Numerical methods for high-dimensional problems: examples from materials science applications

Virginie Ehrlacher ${ }^{1,2}$
${ }^{1}$ Ecole des Ponts ParisTech
${ }^{2}$ INRIA, MATHERIALS project-team

École des Ponts
ParisTech

MATHerials

20 ans du groupe Calcul, 3rd June 2024

High-dimensional approximation

Goal: find an approximation of a high-dimensional function

$$
u\left(x_{1}, \ldots, x_{d}\right)
$$

or a set of high-dimensional functions

by some simple functions (i.e. easy to evaluate) depending only on a few parameters

High-dimensional approximation

Goal: find an approximation of a high-dimensional function

$$
u\left(x_{1}, \ldots, x_{d}\right)
$$

or a set of high-dimensional functions
K

by some simple functions (i.e. easy to evaluate) depending only on a few parameters

High-dimensional approximation

Goal: find an approximation of a high-dimensional function

$$
u\left(x_{1}, \ldots, x_{d}\right)
$$

or a set of high-dimensional functions
K
by some simple functions (i.e. easy to evaluate) depending only on a few parameters

Some high-dimensional problems in materials science: electronic structure calculations

- Schrödinger equation: $\Psi\left(x_{1}, \ldots, x_{d}, t\right)$

$$
i \hbar \partial_{t} \psi=-\frac{\hbar}{2 m} \sum_{i=1}^{d} \Delta_{x_{i}} \psi+V \psi
$$

Some high-dimensional problems in materials science: kinetic equations

- Boltzmann equation: $p\left(x_{1}, \ldots, x_{d}, v_{1}, \ldots, v_{d}, t\right)$

$$
\partial_{t} p+\sum_{i=1}^{d} v_{i} \partial_{x_{i}} p+\sum_{i=1}^{d} F_{i} \partial_{v_{i}} p=H(p, p)
$$

Some high-dimensional problems in materials science: molecular dynamics

- Fokker-Planck equation: $p\left(x_{1}, \ldots, x_{d}, t\right)$

$$
\partial_{t} p+\sum_{i=1}^{d} \partial_{x_{i}}\left(a_{i} p\right)-\frac{1}{2} \sum_{i=1}^{d} \sum_{j=1}^{d} \partial_{x_{i} x_{j}}^{2}\left(b_{i j} p\right)=0 .
$$

Some high-dimensional problems in materials science: neutronics

- Parametrized equation: $u(\boldsymbol{\mu} ; x) \quad \boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{p}\right)$

$$
\mathcal{A}(\boldsymbol{\mu} ; u(\boldsymbol{\mu} ; \cdot))=f(\boldsymbol{\mu} ; \cdot)
$$

Curse of dimensionality: first intuition

Goal: find an approximation of a high-dimensional function

$$
u\left(x_{1}, \ldots, x_{d}\right)
$$

Standard discretization approaches (such as classical finite element methods) suffer from the so-called curse of dimensionality [Bellman,1961]

$$
C O M P=N^{2}
$$

$$
C O M P=N^{3}
$$

$$
C O M P=N^{d}
$$

High-dimensional approximation

Let us assume that u is an element of a given set of functions V (a normed vector space for instance).

- For a certain subset of functions $Z_{n} \subset V$ described by n parameters, the error of best approximation of u by elements of Z_{n} is defined by

$$
e_{z_{n}}(u)=\inf _{v \in z_{n}}\left\|u-v^{\prime}\right\|_{v}
$$

- A sequence of subsets $\left(Z_{n}\right)_{n \geq 1}$ is called an approximation tool.

Two types of approaches:

- linear approximation: Z_{n} are linear spaces
- nonlinear approximation: Z_{n} are not linear spaces

High-dimensional approximation

Let us assume that u is an element of a given set of functions V (a normed vector space for instance).

- For a certain subset of functions $Z_{n} \subset V$ described by n parameters, the error of best approximation of u by elements of Z_{n} is defined by

$$
e_{Z_{n}}(u)=\inf _{v \in Z_{n}}\|u-v\|_{v}
$$

- A sequence of subsets $\left(Z_{n}\right)_{n \geq 1}$ is called an approximation tool.

Two types of approaches:

- linear approximation: Z_{n} are linear spaces
- nonlinear approximation: Z_{n} are not linear spaces

High-dimensional approximation

Let us assume that u is an element of a given set of functions V (a normed vector space for instance).

- For a certain subset of functions $Z_{n} \subset V$ described by n parameters, the error of best approximation of u by elements of Z_{n} is defined by

$$
e_{Z_{n}}(u)=\inf _{v \in Z_{n}}\|u-v\|_{v}
$$

- A sequence of subsets $\left(Z_{n}\right)_{n \geq 1}$ is called an approximation tool.

Two types of approaches:

- linear approximation: Z_{n} are linear spaces
- nonlinear approximation: Z_{n} are not linear spaces

High-dimensional approximation

Let us assume that u is an element of a given set of functions V (a normed vector space for instance).

- For a certain subset of functions $Z_{n} \subset V$ described by n parameters, the error of best approximation of u by elements of Z_{n} is defined by

$$
e_{Z_{n}}(u)=\inf _{v \in Z_{n}}\|u-v\|_{v}
$$

- A sequence of subsets $\left(Z_{n}\right)_{n \geq 1}$ is called an approximation tool.

Two types of approaches:

- linear approximation: Z_{n} are linear spaces
- nonlinear approximation: Z_{n} are not linear spaces

High-dimensional approximation

Fundamental problems are:

- to determine if and how fast $e_{z_{n}}(u)$ goes to 0 for a certain function u (or a set of functions K) and a certain approximation tool $\left(Z_{n}\right)_{n \geq 1}$;
- to provide algorithms which (hopefully) produce approximations $u_{n} \in Z_{n}$ of u such that

$$
\left\|u-u_{n}\right\| v \leq C e_{z_{n}}(u),
$$

with
(i) either C independent of n;
(ii) or $C(n) e_{Z_{n}}(u)$ \qquad

- to provide a posteriori error estimators to estimate the error $\left\|u-u_{n}\right\|_{v}$ in practice.

High-dimensional approximation

Fundamental problems are:

- to determine if and how fast $e_{z_{n}}(u)$ goes to 0 for a certain function u (or a set of functions K) and a certain approximation tool $\left(Z_{n}\right)_{n \geq 1}$;
- to provide algorithms which (hopefully) produce approximations $u_{n} \in Z_{n}$ of u such that

$$
\left\|u-u_{n}\right\| v \leq C e_{Z_{n}}(u),
$$

with
(i) either C independent of n;
(ii) of $C(n) e_{Z_{n}}(u) \longrightarrow 0$.

- to provide a posteriori error estimators to estimate the error $\left\|u-u_{n}\right\| v$ in practice.

High-dimensional approximation

Fundamental problems are:

- to determine if and how fast $e_{z_{n}}(u)$ goes to 0 for a certain function u (or a set of functions K) and a certain approximation tool $\left(Z_{n}\right)_{n \geq 1}$;
- to provide algorithms which (hopefully) produce approximations $u_{n} \in Z_{n}$ of u such that

$$
\left\|u-u_{n}\right\| v \leq C e_{z_{n}}(u)
$$

with
(i) either C independent of n;
(ii) or $C(n) e_{Z_{n}}(u) \underset{n \rightarrow+\infty}{\longrightarrow} 0$.

- to provide a posteriori error estimators to estimate the error \|u- $u_{n} \| v$ in practice.

