

Deisa Dask-enabled in situ analytics

Analyze your MPI Simulation Outputs with Dask

<u>Julien Bigot</u> Virginie Grandgirard Amal Gueroudji Bruno Raffin

HPC Numerical simulations

- Typically numerical simulation
 - Not data analysis
 - Number crunching
- Written in Fortran (now, more & more C++)
 - Using MPI for parallelization over multiple nodes
 - and OpenMP for shared memory parallelism
 - ... and GPU
- Iterate over time
- Manipulate very structured data
 - multi-dimensional arrays
 - compute the next state from time-step to time-step

The example of GYSELA

Developed @ CEA/IRFM, lead developer: Virginie Grandgirard

- To optimize performance and minimize risks, each ITER scenario will have to be numerically validated.
- A complete chain of numerical tools will be required, ranging from scale models, which can be used in real time, to first-principles simulations, which are more costly but more reliable.
- Turbulent transport mainly governs confinement in Tokamaks
- Tokamak plasmas weakly collisional

 Kinetic approach mandatory
 - \circ Fusion plasma turbulence is low frequency \Box fast gyro-motion is averaged out
 - Gyrokinetic approach: phase space reduction from 6D to 5D

The example of GYSELA

- Gyrokinetic codes require state-of-the-art HPC techniques and must run efficiently on several thousand processors
 - Non-linear 5D simulations (3D in space + 2D in velocity)
 + multi-scale problem in space and time
- Even more resources required when modelling both core & edge plasmas like GYSELA
- GYSELA = Fortran 90 code with hybrid MPI/OpenMP parallelisation optimized up to 1,460,000 threads
 - Relative efficiency of 85% on more than 1M threads and 63% of 1.46M threads on CEA-HF (AMD EPYC 7763)
- Intensive use of petascale resources:
 - ~ 150M hour.core / year
 - (GENCI + PRACE + HPC Fusion resources)

Data in GYSELA

In GYSELA, 3D means "small"

• ~GB or so

5D is where the real space usage is

- 1 single variable **f** fills ¹/₄ of RAM
 - Of the full cluster
 - That's ~100TB on Joliot Curie
- 2 or 3 copies fill the whole RAM
- You don't write that to disk
 - (or not too often)
 - Diagnostics instead

Diagnostics in GYSELA

- In the code (in Fortran)
 - Reduce data from 5D to 3D, 2D, 1D, 0D...
 - To a single node each

Write the result to files
 O HDF5

- Analyze the files post hoc
 - In python
 - Interactively
 - FFTs, more reductions, combining data
 - generating graphs, images, videos, ...

In 2020, a new diagnostic?

Principal Component Analysis computation on 5D distribution function

- Yuuichi Asahi et al.
- Done on GT5D

Asahi, Yuuichi & Fujii, Keisuke & Heim, Dennis & Maeyama, Shinya & Garbet, Xavier & Grandgirard, Virginie & Sarazin, Yanick & Dif-Pradalier, G. & Idomura, Yasuhiro & Yagi, Masatoshi. (2021). Compressing the time series of five dimensional distribution function data from gyrokinetic simulation using principal component analysis. Physics of Plasmas. 28. 012304. 10.1063/5.0023166.

Hard to implement in Fortran+MPI+OpenMP

- Parallel PCA already available in Scikit-learn
- => Let's reuse it!

Post hoc data analytics with python

```
from sklearn.decomposition import IncrementalPCA
  import yaml, json
  import h5py
  # load the simulation configuration
                                         Requires a single node
computer with -100TB RAM
  simu = yaml.load(open('simulation.yml'))
  # Load data from HDF5
  gtemp = h5py.File('data.hdf5',mode='r')['gtemp']
  # process each time-step independently
8
  for step in range(0, simu['timesteps']):
    pca = IncrementalPCA(n_components=2, copy
                          svd solver='rand
    pca.fit(gtemp[step,:,:])
```

```
print (pca.explained_variance_)
```

