { type: int, size: 2 }
data:
 main_field:
 type: double
 sizes: ['$dsize[0]', '$dsize[1]']
plugins:
 decl_hdf5:
 - file: meta${pcoord[0]}x${pcoord[1]}.h5
 write: [dsize, psize]

What is PDI?

PDI: Annotation API usage

● Creates a “shared region” in code where
○ Data referenced in PDI store
○ Plugins can use it

● Code should refrain from
○ modifying it (PDI_IN|OUT)
○ accessing it (PDI_IN)

double* data_buffer = malloc(buffer_size*sizeof(double));

while (!computation_finished)
{

compute_the_value_of(data_buffer, /*...*/);
PDI_share("main_buffer", data_buffer, PDI_OUT);
do_something_without_data_buffer();
do_something_reading(data_buffer, /*...*/);
PDI_reclaim("main_buffer");
update_the_value_of(data_buffer, /*...*/);

}

buffer is shared
● between here
 …

● and here

18

Decl’HDF5: the YAML

plugins:
 decl_hdf5:
 file: 'my_file_${iteration_id}x${rank}.h5'
 write: main_buffer

● Write data in the HDF5 format
● Heavily relies on

○ $-expressions
○ default configuration values

● Makes
○ Simple things easy
○ Complex things possible

19

PDI for PCA: Simulation instrumentation

20

Dask for post hoc analytics

Dask
scheduler

Analytics
client

Worker #1 Worker #NWorker #2 …

PFS

M
P

I

P0

P1

PM

PDI

PDI

PDI

...

HDF5

HDF5

HDF5

h5py

21

M
P

I

P0

P1

PM

...

Introducing Deisa v1 for in situ analytics

Dask
scheduler

Analytics
client

…

DEISA
Bridge

DEISA
Bridge

DEISA
Bridge

3. task-graph
submission

4. tasks
execution

DEISA
Metadata
adapter

2. metadata
send

1. data send

3. metadata
fetch

PDI

PDI

PDI

Worker #1 Worker #NWorker #2

22

Deisa: Simulation instrumentation

23

M
P

I

P0

P1

PM

...

Introducing Deisa v1 for in situ analytics

Dask
scheduler

Analytics
client

…

DEISA
Bridge

DEISA
Bridge

DEISA
Bridge

3. task-graph
submission

4. tasks
execution

DEISA
Metadata
adapter

2. metadata
send

1. data send

3. metadata
fetch

PDI

PDI

PDI

Worker #1 Worker #NWorker #2

24

Deisa: The analytics code

25

Preliminary performance evaluation

Setup:

● Ruche cluster
○ 192 nodes (2 CPUs 20 cores each, 180 GB)
○ Omni-Path 100 Gbit/s
○ Spectrum Scale GPFS (IOs rate: 9 GB/s)

● Mini-app
○ 2D heat solver
○ Incremental Principal Component Analysis

26

● Weak scaling
○ X + Y cores
○ X cores for MPI simu.
○ Y cores for Dask analytics

● No analytics
● vs. Post-hoc
● vs. DEISA

Preliminary performance evaluation

27

Preliminary performance analysis

28

P0

P1

PM

...

Deisa v1: still some limitations

Dask
scheduler

Analytics
client

…

DEISA
Bridge

DEISA
Bridge

DEISA
Bridge

3. task-graph
submission

4. tasks
execution

DEISA
Metadata
adapter

2. metadata
send

1. data send

3. metadata
fetch

PDI

PDI

PDI

Worker #1 Worker #NWorker #2

Can be large,
some might not
even be used

Contention
on the

scheduler

loop must
match the

simu

M
P

I

29

P0

P1

PM

...

Deisa v3

Dask
scheduler

Analytics
client

…

DEISA
Bridge

DEISA
Bridge

DEISA
Bridge

3. task-graph
submission

5. tasks
execution

DEISA
Metadata
adapter

1. metadata
send

5. data send

2. metadata
fetch

PDI

PDI

PDI

Worker #1 Worker #NWorker #2

M
P

I

30

4. contract
send

Introducing Deisa v3 (single graph)

Metadata sent from simulation to dask ahead of time

● A single task-graph constructed encompassing all time-steps
○ Requires the addition of the “external tasks” concept to dask

● Time is a dimension like any other
○ More expressivity (e.g. one graph for time derivative)

● Reduced metadata transfer
○ Less contention on the scheduler

● Contracts
○ Detect data actually required by the graph, do not transfer useless data
○ Better performance

But… only for “regular” applications

Used in production for grand-challenge

on Adastra (CINES) #10 Top500

Multi-d
ay full-scale run on the whole GPU partiti

on

31

*

• IRENE supercomputer @ TGCC,
France,

• Nodes:
• 2x24-cores Intel

Skylake@2.7GHz
• 180GB RAM

• InfiniBand network (100Gb/s),
• Scratch disks: 300GB/s transfer

rate
• Mini App 2D heat solver

32

Performance evaluation

32

33

(reading data
+ Analytics)

(waiting data +
 Analytics)

(Single-graph)
(Multi-graph) (Multi-graph)

(Single-graph)

(Multi-graph)
(Single-graph)

x3

x7

x1.8

x2.5

x3

DEISA vs Post hoc Weak Scalability

33

34

x16

x7

x2

x2.4

x3

DEISA vs Post hoc efficiency in hour.core

34

*

Multi-graph
-lot metadata
-heartbit=5s

Single-graph
less metadata
heartbit=∞ 35

Variability evaluation over iterations and processes

35

To summarize

36

Deisa v1

● In situ data transfer
○ from PDI instrumented simulation
○ to Dask cluster
○ without going through disk

● Dynamically at each time-step
● Pushed by the simulation

Deisa v3

● All Deisa v1
● But see time as any other dimension
● Data pulled by Dask (contracts)
● … but all metadata must be known ahead of time

Deisa

● For now, a proof of concept
● Result of a PhD. thesis

PDI

● A production software
● Documentation available

○ https://pdi.dev/
● Heavily tested & validated

○ >700 tests on 14 platforms
● Regular releases & packages

○ Debian, Ubuntu, Fedora, Spack

https://pdi.dev/

What’s next in Deisa? NumPEx !

● Make Deisa production-grade (in progress)
○ Improve scalability & performance
○ Upstream dask modifications
○ Improve packaging

● Integrate in GYSELA rewrite
○ GyselaX++ => C++-based, GPU-first rewrite, using DDC (xarray for C++/GPU)
○ New analytics based on PDI/Deisa + xarray, support post hoc / in situ transparently

● Modularize and combine with other tools
○ Combine with Damaris for node-local reductions
○ Could a Melissa-like be based on this architecture?

● New features
○ Triggers & feedback from analytics to simulation
○ Support hybrid Dask-graph execution

■ Firsts tasks run in simulation process to prevent data copy
○ …

37