High-dimensional approximation

Fundamental problems are:

- to determine if and how fast $e_{z_{n}}(u)$ goes to 0 for a certain function u (or a set of functions K) and a certain approximation tool $\left(Z_{n}\right)_{n \geq 1}$;
- to provide algorithms which (hopefully) produce approximations $u_{n} \in Z_{n}$ of u such that

$$
\left\|u-u_{n}\right\|_{v} \leq C e_{z_{n}}(u)
$$

with
(i) either C independent of n;
(ii) or $C(n) e_{Z_{n}}(u) \underset{n \rightarrow+\infty}{\longrightarrow} 0$.

- to provide a posteriori error estimators to estimate the error $\left\|u-u_{n}\right\|_{v}$ in practice.

Linear approximations: Kolmogorov n-width

For a set of functions K in a normed vector space V, the Kolmogorov n-width of K is defined as

$$
d_{n}(K)=\inf _{Z_{n} \subset v} \sup _{u \in K} \inf _{v \in Z_{n}}\|u-v\|_{v}
$$

where the first infimum is taken over all linear subspaces Z_{n} of V of dimension n.
The Kolmogorov width $d_{n}(K)$ measures how well functions belonging to the set K can be approximated by an n-dimensional linear space. It measures the ideal performance that we can expect from linear approximation methods.

Example: Let $V=L^{P}\left((0,1)^{d}\right)$ and K the unit ball of $W^{k, p}\left((0,1)^{d}\right)$. Then, we have
$d_{n}(K) \sim n^{-k / d}$

Linear approximations: Kolmogorov n-width

For a set of functions K in a normed vector space V, the Kolmogorov n-width of K is defined as

$$
d_{n}(K)=\inf _{Z_{n} \subset v} \sup _{u \in K} \inf _{v \in Z_{n}}\|u-v\|_{v}
$$

where the first infimum is taken over all linear subspaces Z_{n} of V of dimension n.
The Kolmogorov width $d_{n}(K)$ measures how well functions belonging to the set K can be approximated by an n-dimensional linear space. It measures the ideal performance that we can expect from linear approximation methods.

Example: Let $V=L^{p}\left((0,1)^{d}\right)$ and K the unit ball of $W^{k, p}\left((0,1)^{d}\right)$ Then, we have

Linear approximations: Kolmogorov n-width

For a set of functions K in a normed vector space V, the Kolmogorov n-width of K is defined as

$$
d_{n}(K)=\inf _{Z_{n} \subset v} \sup _{u \in K} \inf _{v \in Z_{n}}\|u-v\|_{v}
$$

where the first infimum is taken over all linear subspaces Z_{n} of V of dimension n.
The Kolmogorov width $d_{n}(K)$ measures how well functions belonging to the set K can be approximated by an n-dimensional linear space. It measures the ideal performance that we can expect from linear approximation methods.

Example: Let $V=L^{p}\left((0,1)^{d}\right)$ and K the unit ball of $W^{k, p}\left((0,1)^{d}\right)$. Then, we have

$$
d_{n}(K) \sim n^{-k / d}
$$

The key is to consider sets of functions with specific low-dimensional structures and to propose approximation tools (formats) which exploit these structures (application-dependent).

Possible approaches:

- build a sequence of linear approximation spaces $\left(Z_{n}\right)_{n \geq 1}$ specifically taylored to the targeted application (reduced basis methods...)
- nonlinear approximation tools (tensor methods, neural networks...)
- Combine both worlds!

The key is to consider sets of functions with specific low-dimensional structures and to propose approximation tools (formats) which exploit these structures (application-dependent).

Possible approaches:

- build a sequence of linear approximation spaces $\left(Z_{n}\right)_{n \geq 1}$ specifically taylored to the targeted application (reduced basis methods...)
- nonlinear approximation tools (tensor methods, neural networks...)
- Combine both worlds!

The key is to consider sets of functions with specific low-dimensional structures and to propose approximation tools (formats) which exploit these structures (application-dependent).

Possible approaches:

- build a sequence of linear approximation spaces $\left(Z_{n}\right)_{n \geq 1}$ specifically taylored to the targeted application (reduced basis methods...)
- nonlinear approximation tools (tensor methods, neural networks...)
- Combine both worlds!

The key is to consider sets of functions with specific low-dimensional structures and to propose approximation tools (formats) which exploit these structures (application-dependent).

Possible approaches:

- build a sequence of linear approximation spaces $\left(Z_{n}\right)_{n \geq 1}$ specifically taylored to the targeted application (reduced basis methods...)
- nonlinear approximation tools (tensor methods, neural networks...)
- Combine both worlds!

Outline of the talk

(9) Reduced basis methods
(2) Tensors and neural networks

Outline of the talk

(1) Reduced basis methods

2 Tensors and neural networks

Parametrized PDEs

- The behaviour of many systems can be described by the solutions of a system of Partial Differential Equations.
- These equations can depend on one or several parameters $\mu=\left(\mu_{1}, \cdots, \mu_{p}\right)$ with $p \in \mathbb{N}^{*}$ which can take values in a set denoted by $\mathcal{P} \subset \mathbb{R}^{p}$.
In this case, for one particular value $\mu \in \mathcal{P}$ of this vector of parameters, the associated solution to the PDE system is a function u_{μ} solution of

$$
\mathcal{A}\left(u_{\mu} ; \mu\right)=0,
$$

where $\mathcal{A}(\cdot ; \mu)$ is some differential operator depending on the parameter vector μ.

Here, the set of functions one wishes to consider is the set of solutions to the

parametric PDE:

Parametrized PDEs

- The behaviour of many systems can be described by the solutions of a system of Partial Differential Equations.
- These equations can depend on one or several parameters $\mu=\left(\mu_{1}, \cdots, \mu_{p}\right)$ with $p \in \mathbb{N}^{*}$ which can take values in a set denoted by $\mathcal{P} \subset \mathbb{R}^{p}$.
In this case, for one particular value $\mu \in \mathcal{P}$ of this vector of parameters, the associated solution to the PDE system is a function u_{μ} solution of

$$
\mathcal{A}\left(u_{\mu} ; \mu\right)=0,
$$

where $\mathcal{A}(\cdot ; \mu)$ is some differential operator depending on the parameter vector μ.

Here, the set of functions one wishes to consider is the set of solutions to the parametric PDE:

$$
K=\left\{u_{\mu}, \mu \in \mathcal{P}\right\}
$$

Research nuclear core reactor

joint work with Yonah Conjugo-Taumhas, Geneviève Dussson, Tony Lelièvre, François Madiot

Criticity calculation in a nuclear core reactor

Simple example: Two-group diffusion model

[Coste-Delclaux, Diop, Nicolas, Bonin, 2013], [Mula, 2014], [Giret, 2018], [Allaire, Blanc, Desprès, Golse, 2019]

- Spatial domain $\Omega \subset \mathbb{R}^{d}$ occupied by the nuclear core reactor
- Neutrons are assumed to be separated into 2 groups according to their energy: $E=\left\{E_{1}, E_{2}\right\}\left(E_{1}>E_{2}\right)$
- $\mu \in \mathcal{P}$: vector of parameters of the problem, which encodes the values of the physical properties of the nuclear core

Problem of interest: Find

- $u=\left(u_{1}, u_{2}\right): \Omega \rightarrow \mathbb{R}^{2}:$ neutron scalar fluxes:
- $\lambda_{\mu}>0$ eigenvalue with smallest modulus;
solution to the non-symmetric eigenvalue problem

where \mathcal{A}_{μ} and \mathcal{B}_{μ} are linear operators such that $\mathcal{A}_{\mu}^{-1} \mathcal{B}_{\mu}$ satisfies the assumptions of the Krein-Rutman theorem.