Sequential python usin

Int-learn for PCA

scikit

Post hoc data analytics with Dask

```
import dask.array as da
  from dask_ml.decomposition import IncrementalPCA
2
  import yaml, json
  import h5py
4
  # Connect to Dask
5
  sched = json.load(open('sched.json'))
6
  client = dask.distributed.Client(sched["address"])
7
  # load the simulation configuration
8
  simu = yaml.load(open('simulation.yml'))
9
  # Build a lazy array descriptor from HDF5
  gtemp = h5py.File('data.hdf5', mode='r')['gtemp']
  gtemp = da.from_array(gtemp, chunks=(1, 4096, 4096))
  for step in range(0, simu['timesteps']):
    pca = IncrementalPCA(n_components=2, copy=False,
14
                          svd solver='randomized')
    pca.fit(gtemp[step,:,:])
    print (pca.explained_variance_)
```


Dask distributed?

A scheduler/workers (+client) model to run work (each on its own process/node)

A task-based model to describe work

Many tools ported to dask for ease of use

- Numpy / SciPy
- Scikit-learn
- Pandas

• ...

Dask for post hoc analytics

- File-system requirements are huge
 - Let's run simulation & analysis at the same time
 - Erase files as soon as they are not required anymore

• File-system IO performance is still an issue

Can we do better? In situ analytics

Usually MPI-based

Can we do even better? Deisa!

General context

- Python analytics are nice and many tools are available :)
 - Dask offers a great parallel task-based programming model :)
 - But file-system performance is a bottleneck :/
- In situ analytics solve performance issues :)
 - Typically close to the application (MPI) programming mode
 - MPI is not well suited to writing data analytics :/

Let's combine these!

Dask-Enabled In Situ Analytics

Amal Gueroudji. Distributed Task-Based In Situ Data Analytics for High-Performance Simulations. Université Grenoble Alpes [2020-..], 2023. English.

• PhD work by Amal Gueroudji, advised by J. Bigot & B. Raffin

Dask for post hoc analytics

PDI annotations: a purely declarative API

Plugins for access to existing libraries

What is PDI?

PDI annotations: a purely declarative API

PDI YAML spec. tree:

• What to do with data

Plugins for access to existing libraries

PDI: Annotation API usage

```
double* data_buffer = malloc( buffer_size*sizeof(double) );
while ( !computation_finished )
{
    compute_the_value_of( data_buffer, /*...*/ );
    PDI_share("main_buffer", data_buffer, PDI_OUT);
    do_something_reading( data_buffer();
    do_something_reading( data_buffer, /*...*/ );
    PDI_reclaim("main_buffer");
    update_the_value_of( data_buffer, /*...*/ );
}
buffer is shared
```

- Creates a "shared region" in code where
 - Data referenced in PDI store
 - Plugins can use it

- Code should refrain from
 - modifying it (PDI_IN|OUT)
 - accessing it (PDI_IN)

Decl'HDF5: the YAML

plugins: decl_hdf5: file: 'my_file_\${iteration_id}x\${rank}.h5' write: main_buffer

- Write data in the HDF5 format
- Heavily relies on
 - **\$-expressions**
 - default configuration values

- Makes
 - Simple things easy
 - Complex things possible

PDI for PCA: Simulation instrumentation

```
int main( int argc, char* argv[] ) {
  MPI Init(&argc, &argv);
  PDI_init(PC_parse_path("pdi_spec.yml"));
  int rank; PDI Comm rank (MPI COMM WORLD, &rank);
  config t cfg = read config("simulation.yml");
  // share one-off configuration
  PDI multi expose("init",
      "cfq", &cfq, PDI_OUT,
      "rank", &rank, PDI OUT,
      NULL);
  // our temperature field
  double* temp = malloc(sizeof(double) *
                        cfg.loc[0] * cfg.loc[1]);
  initialize(temp);
  // main loop
  for (int step=0; ii<nb_steps; ++step) {</pre>
    do_compute(temp, MPI_COMM_WORLD);
    // share data at every iteration
    PDI multi expose ("iter",
        "step", &step, PDI OUT,
        "temp", temp, PDI OUT,
        NULL);
    MPI Barrier (MPI COMM WORLD);
  free(temp);
  PDI finalize();
  MPI Finalize();
```

