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High-dimensional approximation

Goal: find an approximation of a high-dimensional function

U(X1,...,Xd)
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High-dimensional approximation

Goal: find an approximation of a high-dimensional function
u(Xi,...,Xd)
or a set of high-dimensional functions
K

by some simple functions (i.e. easy to evaluate) depending only on a few parameters
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Some high-dimensional problems in materials science:

electronic structure calculations

@ Schrodinger equation: V(x, ..., Xq, 1)

d
4 h
oW =5~ ; AV + VY
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Some high-dimensional problems in materials science:

kinetic equations

@ Boltzmann equation: p(x1, ..., Xq4, V1, ..., Vq, t)

d d
Op+ > Vvidup+ Y Fidyp=H(p,p)

i=1 i=1
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Some high-dimensional problems in materials science:

molecular dynamics

@ Fokker-Planck equation: p(xi, ..., X4, t)

d d d
ap+ > 0(ap) — 5 DSy (byp) = 0.

=1 =1 j=1
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Some high-dimensional problems in materials science:

neutronics

@ Parametrized equation: u(u; x) p= (p1,...,up)

Ap; u(ps ) = ()

M Fuel1

M Fuel2

M Fuel1+CR
Reflector + CR

M Reflector
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Curse of dimensionality: first intuition

Goal: find an approximation of a high-dimensional function

U(Xh"'yxd)

Standard discretization approaches (such as classical finite element methods) suffer
from the so-called curse of dimensionality [Beiman,1961]

Y-
COMP = N COMP — NP

e [oowe— ]

N
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High-dimensional approximation

Let us assume that v is an element of a given set of functions V (a normed vector
space for instance).
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High-dimensional approximation

Let us assume that v is an element of a given set of functions V (a normed vector
space for instance).

@ For a certain subset of functions Z, C V described by n parameters, the error of
best approximation of u by elements of Z, is defined by

ez,(u) = inf [[u—vllv
n
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High-dimensional approximation

Let us assume that v is an element of a given set of functions V (a normed vector
space for instance).

@ For a certain subset of functions Z, C V described by n parameters, the error of
best approximation of u by elements of Z, is defined by

ez,(u) = inf [[u—vllv
n

@ A sequence of subsets (Z,)s>1 is called an approximation tool.
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High-dimensional approximation

Let us assume that v is an element of a given set of functions V (a normed vector
space for instance).

@ For a certain subset of functions Z, C V described by n parameters, the error of
best approximation of u by elements of Z, is defined by

ez,(u) = inf [[u—v]ly
@ A sequence of subsets (Z,)s>1 is called an approximation tool.
Two types of approaches:

o linear approximation: Z, are linear spaces
e nonlinear approximation: Z, are not linear spaces
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High-dimensional approximation

Fundamental problems are:
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High-dimensional approximation

Fundamental problems are:

@ to determine if and how fast ez, (u) goes to 0 for a certain function u (or a set of
functions K) and a certain approximation tool (Zs)n>1 ;
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High-dimensional approximation

Fundamental problems are:
@ to determine if and how fast ez, (u) goes to 0 for a certain function u (or a set of
functions K) and a certain approximation tool (Zs)n>1 ;

@ to provide algorithms which (hopefully) produce approximations u, € Z, of u such
that
[u— unllv < Cez,(u),
with
(i) either C independent of n;
(i) or C(n)ez,(u) o 0.
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High-dimensional approximation

Fundamental problems are:

@ to determine if and how fast ez, (u) goes to 0 for a certain function u (or a set of
functions K) and a certain approximation tool (Zs)n>1 ;

@ to provide algorithms which (hopefully) produce approximations u, € Z, of u such
that
[u— unllv < Cez,(u),
with
(i) either C independent of n;
(i) or C(n)ez,(u) o 0.

@ to provide a posteriori error estimators to estimate the error ||u — un||v in practice.
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Linear approximations: Kolmogorov n-width

For a set of functions K in a normed vector space V, the Kolmogorov n-width of K is
defined as
dn(K) = _inf sup inf ||[u—v|v

ZnCV ycKk VEZn

where the first infimum is taken over all linear subspaces Z, of V of dimension n.
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Linear approximations: Kolmogorov n-width

For a set of functions K in a normed vector space V, the Kolmogorov n-width of K is
defined as

dn(K) = Zlnrgvigwgn lu—vllv
where the first infimum is taken over all linear subspaces Z, of V of dimension n.