Criticity calculation in a nuclear core reactor

Simple example: Two-group diffusion model

[Coste-Delclaux, Diop, Nicolas, Bonin, 2013], [Mula, 2014], [Giret, 2018], [Allaire, Blanc, Desprès, Golse, 2019]

- Spatial domain $\Omega \subset \mathbb{R}^{d}$ occupied by the nuclear core reactor
- Neutrons are assumed to be separated into 2 groups according to their energy: $E=\left\{E_{1}, E_{2}\right\}\left(E_{1}>E_{2}\right)$
- $\mu \in \mathcal{P}$: vector of parameters of the problem, which encodes the values of the physical properties of the nuclear core

Problem of interest: Find

- $U_{\mu}=\left(U_{1}, \mu, U_{2}, \mu\right): \Omega \rightarrow \mathbb{R}^{2}:$ neutron scalar fluxes:
- $\lambda_{\mu}>0$ eigenvalue with smallest modulus;
solution to the non-symmetric eigenvalue problem
where \mathcal{A} and \mathcal{B} are linear operators such that
satisfies the assumptions of the Krein-Rutman theorem.

Criticity calculation in a nuclear core reactor

Simple example: Two-group diffusion model

[Coste-Delclaux, Diop, Nicolas, Bonin, 2013], [Mula, 2014], [Giret, 2018], [Allaire, Blanc, Desprès, Golse, 2019]

- Spatial domain $\Omega \subset \mathbb{R}^{d}$ occupied by the nuclear core reactor
- Neutrons are assumed to be separated into $\mathbf{2}$ groups according to their energy: $E=\left\{E_{1}, E_{2}\right\}\left(E_{1}>E_{2}\right)$
- $\mu \in \mathcal{P}$: vector of parameters of the problem, which encodes the values of the physical properties of the nuclear core

Problem of interest: Find

- $u_{\mu}=\left(u_{1}, \ldots, u_{2}, \ldots\right): \Omega \rightarrow \mathbb{R}^{2}$: neutron scalar fluxes:
- $\lambda_{\mu}>0$ eigenvalue with smallest modulus;
solution to the non-symmetric eigenvalue problem
where \mathcal{A} and B are linear operators such that
satisfies the assumptions of the Krein-Rutnan theorem.

Criticity calculation in a nuclear core reactor

Simple example: Two-group diffusion model

[Coste-Delclaux, Diop, Nicolas, Bonin, 2013], [Mula, 2014], [Giret, 2018], [Allaire, Blanc, Desprès, Golse, 2019]

- Spatial domain $\Omega \subset \mathbb{R}^{d}$ occupied by the nuclear core reactor
- Neutrons are assumed to be separated into 2 groups according to their energy: $E=\left\{E_{1}, E_{2}\right\}\left(E_{1}>E_{2}\right)$
- $\mu \in \mathcal{P}$: vector of parameters of the problem, which encodes the values of the physical properties of the nuclear core

Problem of interest: Find

- $u_{\mu}=\left(u_{1, \mu}, u_{2, \mu}\right): \Omega \rightarrow \mathbb{R}^{2}$: neutron scalar fluxes:
- $\lambda_{\mu}>0$ eigenvalue with smallest modulus;
solution to the non-symmetric eigenvalue problem
where and B are linear operators such that \mathcal{A} μ satisfies the assumptions of the Krein-Rutman theorem.

Criticity calculation in a nuclear core reactor

Simple example: Two-group diffusion model

[Coste-Delclaux, Diop, Nicolas, Bonin, 2013], [Mula, 2014], [Giret, 2018], [Allaire, Blanc, Desprès, Golse, 2019]

- Spatial domain $\Omega \subset \mathbb{R}^{d}$ occupied by the nuclear core reactor
- Neutrons are assumed to be separated into 2 groups according to their energy: $E=\left\{E_{1}, E_{2}\right\}\left(E_{1}>E_{2}\right)$
- $\mu \in \mathcal{P}$: vector of parameters of the problem, which encodes the values of the physical properties of the nuclear core

Problem of interest: Find

- $u_{\mu}=\left(u_{1, \mu}, u_{2, \mu}\right): \Omega \rightarrow \mathbb{R}^{2}$: neutron scalar fluxes;
- $\lambda_{\mu}>0$ eigenvalue with smallest modulus;
solution to the non-symmetric eigenvalue problem

$$
\mathcal{A}_{\mu} u_{\mu}=\lambda_{\mu} \mathcal{B}_{\mu}=\frac{1}{k_{\mu}} \mathcal{B}_{\mu} u_{\mu}
$$

where \mathcal{A}_{μ} and \mathcal{B}_{μ} are linear operators such that $\mathcal{A}_{\mu}^{-1} \mathcal{B}_{\mu}$ satisfies the assumptions of the Krein-Rutman theorem.

Effective multiplication factor

- $k_{\mu}<1$: the fission reaction is not the prevailing phenomenon, then the total mean number of neutrons tends towards zero along time; the reactor is said to be subcritical
- $k_{\mu}=1$: both creation and absorption of neutrons take as much place as the other inside the system; the reactor is said to be critical
- $k_{\mu}>1$: the fission dominates the absorption phenomenon, therefore a chain reaction phenomenon takes place inside the system, and the total mean number of neutrons increases at an exponential rate, the system then tends to collapse; the reactor is said to be supercritical

Two-Group Diffusion Equation

$$
\mathcal{A}_{\mu} \boldsymbol{u}_{\mu}=\lambda_{\mu} \mathcal{B}_{\mu} \boldsymbol{u}_{\mu}
$$

Two-group Diffusion Equation

$$
\begin{align*}
& -\nabla \cdot\left(D_{1, \mu} \nabla u_{1, \mu}\right)+\Sigma_{11, \mu} u_{1, \mu}+\Sigma_{12, \mu} u_{2, \mu} \\
& =\lambda_{\mu}\left[\chi_{1, \mu}\left(\left(\nu \Sigma_{f}\right)_{1, \mu} u_{1, \mu}+\left(\nu \Sigma_{f}\right)_{2, \mu} u_{2, \mu}\right)\right] \\
& -\nabla \cdot\left(D_{2, \mu} \nabla u_{2, \mu}\right)+\Sigma_{22, \mu} u_{2, \mu}+\Sigma_{21, \mu} u_{1, \mu} \\
& =\lambda_{\mu}\left[\chi_{2, \mu}\left(\left(\nu \Sigma_{f}\right)_{1, \mu} u_{1, \mu}+\left(\nu \Sigma_{f}\right)_{2, \mu} u_{2, \mu}\right)\right] \tag{1}
\end{align*}
$$

- $\Sigma_{i i}=\Sigma_{t i}-\Sigma_{s, i i}$;
- $\Sigma_{t i}$: total cross-section of group i;
- $\Sigma_{s, i j}$: scattering cross-section from group i to group j;
- $\Sigma_{i j}=-\Sigma_{s, i j}$;
- $D_{i}=\frac{1}{3 \Sigma_{t i}}$: diffusion coefficient of group i;
- $\Sigma_{f i}$: fission cross-section of group i;
- ν_{i} : average number of neutrons of groupd i emitted per fission;
- χ_{i} : fission spectrum of group i

Parameters of the problem

- $\mu \in \mathcal{P}$ represents the physical properties of the core and its configuration.
- The spatial domain of calculation Ω is split into a structured grid that defines K regions. On each region Ω_{k}, μ^{k} represents the set of material parameters inside the domain Ω_{k}, so that $\mu=\left(\mu^{1}, \ldots, \mu^{K}\right) \in \mathcal{P}$.