2	<pre>metadata: { step: int, cfg: config_t, rank: int }</pre>
3.	data:
4.1	gtemp: #< virtual global 3D array (t, x, y)
50	type: array
	subtype: double
2	size:
Ŕ,	- inf #< t dimension is infinite
9	- '\$cfg.loc[0] * (\$rank % \$cfg.proc[0])'
	- '\$cfg.loc[1] * (\$rank / \$cfg.proc[0])'
	temp: # the main temperature field
	type: array
10	subtype: double
£.,	<pre>size: ['\$cfg.loc[0]', '\$cfg.loc[1]']</pre>
9	<pre>+map_in: # map as a slice in gtemp</pre>
6	array: gtemp
	<pre>size: [1, '\$cfg.loc[0]', '\$cfg.loc[1]']</pre>
62	start:
2	- \$step
	- '\$cfg.loc[0] * (\$rank % \$cfg.proc[0])'
1	- '\$cfg.loc[1] * (\$rank / \$cfg.proc[0])'
	n ligine•
L	mpi:
	decl hdf5:
	- file: data b5
	write:
	atemp:
	when: 'Ssten>0'
	communicator: SMPI COMM WORLD
	CommunitedCor. Antr_Conn_Months

Dask for post hoc analytics

Introducing Deisa v1 for in situ analytics

Deisa: Simulation instrumentation

```
int main( int argc, char* argv[] ) {
  MPI Init(&argc, &argv);
 PDI_init(PC_parse_path("pdi_spec.yml"));
  int rank; PDI Comm rank (MPI COMM WORLD, &rank);
  config t cfg = read config("simulation.yml");
  // share one-off configuration
  PDI multi expose ("init",
      "cfg", &cfg, PDI OUT,
      "rank", &rank, PDI OUT,
      NULL);
  // our temperature field
  double* temp = malloc(sizeof(double) *
                        cfg.loc[0] * cfg.loc[1]);
  initialize(temp);
  // main loop
  for (int step=0; ii<nb_steps; ++step) {</pre>
    do compute(temp, MPI_COMM_WORLD);
    // share data at every iteration
    PDI multi expose("iter",
        "step", &step, PDI OUT,
        "temp", temp, PDI OUT,
        NULL);
    MPI Barrier (MPI COMM WORLD);
  free(temp);
  PDI finalize();
  MPI Finalize();
```

	<pre>metadata: { step: int, cfg: config_t, rank: int }</pre>						
	data:						
	gtemp: #< virtual global 3D array (t, x, y)						
	type: array						
subtype: double							
size:							
- inf #< t dimension is infinite							
	- '\$cfg.loc[0] * (\$rank % \$cfg.proc[0])'						
- '\$cfg.loc[1] * (\$rank / \$cfg.proc[0])'							
	temp: # the main temperature field						
	type: array						
	subtype: double						
	size: ['\$cfg.loc[0]', '\$cfg.loc[1]']						
	<pre>+map_in: # map as a slice in gtemp</pre>						
	array: gtemp						
	<pre>size: [1, '\$cfg.loc[0]', '\$cfg.loc[1]']</pre>						
	start:						
	- Şstep						
	- '\$cfg.loc[0] * (\$rank % \$cfg.proc[0])'						
	- '\$cfg.loc[1] * (\$rank / \$cfg.proc[0])'						
-	nlugine.						
L	prugino.						
	delsa:						
4	<pre>scheduler_file: "/home/user/xp/sched.json"</pre>						
	<pre>transfer: { gtemp: { when: '\$step>0' } }</pre>						
	when 'Ssten>0!						
	communicator: \$MPI_COMM_WORLD						

Introducing Deisa v1 for in situ analytics

Deisa: The analytics code

3

4

5

6

7

8

14

15

```
import dask.array as da
from dask_ml.decomposition import IncrementalPCA
import yaml, json
import deisa
# Connect to Dask
sched = json.load(open('sched.json'))
client = dask.distributed.Client(sched["address"])
# load the simulation configuration
simu = yaml.load(open('simulation.yml'))
# Get data from DEISA
gtemp = deisa.Adapter(client)['gtemp']
for step in range(0, simu['timesteps']):
  pca = IncrementalPCA(n_components=2, copy=False,
                       svd solver='randomized')
  pca.fit(gtemp[step,:,:])
  print (pca.explained variance )
```