The Kolmogorov width d,(K) measures how well functions belonging to the set K can
be approximated by an n-dimensional linear space. It measures the ideal
performance that we can expect from linear approximation methods.
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Linear approximations: Kolmogorov n-width

For a set of functions K in a normed vector space V, the Kolmogorov n-width of K is
defined as

dn(K) = Zlnrgvigwgn lu—vllv
where the first infimum is taken over all linear subspaces Z, of V of dimension n.

The Kolmogorov width d,(K) measures how well functions belonging to the set K can
be approximated by an n-dimensional linear space. It measures the ideal
performance that we can expect from linear approximation methods.

Example: Let V = LP((0,1)?) and K the unit ball of W*P((0, 1)?).

Then, we have
dn(K) ~ n~*/?
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How to beat the curse of dimensionality?

The key is to consider sets of functions with specific low-dimensional structures
and to propose approximation tools (formats) which exploit these structures
(application-dependent).
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How to beat the curse of dimensionality?

The key is to consider sets of functions with specific low-dimensional structures
and to propose approximation tools (formats) which exploit these structures
(application-dependent).

Possible approaches:

@ build a sequence of linear approximation spaces (Z,),>1 specifically taylored to
the targeted application (reduced basis methods...)
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How to beat the curse of dimensionality?

The key is to consider sets of functions with specific low-dimensional structures
and to propose approximation tools (formats) which exploit these structures
(application-dependent).

Possible approaches:

@ build a sequence of linear approximation spaces (Z,),>1 specifically taylored to
the targeted application (reduced basis methods...)

@ nonlinear approximation tools (tensor methods, neural networks...)
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How to beat the curse of dimensionality?

The key is to consider sets of functions with specific low-dimensional structures
and to propose approximation tools (formats) which exploit these structures
(application-dependent).

Possible approaches:

@ build a sequence of linear approximation spaces (Z,),>1 specifically taylored to
the targeted application (reduced basis methods...)

@ nonlinear approximation tools (tensor methods, neural networks...)
@ Combine both worlds!
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Outline of the talk

° Reduced basis methods

e Tensors and neural networks
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Outline of the talk

° Reduced basis methods
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Parametrized PDEs

@ The behaviour of many systems can be described by the solutions of a system of
Partial Differential Equations.

@ These equations can depend on one or several parameters 1 = (w1, -, ip) With
p € N* which can take values in a set denoted by P C RP.
In this case, for one particular value . € P of this vector of parameters, the
associated solution to the PDE system is a function u,, solution of

A(uy; ) =0,

where A(-; 1) is some differential operator depending on the parameter vector .
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Parametrized PDEs

@ The behaviour of many systems can be described by the solutions of a system of
Partial Differential Equations.

@ These equations can depend on one or several parameters 1 = (w1, -, ip) With
p € N* which can take values in a set denoted by P C RP.
In this case, for one particular value . € P of this vector of parameters, the
associated solution to the PDE system is a function u,, solution of

AUy ) =0,

where A(-; 1) is some differential operator depending on the parameter vector .

Here, the set of functions one wishes to consider is the set of solutions to the
parametric PDE:
K ={u., pneP}
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Research nuclear core reactor

joint work with Yonah Conjugo-Taumhas, Genevieve Dussson, Tony Leliévre, Francois Madiot
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Criticity calculation in a nuclear core reactor

Simple example: Two-group diffusion model

[Coste-Delclaux, Diop, Nicolas, Bonin, 2013], [Mula, 2014], [Giret, 2018], [Allaire, Blanc, Després, Golse, 2019]
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Simple example: Two-group diffusion model
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@ Spatial domain Q c R occupied by the nuclear core reactor
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Criticity calculation in a nuclear core reactor

Simple example: Two-group diffusion model

[Coste-Delclaux, Diop, Nicolas, Bonin, 2013], [Mula, 2014], [Giret, 2018], [Allaire, Blanc, Després, Golse, 2019]

@ Spatial domain Q c R occupied by the nuclear core reactor

@ Neutrons are assumed to be separated into 2 groups according to their energy:
E= {E1,E2} (E1 > Eg)
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Criticity calculation in a nuclear core reactor

Simple example: Two-group diffusion model

[Coste-Delclaux, Diop, Nicolas, Bonin, 2013], [Mula, 2014], [Giret, 2018], [Allaire, Blanc, Després, Golse, 2019]