Figure: Cross-sectional view of the BSS-11 nuclear core reactor

Motivation of model-order reduction methods

- For a particular value of $\mu \in \mathcal{P}$, a numerical approximation of the solution u_{μ} is computed by some numerical scheme (for instance with a finite element code), the resolution of which may be very costly from a computational point of view.
- There exist a wide variety of contexts in which it is necessary to perform parametric studies of the problem at hand, i.e. to compute (a numerical approximation of) the solution u_{μ} for a very large number of values of the parameter vector μ as quickly as possible!

Examples:

- Design optimization
- Inverse problems
- Real-time control
- Uncertainty quantification

In such contexts, naive parametric studies using a standard finite element code may be extremely expensive from a computational point of view and time-consuming!

Motivation of model-order reduction methods

- For a particular value of $\mu \in \mathcal{P}$, a numerical approximation of the solution u_{μ} is computed by some numerical scheme (for instance with a finite element code), the resolution of which may be very costly from a computational point of view.
- There exist a wide variety of contexts in which it is necessary to perform parametric studies of the problem at hand, i.e. to compute (a numerical approximation of) the solution u_{μ} for a very large number of values of the parameter vector μ as quickly as possible!

Examples:

- Design optimization
- Inverse nroblems
- Real-time control
- Uncertainty quantification

In such contexts, naive narametric studies using a standard finite element code may be extremely expensive from a computational point of view and time-consuming!

Motivation of model-order reduction methods

- For a particular value of $\mu \in \mathcal{P}$, a numerical approximation of the solution u_{μ} is computed by some numerical scheme (for instance with a finite element code), the resolution of which may be very costly from a computational point of view.
- There exist a wide variety of contexts in which it is necessary to perform parametric studies of the problem at hand, i.e. to compute (a numerical approximation of) the solution u_{μ} for a very large number of values of the parameter vector μ as quickly as possible!

Examples:

- Design optimization
- Inverse problems
- Real-time control
- Uncertainty quantification

In such contexts, naive parametric studies using a standard finite element code may be extremely expensive from a computational point of view and time-consuming!

Principle of model-order reduction

Model-order reduction methods have been developped to circumvent this difficulty. The principle of these methods is the following:

- Offline stage: Compute u_{μ} with a standard numerical scheme (for instance finite elements) for a small number of well-chosen values of the parameter vector μ; this stage can be quite expensive from a computational point of view.
- Build another model, a reduced model from these few (expensive) computations in order to compute numerical approximations of u_{μ} for many other values of μ, but at a computational cost which is much cheaper than the initial (finite element) scheme.
- Online stage: Use the reduced model (instead of the original finite element code) in order to compute much faster u_{μ} for a large number of values of μ.

Principle of model-order reduction

Model-order reduction methods have been developped to circumvent this difficulty. The principle of these methods is the following:

- Offline stage: Compute u_{μ} with a standard numerical scheme (for instance finite elements) for a small number of well-chosen values of the parameter vector μ; this stage can be quite expensive from a computational point of view.
- Build another model, a reduced model from these few (expensive) computations in order to compute numerical approximations of u_{μ} for many other values of μ but at a computational cost which is much cheaper than the initial (finite element) scheme
- Online stage: Use the reduced model (instead of the original finite element code) in order to compute much faster u_{μ} for a large number of values of

Principle of model-order reduction

Model-order reduction methods have been developped to circumvent this difficulty. The principle of these methods is the following:

- Offline stage: Compute u_{μ} with a standard numerical scheme (for instance finite elements) for a small number of well-chosen values of the parameter vector μ; this stage can be quite expensive from a computational point of view.
- Build another model, a reduced model from these few (expensive) computations in order to compute numerical approximations of u_{μ} for many other values of μ, but at a computational cost which is much cheaper than the initial (finite element) scheme.
- Online stage: Use the reduced model (instead of the original finite element code) in order to compute much faster u_{μ} for a large number of values of

Principle of model-order reduction

Model-order reduction methods have been developped to circumvent this difficulty. The principle of these methods is the following:

- Offline stage: Compute u_{μ} with a standard numerical scheme (for instance finite elements) for a small number of well-chosen values of the parameter vector μ; this stage can be quite expensive from a computational point of view.
- Build another model, a reduced model from these few (expensive) computations in order to compute numerical approximations of u_{μ} for many other values of μ, but at a computational cost which is much cheaper than the initial (finite element) scheme.
- Online stage: Use the reduced model (instead of the original finite element code) in order to compute much faster u_{μ} for a large number of values of μ.

Reduced-basis method

A few seminal references:

- Cohen, Dahmen, DeVore, Maday, Patera...
- Reduced Basis Methods for Partial Differential Equations: An Introduction, Alfio Quarteroni, Andrea Manzoni, Federico Negri
- Certified Reduced Basis Methods for Parametrized Partial Differential Equations, Jan S Hesthaven, Gianluigi Rozza, Benjamin Stamm

In this talk: Reduced Basis method for accelerating the resolution of parametrized generalized non-symmetric eigenvalue problems, with a view to accelerating parametric studies for criticity calculations.

Two-Group Diffusion Equation (discrete formulation)

- Discretization of the spatial domain Ω with $P 1$ crossed-triangular finite elements over a rectangle mesh
- The solution u_{μ} is approximated by an element $u_{\mu, h}$ belonging to a finite-dimensional subspace V_{h} of dimension N_{h} (number of DoFs): $V_{h}=\operatorname{Span}\left\{\left(\varphi_{i}\right)_{i=1, N_{h}}\right\}$

Weak formulation of the problem

$$
\text { Find }\left(u_{\mu, h,} u_{\mu, h}^{*}, k_{\mu, h}\right) \in V_{h} \times V_{h} \times \mathbb{R}_{+}^{*} \text { such that }
$$

Adjoint problem

Two-Group Diffusion Equation (discrete formulation)

- Discretization of the spatial domain Ω with $P 1$ crossed-triangular finite elements over a rectangle mesh
- The solution u_{μ} is approximated by an element $u_{\mu, n}$ belonging to a finite-dimensional subspace V_{h} of dimension N_{h} (number of DoFs): $V_{h}=\operatorname{Span}\left\{\left(\varphi_{i}\right)_{i=1, N_{h}}\right\}$

Weak formulation of the problem

Find $\left(u_{\mu, h}, u_{\mu, h}^{*}, k_{\mu, h}\right) \in V_{h} \times V_{h} \times \mathbb{R}_{+}^{*}$ such that
$\forall v_{h} \in V_{h}, \quad a_{\mu, h}\left(u_{\mu, h}, v_{h}\right)=\frac{1}{k_{\mu, h}} b_{\mu, h}\left(u_{\mu, h}, v_{h}\right)$.
Adjoint problem $\forall v_{h} \in V_{h}, \quad a_{\mu, h}\left(v_{h}, u_{\mu, h}^{*}\right)=\frac{1}{k_{\mu, h}} b_{\mu, h}\left(v_{h}, u_{\mu, h}^{*}\right)$.