Preliminary performance evaluation

Setup:

• Ruche cluster

- 5 192 nodes (2 CPUs 20 cores each, 180 GB)
- Omni-Path 100 Gbit/s
- Spectrum Scale GPFS (IOs rate: 9 GB/s)
- Mini-app
 - 2D heat solver
 - Incremental Principal Component Analysis

Preliminary performance evaluation

- Weak scaling
 - X + Y cores
 - X cores for MPI simu.
 - Y cores for Dask analytics
- No analytics
- vs. Post-hoc
- vs. DEISA

Configuration	128+16	256+32	512+64
MPI processes	128	256	512
Dask workers	16	32	64
MPI nodes	4	8	16
Dask worker nodes	1	2	4
Global data size	16 GiB	32 GiB	64 GiB
Dask generated tasks	15210	29010	55150

Preliminary performance analysis

Deisa v3

Used in production for grand-challenge on Adastra (CINES) #10 Top500 partition on Adastra (CINES) #10 Top500 partition Multi-day full-scale run on the whole GPU partition Introducing Deisa v3 (single graph)

Metadata sent from simulation to dask abo

Performance evaluation

- IRENE supercomputer @ TGCC, France,
- Nodes:
 - 2x24-cores Intel Skylake@2.7GHz
 - 180GB RAM
- InfiniBand network (100Gb/s),
- Scratch disks: 300GB/s transfer rate
- Mini App 2D heat solver

Parameter	Value
Number of runs	3
Number of iterations IPCA	10
Number of iteration Derivative	12
MPI nodes / Dask worker node	2
MPI process / MPI node	2
Dask worker / Dask worker node	2
Thread / Dask worker	24
MPI process / Dask worker	2

Configuration	XP1:128 MiB	XP1:256 MiB	XP1:512MiB	XP1:1 GiB	
MPI block size	128	256	512	1	
Dask chunk size	128	256	512	1	
MPI Nodes		[4, 8, 16, 32, 6]	[4, 128, 256]		
Dask Nodes [2, 4, 8, 16, 32, 64, 128]					

DEISA vs Post hoc Weak Scalability

DEISA vs Post hoc efficiency in hour.core

(c) Strong scaling results represented in hourcore for an 8 GiB problem size

(c) Strong scaling results represented in hourcore for a 8 GiB problem size

Variability evaluation over iterations and processes

Multi-graph -lot metadata -heartbit=5s

Single-graph less metadata heartbit=∞

To summarize

Deisa v1

- In situ data transfer
 - from PDI instrumented simulation
 - to Dask cluster
 - without going through disk
- Dynamically at each time-step
- Pushed by the simulation

Deisa v3

- All Deisa v1
- But see time as any other dimension
- Data pulled by Dask (contracts)
- ... but all metadata must be known ahead of time

Deisa

- For now, a proof of concept
- Result of a PhD. thesis

PDI

- A production software
- Documentation available
 - <u>https://pdi.dev/</u>
- Heavily tested & validated
 - >700 tests on 14 platforms
- Regular releases & packages
 - Debian, Ubuntu, Fedora, Spack

What's next in Deisa? NumPEx !

- Make Deisa production-grade (in progress)
 - Improve scalability & performance
 - Upstream dask modifications
 - Improve packaging
- Integrate in GYSELA rewrite
 - GyselaX++ => C++-based, GPU-first rewrite, using DDC (xarray for C++/GPU)
 - New analytics based on PDI/Deisa + xarray, support post hoc / in situ transparently
- Modularize and combine with other tools
 - Combine with Damaris for node-local reductions
 - Could a Melissa-like be based on this architecture?

New features

- Triggers & feedback from analytics to simulation
- Support hybrid Dask-graph execution
 - Firsts tasks run in simulation process to prevent data copy