Two-Group Diffusion Equation (matrix form)

$$
\begin{equation*}
u_{\mu, h}=\sum_{i=1}^{N_{h}}\left(U_{\mu, h}\right)_{i} \varphi_{i}, \quad u_{\mu, h}^{*}=\sum_{i=1}^{N_{h}}\left(U_{\mu, h}^{*}\right)_{i} \varphi_{i} \tag{2}
\end{equation*}
$$

Matrix form of the problem

Find $\left(U_{\mu, h}, U_{\mu, h}^{*}, k_{\mu, h}\right) \in \mathbb{R}^{N_{h}} \times \mathbb{R}^{N_{h}} \times \mathbb{R}_{+}^{*}$ such that

$$
\begin{equation*}
A_{\mu, h} U_{\mu, h}=\frac{1}{k_{\mu, h}} B_{\mu, h} U_{\mu, h} \tag{3}
\end{equation*}
$$

Adjoint problem

$$
A_{\mu, h}^{T} U_{\mu, h}^{*}=\frac{1}{k_{\mu, h}} B_{\mu, h}^{T} U_{\mu, h}^{*}
$$

- Generalized eigenvalue problem
- $A_{\mu, h} \in \mathbb{R}^{N_{h} \times N_{h}}$ is non-symmetric and invertible
- $B_{\mu, h} \in \mathbb{R}^{N_{h} \times N_{h}}$ is non-symmetric, not invertible and positive
\longrightarrow High-fidelity problem

Reduced basis method

- The resolution of the high-fidelity problem for a large number of values of the parameter vector $\mu \in \mathcal{P}$ may be very costly from a computational point of view because N_{h} is large!
- The principle of the reduced basis method is to approximate the solution $\left(u_{\mu, h}, u_{\mu, h}^{*}, k_{\mu, h}\right)$ by a Galerkin approximation associated to a linear subspace $V_{N} \subset V_{h}$ of dimension at most $2 N$ with N much smaller than N_{h}.
- The reduced space V_{N} is chosen such that
where μ_{1}, \cdots, μ_{N} are N particular well-chosen values of the parameter vector μ.
- In the offline stage, the high-fidelity problem is only solved for this N values of the parameter vector.

Reduced basis method

- The resolution of the high-fidelity problem for a large number of values of the parameter vector $\mu \in \mathcal{P}$ may be very costly from a computational point of view because N_{h} is large!
- The principle of the reduced basis method is to approximate the solution ($u_{\mu, h}, u_{\mu, h}^{*}, k_{\mu, h}$) by a Galerkin approximation associated to a linear subspace $V_{N} \subset V_{h}$ of dimension at most $2 N$ with N much smaller than N_{h}.
- The reduced space V_{N} is chosen such that
where
are N particular well-chosen values of the parameter vector μ.
- In the offline stage the high-fidelity problem is only solved for this N values of the parameter vector.

Reduced basis method

- The resolution of the high-fidelity problem for a large number of values of the parameter vector $\mu \in \mathcal{P}$ may be very costly from a computational point of view because N_{h} is large!
- The principle of the reduced basis method is to approximate the solution ($u_{\mu, h}, u_{\mu, h}^{*}, k_{\mu, h}$) by a Galerkin approximation associated to a linear subspace $V_{N} \subset V_{h}$ of dimension at most $2 N$ with N much smaller than N_{h}.
- The reduced space V_{N} is chosen such that

$$
V_{N}=\operatorname{Vect}\left\{u_{\mu_{1}, h}, u_{\mu_{1}, h}^{*}, \cdots, u_{\mu_{N}, h}, u_{\mu_{N}, h}^{*}\right\},
$$

where μ_{1}, \cdots, μ_{N} are N particular well-chosen values of the parameter vector μ.

- In the offline stage, the high-fidelity problem is only solved for this N values of the parameter vector.

Reduced basis method

- The resolution of the high-fidelity problem for a large number of values of the parameter vector $\mu \in \mathcal{P}$ may be very costly from a computational point of view because N_{h} is large!
- The principle of the reduced basis method is to approximate the solution ($u_{\mu, h}, u_{\mu, h}^{*}, k_{\mu, h}$) by a Galerkin approximation associated to a linear subspace $V_{N} \subset V_{h}$ of dimension at most $2 N$ with N much smaller than N_{h}.
- The reduced space V_{N} is chosen such that

$$
V_{N}=\operatorname{Vect}\left\{u_{\mu_{1}, h}, u_{\mu_{1}, h}^{*}, \cdots, u_{\mu_{N}, h}, u_{\mu_{N}, h}^{*}\right\},
$$

where μ_{1}, \cdots, μ_{N} are N particular well-chosen values of the parameter vector μ.

- In the offline stage, the high-fidelity problem is only solved for this N values of the parameter vector.

Online stage of the Reduced Basis method

Galerkin approximation of the eigenvalue problem in V_{N}

Weak formulation of the reduced problem

$$
\begin{aligned}
& \text { Find }\left(u_{\mu, N}, u_{\mu, N}^{*}, k_{\mu, N}\right) \in V_{N} \times V_{N} \times \mathbb{R}_{+}^{*} \text { such that } \\
& \forall v_{N} \in V_{N}, \quad a_{\mu, h}\left(u_{\mu, N}, v_{N}\right)=\frac{1}{k_{\mu, N}} b_{\mu, h}\left(u_{\mu, N}, v_{N}\right) .
\end{aligned}
$$

Adjoint problem $\forall v_{N} \in V_{N}, \quad a_{\mu, h}\left(v_{N}, u_{\mu, N}^{*}\right)=\frac{1}{k_{\mu, N}} b_{\mu, h}\left(v_{N}, u_{\mu, N}^{*}\right)$.

Online stage of the reduced basis method

- In the online stage, for each new value of $\mu \in \mathcal{P}$, an atmost $2 N$-dimensional matrix eigenvalue problem is solved. When $N \ll N_{h}$, the resolution of the reduced problem is much cheaper from a computational point of view than the resolution of the original high-fidelity problem!
- Reduced basis: Let $n:=\operatorname{dim} V_{N}$ and $\left(\theta_{1}, \cdots, \theta_{n}\right)$ be an orthonormal basis of V_{N}. Denoting by

$$
\Theta_{N}:=\left(\theta_{1}|\cdots| \theta_{n}\right) \in \mathbb{R}^{N_{n} \times n},
$$

We define the $n \times n$ reduced matrices:

$$
\left\{\begin{array}{l}
A_{\mu, N}=\Theta_{N}^{\top} A_{\mu, h} \Theta_{N} \\
B_{\mu, N}=\Theta_{N}^{\top} B_{\mu, h} \Theta_{N} .
\end{array}\right.
$$

Approximate solutions given by the reduced basis method

Reduced problem

Find $\left(c_{\mu, N}, c_{\mu, N}^{*}, k_{\mu, N}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}_{+}^{*}$ such that $A_{\mu, N} C_{\mu, N}=\frac{1}{k_{\mu, N}} B_{\mu, N} C_{\mu, N} \quad$ and $\quad U_{\mu, N}=\Theta_{N} C_{\mu, N}$

$$
A_{\mu, N}^{T} c_{\mu, N}^{*}=\frac{1}{k_{\mu, N}} B_{\mu, N}^{T} c_{\mu, N}^{*} \quad \text { and } \quad U_{\mu, N}^{*}=\Theta_{N} c_{\mu, N}^{*}
$$

$$
u_{\mu, N}:=\sum_{i=1}^{N_{h}}\left(U_{\mu, N}\right)_{i} \varphi_{i}, \quad u_{\mu, N}^{*}:=\sum_{i=1}^{N_{h}}\left(U_{\mu, N}^{*}\right)_{i} \varphi_{i}
$$

How to build V_{N} ?

This is usually done via an iterative algorithm called a greedy algorithm.
Need to choose a finite subset $\mathcal{P}_{\text {train }} \subset \mathcal{P}$, called training set.

Naive Greedy algorithm

- Choose randomly $\mu_{1} \in \mathcal{P}_{\text {train }}$.

$$
V_{1}=\operatorname{Vect}\left\{u_{\mu_{1}, h}, u_{\mu_{1}, h}^{*}\right\}
$$

- Iteration N : Choose $\mu_{N} \in \mathcal{P}_{\text {train }}$ such that

$$
\begin{gathered}
\mu_{N} \in \underset{\mu \in \mathcal{P}_{\text {tain }}}{\operatorname{argmax}}\left|k_{\mu, h}-k_{\mu, N-1}\right| \\
V_{N}=\operatorname{Vect}\left\{u_{\mu_{1}, h}, u_{\mu_{1}, h}^{*}, \cdots, u_{\mu_{N}, h}, u_{\mu_{N}, h}^{*}\right\}
\end{gathered}
$$

A naive version of the Greedy algorithm requires to evaluate $k_{\mu, h}$, for all $\mu \in \Lambda_{\text {train }}$ \rightarrow too expensive...

Practical algorithm:

Replace $e_{N-1}^{\kappa}(\mu):=\left|k_{\mu, h}-k_{\mu, N-1}\right|$ by an easy-to-compute a posteriori error estimator $\Delta_{N-1}^{k}(\mu)$.

Error on the eigenvalue

- Residuals:

$$
\begin{align*}
& R_{\mu, N}=\left(B_{\mu, h}-k_{\mu, N} A_{\mu, h}\right) u_{\mu, N} \\
& R_{\mu, N}^{*}=\left(B_{\mu, h}^{T}-k_{\mu, N} A_{\mu, h}^{T}\right) u_{\mu, N}^{*} \tag{4}
\end{align*}
$$

Proposition. A posteriori error estimator

There exists a positive constant $C^{\kappa}(\mu)>0$ (called the prefactor) such that for all $\mu \in \mathcal{P}$,

$$
\begin{equation*}
e_{N}^{\kappa}(\mu)=\left|k_{\mu, h}-k_{\mu, N}\right| \leqslant C^{k}(\mu) \frac{\left\|R_{\mu, N}\right\|\left\|R_{\mu, N}^{*}\right\|}{\left\langle C_{\mu, N}^{*}, A_{\mu, N} c_{\mu, N}\right\rangle}=C^{\kappa}(\mu) \eta_{N}^{k}(\mu) \tag{5}
\end{equation*}
$$

with $\eta_{N}^{k}(\mu):=\frac{\left\|R_{\mu, N}\right\|\left\|R_{\mu, N}^{*}\right\|}{\left\langle c_{\mu, N}^{*}, A_{\mu, N} c_{\mu, N}\right\rangle}$.

How to build V_{N} ?

- Practical a posteriori error estimator:

$$
\Delta_{N}^{k}(\mu)=\bar{C}_{N}^{\kappa} \frac{\left\|R_{\mu, N}\right\|\| \| R_{\mu, N}^{*} \|}{\left\langle C_{\mu, N}^{*}, A_{\mu, N} C_{\mu, N}\right\rangle}=\bar{C}_{N}^{k} \eta_{N}^{k}(\mu)
$$

where \bar{C}_{N}^{k} is a heuristic estimation of the prefactor $C^{k}(\mu)$

- $\Delta_{N}^{k}(\mu)$ can be efficiently computed with complexity $\mathcal{O}\left(n^{2}\right)$ if the data of the problem is separated.

How to build V_{N} ?

Actual Greedy algorithm

- Choose randomly $\mu_{1} \in \mathcal{P}_{\text {train }}$.

$$
V_{1}=\operatorname{Vect}\left\{u_{\mu_{1}, h}, u_{\mu_{1}, h}^{*}\right\}
$$

- Iteration N : Choose $\mu_{N} \in \mathcal{P}_{\text {train }}$ such that

$$
\begin{gathered}
\mu_{N} \in \underset{\mu \in \mathcal{P}_{\text {train }}}{\operatorname{argmax}} \Delta_{N-1}^{k}(\mu) . \\
V_{N}=\operatorname{Vect}\left\{u_{\mu_{1}, h}, u_{\mu_{1}, h}^{*}, \cdots, u_{\mu_{N}, h}, u_{\mu_{N}, h}^{*}\right\}
\end{gathered}
$$

First toy test case: the MiniCore problem

- 25 spatial regions
- $L=107.52 \mathrm{~cm}$
- UGD12: mix of uranium dioxyde and Galinium oxyde
- UO2: uranium dioxyde
- BC: $u_{\mu}(x)=0, \quad x \in \partial \Omega$
- $N_{h}=2602$ DoFs per group
- Training set of parameters $\mathcal{P}_{\text {train }}$ of cardinality 1000 generated randomly

High-fidelity and reduced solver

Reduced-order model obtained with $N=100$

Convergence of the reduced basis : mean relative errors over $\mathcal{P}_{\text {test }}$

- $\mathcal{P}_{\text {test }} \subset \mathcal{P}$ with cardinality 50 (test set)
- $\mathcal{P}_{\text {pref }} \subset \mathcal{P}$ with cardinality 10 (prefactor set)

Parametric variability of the prefactor

Figure: Parametric variability of the prefactor

Gain in computational time

Figure: Relative time saving of the reduced solver

Figure: Cross-sectional views of the 3D core

- 9 spatial regions
- BC: $u_{\mu}(x)=0, \quad x \in \partial \Omega$
- $N_{h}=108800$ DoFs per group
- Training set of parameters $\mathcal{P}_{\text {train }}$ of cardinality 100 generated randomly
- Prefactor set $\mathcal{P}_{\text {pref }}$ of cardinality 5
- Test set $\mathcal{P}_{\text {test }}$ of cardinality 10

Convergence of the reduced basis approximation

Computational runtime of the reduced-order model

What else?

Conclusions:

- Example of linear approximation method dedicated to one specific application in a high-dimensional context: efficient reduced-order model for criticity calculations in neutronics using the reduced basis method
- Very encouraging results obtained on two-group diffusion models with the APOLLO3 code

To go beyond:

- What if the linear approximation spaces built by the greedy algorithms had not yielded accurate enough approximations?
- Current trend: combine linear and nonlinear approximation approaches.
- What if we are not in a parametric setting?

Outline of the talk

(9) Reduced basis methods

(2) Tensors and neural networks

Nonlinear approximation

Goal: find an approximation of a high-dimensional function

$$
u\left(x_{1}, \ldots, x_{d}\right)
$$

and assume that u belongs to some Hilbert space V.

For a certain subset of functions $Z \subset V$ described by a small number n parameters, find a best approximation z^{*} of u by elements of Z is defined by

The set Z is not a linear space in general.

Nonlinear approximation

Goal: find an approximation of a high-dimensional function

$$
u\left(x_{1}, \ldots, x_{d}\right)
$$

and assume that u belongs to some Hilbert space V.

For a certain subset of functions $Z \subset V$ described by a small number n parameters, find a best approximation z^{*} of u by elements of Z is defined by

$$
z^{*}=\inf _{z \in Z}\|u-z\| v
$$

The set Z is not a linear space in general.

Nonlinear approximation

Goal: find an approximation of a high-dimensional function

$$
u\left(x_{1}, \ldots, x_{d}\right)
$$

and assume that u belongs to some Hilbert space V.

For a certain subset of functions $Z \subset V$ described by a small number n parameters, find a best approximation z^{*} of u by elements of Z is defined by

$$
z^{*}=\inf _{z \in Z}\|u-z\|_{v}
$$

The set Z is not a linear space in general.

Typical examples of subsets Z

- Low-rank tensors:

$$
u\left(x_{1}, \ldots, x_{d}\right) \approx \sum_{k=1}^{R} r_{k}^{(1)}\left(x_{1}\right) r_{k}^{(2)}\left(x_{2}\right) \ldots r_{k}^{(d)}\left(x_{d}\right)
$$

- Neural networks:

$$
u\left(x_{1}, \ldots, x_{d}\right)=u(x) \approx \sigma\left(A_{1} \sigma\left(A_{2}\left(\ldots \sigma\left(A_{L} x+b_{L}\right) \ldots\right)+b_{2}\right)+b_{1}\right)
$$

where for all $1 \leq i \leq L, A_{i}$ are matrices, b_{i} vectors and $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ is called the activation function

- ...

Tensor methods

For r^{1}, \ldots, r^{d} univariate functions,

$$
r^{1} \otimes \cdots \otimes r^{d}\left(x_{1}, \cdots, x_{d}\right)=r^{1}\left(x_{1}\right) \cdots r^{d}\left(x_{d}\right)
$$

and assume that $r^{1} \otimes \cdots \otimes r^{d}$ belongs to V.
The function $r^{1} \otimes \cdots \otimes r^{d}$ is then called a pure tensor product function.
Tensor methods are one family of approximation tools used for the resolution of high-dimensional PDEs. The solution $u \in V$ of a high-dimensional PDE is approximated as some linear combination of pure tensor product functions.

Classical tensor methods consist in approximating u in a certain tensor format, i.e. by a function which belongs to some subset Z of V, the elements of which can be
characterized as particular linear combinations of pure tensor product functions with low complexity.

Tensor methods

For r^{1}, \ldots, r^{d} univariate functions,

$$
r^{1} \otimes \cdots \otimes r^{d}\left(x_{1}, \cdots, x_{d}\right)=r^{1}\left(x_{1}\right) \cdots r^{d}\left(x_{d}\right)
$$

and assume that $r^{1} \otimes \cdots \otimes r^{d}$ belongs to V.
The function $r^{1} \otimes \cdots \otimes r^{d}$ is then called a pure tensor product function.
Tensor methods are one family of approximation tools used for the resolution of high-dimensional PDEs. The solution $u \in V$ of a high-dimensional PDE is approximated as some linear combination of pure tensor product functions.

Classical tensor methods consist in approximating u in a certain tensor format, i.e. by a function which belongs to some subset Z of V, the elements of which can be characterized as particular linear combinations of pure tensor product functions with low complexity.

Tensor methods

For r^{1}, \ldots, r^{d} univariate functions,

$$
r^{1} \otimes \cdots \otimes r^{d}\left(x_{1}, \cdots, x_{d}\right)=r^{1}\left(x_{1}\right) \cdots r^{d}\left(x_{d}\right)
$$

and assume that $r^{1} \otimes \cdots \otimes r^{d}$ belongs to V.
The function $r^{1} \otimes \cdots \otimes r^{d}$ is then called a pure tensor product function.
Tensor methods are one family of approximation tools used for the resolution of high-dimensional PDEs. The solution $u \in V$ of a high-dimensional PDE is approximated as some linear combination of pure tensor product functions.

Classical tensor methods consist in approximating u in a certain tensor format, i.e. by a function which belongs to some subset Z of V, the elements of which can be characterized as particular linear combinations of pure tensor product functions with low complexity.

Tensor formats

(Grasedyck, Khoromskij, Kolda, Hackbusch, Lubich, Oseledets, ...)

- Canonical polyadic format of rank lower than $R \in \mathbb{N}^{*}$:

$$
\begin{gather*}
Z_{R}^{\text {can }}:=\left\{z=\sum_{k=1}^{R} r_{k}^{1} \otimes \cdots \otimes r_{k}^{d}\right\} . \tag{6}\\
C O M P=\mathcal{O}(R N d)
\end{gather*}
$$

- Tucker format with rank $R:=(R, \cdots, R)$ with $R \in \mathbb{N}^{*}$:

- Tensor Train format with rank $R:=(R, R, \cdots, R)$ with $R \in \mathbb{N}^{*}$:

Tensor formats

(Grasedyck, Khoromskij, Kolda, Hackbusch, Lubich, Oseledets, ...)

- Canonical polyadic format of rank lower than $R \in \mathbb{N}^{*}$:

$$
\begin{gather*}
Z_{R}^{\mathrm{can}}:=\left\{z=\sum_{k=1}^{R} r_{k}^{1} \otimes \cdots \otimes r_{k}^{d}\right\} \tag{6}\\
C O M P=\mathcal{O}(R N d)
\end{gather*}
$$

- Tucker format with rank $\boldsymbol{R}:=(R, \cdots, R)$ with $R \in \mathbb{N}^{*}$:

$$
\begin{gathered}
Z_{R}^{\text {Tucker }}:=\left\{\begin{array}{c}
z=\sum_{k_{1}=1}^{R} \cdots \sum_{k_{d}=1}^{R} c_{k_{1}, \ldots, k_{d}} r_{k_{1}}^{1} \otimes \cdots \otimes r_{k_{d}}^{d} \\
\left(c_{k_{1}, \ldots, k_{d}}\right)_{1 \leq k_{1} \leq R, \ldots, 1 \leq k_{d} \leq R} \in \mathbb{R}^{R \times \cdots \times R} \\
C O M P=\mathcal{O}\left(R^{d}+N R d\right)
\end{array}\right\} .
\end{gathered}
$$

- Tensor Train format with rank $R:=(R, R, \cdots, R)$ with $R \in \mathbb{N}^{*}$:

Tensor formats

(Grasedyck, Khoromskij, Kolda, Hackbusch, Lubich, Oseledets, ...)

- Canonical polyadic format of rank lower than $R \in \mathbb{N}^{*}$:

$$
\begin{gather*}
Z_{R}^{\mathrm{can}}:=\left\{z=\sum_{k=1}^{R} r_{k}^{1} \otimes \cdots \otimes r_{k}^{d}\right\} \tag{6}\\
C O M P=\mathcal{O}(R N d)
\end{gather*}
$$

- Tucker format with rank $\boldsymbol{R}:=(R, \cdots, R)$ with $R \in \mathbb{N}^{*}$:

$$
\begin{gather*}
Z_{R}^{\text {Tucker }}:=\left\{\begin{array}{c}
z=\sum_{k_{1}=1}^{R} \cdots \sum_{k_{d}=1}^{R} c_{k_{1}, \ldots, k_{d}} r_{k_{1}}^{1} \otimes \cdots \otimes r_{k_{d}}^{d} \\
\left(c_{k_{1}, \ldots, k_{d}}\right)_{1 \leq k_{1} \leq R, \ldots, 1 \leq k_{d} \leq R} \in \mathbb{R}^{R \times \cdots \times R} \\
C O M P=\mathcal{O}\left(R^{d}+N R d\right)
\end{array}\right\} . \tag{7}
\end{gather*}
$$

- Tensor Train format with rank $\boldsymbol{R}:=(R, R, \cdots, R)$ with $R \in \mathbb{N}^{*}$:

$$
\begin{gather*}
Z_{R}^{\mathrm{TT}}:=\left\{\begin{array}{c}
z\left(x_{1}, \ldots, x_{d}\right)=S_{1}\left(x_{1}\right)^{T} M_{2}\left(x_{2}\right) \cdots M_{d-1}\left(x_{d-1}\right) S_{d}\left(x_{d}\right) \\
S_{1}\left(x_{1}\right) \in \mathbb{R}^{R}, S_{d}\left(x_{d}\right) \in \mathbb{R}^{R}, M_{i}\left(x_{i}\right) \in \mathbb{R}^{R \times R}, \forall 2 \leq i \leq d-1
\end{array}\right\} \tag{8}\\
C O M P=\mathcal{O}\left(R^{2} N d\right)
\end{gather*}
$$

Greedy algorithms

Greedy algorithms are iterative algorithms used in nonlinear approximation theory. ([Temlyakov, 2008], Cohen, Dahmen, DeVore, Le Bris, Lelièvre, Maday...)

After n iterations of a greedy algorithm, an element $u \in V$ is approximated as the sum of n elements belonging to a subset $Z \subset V$, called a dictionary of V.

More precisely, at the $n^{\text {th }}$ iteration of the greedy algorithm

$$
u \approx u_{n}=u_{n-1}+z_{n}
$$

for some best element $z_{n} \in Z$, the definition of which depends on the problem u is solution to.

In computational mechanics, the Progressive Generalized Decomposition (PGD) method is a particular type of greedy algorithm used for the resolution of high-dimensional PDEs, which has been used in a wide variety of contexts (Ladevèze, Chinesta, Nouy, Néron, Chamoin...)

Greedy algorithms

Greedy algorithms are iterative algorithms used in nonlinear approximation theory. ([Temlyakov, 2008], Cohen, Dahmen, DeVore, Le Bris, Lelièvre, Maday...)

After n iterations of a greedy algorithm, an element $u \in V$ is approximated as the sum of n elements belonging to a subset $Z \subset V$, called a dictionary of V.

More precisely, at the $n^{\text {th }}$ iteration of the greedy algorithm,

$$
u \approx u_{n}=u_{n-1}+z_{n}
$$

for some best element $z_{n} \in Z$, the definition of which depends on the problem u is solution to.

In computational mechanics, the Progressive Generalized Decomposition (PGD) method is a particular type of greedy algorithm used for the resolution of high-dimensional PDEs, which has been used in a wide variety of contexts (Ladevèze,
Chinesta, Nouy, Néron, Chamoin...)

Greedy algorithms

Greedy algorithms are iterative algorithms used in nonlinear approximation theory. ([Temlyakov, 2008], Cohen, Dahmen, DeVore, Le Bris, Lelièvre, Maday...)

After n iterations of a greedy algorithm, an element $u \in V$ is approximated as the sum of n elements belonging to a subset $Z \subset V$, called a dictionary of V.

More precisely, at the $n^{\text {th }}$ iteration of the greedy algorithm,

$$
u \approx u_{n}=u_{n-1}+z_{n}
$$

for some best element $z_{n} \in Z$, the definition of which depends on the problem u is solution to.

In computational mechanics, the Progressive Generalized Decomposition (PGD) method is a particular type of greedy algorithm used for the resolution of high-dimensional PDEs, which has been used in a wide variety of contexts (Ladevèze, Chinesta, Nouy, Néron, Chamoin...)

Dictionary

Assume V is a Hilbert space.

Definition

A set $Z \subset V$ is called a dictionary of V if and only if it satisfies the three following conditions:
(D1) The set Span Z is dense in V.
(D2) For all $\lambda \in \mathbb{R}$ and $z \in Z, \lambda z \in Z$.
(D3) Z is weakly closed in V.

Example: convex minimization

Let $\mathcal{E}: V \rightarrow \mathbb{R}$ be a strongly convex differentiable functional so that $\nabla \mathcal{E}$ is Lipschitz on bounded sets.

$$
u=\underset{v \in V}{\operatorname{argmin}} \mathcal{E}(v)
$$

Pure Greedy algorithm:

(1) set $u_{0}=0$ and $n=1$;
(2) find $z_{n} \in Z$ such that

$$
\begin{equation*}
z_{n} \in \underset{z \in \Sigma}{\operatorname{argmin}} \mathcal{E}\left(u_{n-1}+z\right) \tag{9}
\end{equation*}
$$

(3) set $u_{n}=u_{n-1}+z_{n}$ and $n=n+1$. Return to step 2 .

Theorem

The iterations of the Pure Greedy algorithm are well-defined (i.e. there exists at least one minimizer $z_{n} \in Z$ to (11) for all $n \in \mathbb{N}^{*}$ and z_{n} is non-zero if and only if $u_{n-1} \neq u$). Moreover, the sequence $\left(u_{n}\right)_{n \in \mathbb{N}^{*}}$ strongly converges in V towards u.

Example: convex minimization

Let $\mathcal{E}: V \rightarrow \mathbb{R}$ be a strongly convex differentiable functional so that $\nabla \mathcal{E}$ is Lipschitz on bounded sets.

$$
u=\underset{v \in V}{\operatorname{argmin}} \mathcal{E}(v)
$$

Orthogonal Greedy algorithm:

(1) set $u_{0}=0$ and $n=1$;
(2) find $z_{n} \in Z$ such that

$$
\begin{equation*}
z_{n} \in \underset{z \in \Sigma}{\operatorname{argmin}} \mathcal{E}\left(u_{n-1}+z\right) \tag{10}
\end{equation*}
$$

(3) set

$$
\begin{equation*}
u_{n}=\underset{v \in \operatorname{Span}\left\{z_{1}, \ldots, z_{n}\right\}}{\operatorname{argmin}} \mathcal{E}(v) . \tag{11}
\end{equation*}
$$

and $n=n+1$. Return to step 2.

Galerkin method in the linear space spanned by the elements z_{1}, \ldots, z_{n} A posteriori error estimators!

Theoretical convergence results on greedy algorithms

Temlyakov, Lelièvre, Le Bris, Maday, Cancès, Falco, Nouy, Ehrlacher...
© Convex minimization problems:

$$
u=\underset{v \in V}{\operatorname{argmin}} \mathcal{E}(v)
$$

(2) Linear bounded from below symmetric eigenvalue problems:

$$
A u=\lambda u
$$

(3) Non-symmetric linear problems:

$$
\forall v \in V, \quad a(u, v)=b(v) .
$$

(9) Parabolic evolution problems:

$$
\partial_{t} u+A u=f .
$$

© Schrödinger evolution problems:

$$
i \partial_{t} u+H u=f .
$$

Applications of greedy algorithms in materials science

Lelièvre, Monmarché, Dabaghi, Strössner, Lombardi, Grigori, Song, Ruiz, Dupuy, Guillot..

- Molecular dynamics
 , ,

- Electronic structure calculations

Perspectives

- Very recently, new numerical schemes for the resolution of high-dimensional PDEs, called Galerkin neural networks, have been introduced in
[Ainsworth, Dong, 2022], [Siegel, Hong, Jin, Hao, Xu,2023]
These are greedy algorithms associated to a dictionary Z defined by means of neural networks.
- Current trend in numerical methods for high-dimensional PDEs: Maday, Farhat, Somacal, Cohen.
combine methods and approaches from both the linear and nonlinear approximation world

Thank you for your attention!

Perspectives

- Very recently, new numerical schemes for the resolution of high-dimensional PDEs, called Galerkin neural networks, have been introduced in
[Ainsworth, Dong, 2022], [Siegel, Hong, Jin, Hao, Xu,2023]
These are greedy algorithms associated to a dictionary Z defined by means of neural networks.
- Current trend in numerical methods for high-dimensional PDEs:

Maday, Farhat, Somacal, Cohen...
combine methods and approaches from both the linear and nonlinear approximation world

Thank you for your attention!

Perspectives

- Very recently, new numerical schemes for the resolution of high-dimensional PDEs, called Galerkin neural networks, have been introduced in
[Ainsworth, Dong, 2022], [Siegel, Hong, Jin, Hao, Xu,2023]
These are greedy algorithms associated to a dictionary Z defined by means of neural networks.
- Current trend in numerical methods for high-dimensional PDEs:

Maday, Farhat, Somacal, Cohen...
combine methods and approaches from both the linear and nonlinear approximation world

Thank you for your attention!

Many thanks to all my collaborators!