@ Spatial domain Q c R occupied by the nuclear core reactor

@ Neutrons are assumed to be separated into 2 groups according to their energy:
E= {E1,E2} (E1 > Eg)

@ 1, € P: vector of parameters of the problem, which encodes the values of the
physical properties of the nuclear core
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Criticity calculation in a nuclear core reactor

Simple example: Two-group diffusion model

[Coste-Delclaux, Diop, Nicolas, Bonin, 2013], [Mula, 2014], [Giret, 2018], [Allaire, Blanc, Després, Golse, 2019]

@ Spatial domain Q c R occupied by the nuclear core reactor

@ Neutrons are assumed to be separated into 2 groups according to their energy:
E= { E; s E> } (fE} > f;é)

@ 1, € P: vector of parameters of the problem, which encodes the values of the
physical properties of the nuclear core

Problem of interest: Find
@ u, = (U1, Ua,) : Q — RZ: neutron scalar fluxes;
@ )\, > 0 eigenvalue with smallest modulus;
solution to the non-symmetric eigenvalue problem

1
A;z Up, = )\;J.B‘u, = FBIJ,U;L
m

where A, and B,, are linear operators such that A" B,, satisfies the assumptions of
the Krein-Rutman theorem.
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Effective multiplication factor

@ k, < 1: the fission reaction is not the prevailing phenomenon, then the total mean
number of neutrons tends towards zero along time;
the reactor is said to be subcritical

@ k, = 1: both creation and absorption of neutrons take as much place as the other
inside the system;
the reactor is said to be critical

@ k, > 1: the fission dominates the absorption phenomenon, therefore a chain
reaction phenomenon takes place inside the system, and the total mean number
of neutrons increases at an exponential rate, the system then tends to collapse;
the reactor is said to be supercritical
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Two-Group Diffusion Equation

Apu, = A Buuy,

Two-group Diffusion Equation

=V - (D1,uVU1) + Za1,,U1p + Tiz Uz
= >\l" [XLN ((sz)“:NULN + (sz)2,u,u2,u)]

~V. (D2, V) + Top o pu + Fot b
=M X, (WE)1,0u1,0 + (VEf)2,.U2,,0) ] (1

®© ©6 6 066 060 06090

Yi= X4 — Xsii;
¥ total cross-section of group i;
Y5 j- scattering cross-section from group i to group j;
Yj=—X;
D; = éﬂ diffusion coefficient of group i;
¥ j: fission cross-section of group i;
vj: average number of neutrons of groupd / emitted per fission;
xi: fission spectrum of group i
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Parameters of the problem

@ 1 € P represents the physical properties of the core and its configuration.
@ The spatial domain of calculation Q is split into a structured grid that defines K
regions. On each region Q, u* represents the set of material parameters inside

the domain Q, so that . = (1!, . ..

A=A

?
¥
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Fuel 1

Fuel 2

Fuel 1 + CR
Reflector + CR
Reflector

1) eP.
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43

260

[«
N
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Figure: Cross-sectional view of the BSS-11 nuclear core'reactor
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Motivation of model-order reduction methods

@ For a particular value of i € P, a numerical approximation of the solution u,, is
computed by some numerical scheme (for instance with a finite element code), the
resolution of which may be very costly from a computational point of view.
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Motivation of model-order reduction methods

@ For a particular value of i € P, a numerical approximation of the solution u,, is
computed by some numerical scheme (for instance with a finite element code), the
resolution of which may be very costly from a computational point of view.

@ There exist a wide variety of contexts in which it is necessary to perform
parametric studies of the problem at hand, i.e. to compute (a numerical
approximation of) the solution u,, for a very large number of values of the
parameter vector . as quickly as possible!
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Motivation of model-order reduction methods

@ For a particular value of i € P, a numerical approximation of the solution u,, is
computed by some numerical scheme (for instance with a finite element code), the
resolution of which may be very costly from a computational point of view.

@ There exist a wide variety of contexts in which it is necessary to perform
parametric studies of the problem at hand, i.e. to compute (a numerical
approximation of) the solution u,, for a very large number of values of the
parameter vector . as quickly as possible!

Examples:
@ Design optimization
@ Inverse problems
@ Real-time control
@ Uncertainty quantification

In such contexts, naive parametric studies using a standard finite element code may be
extremely expensive from a computational point of view and time-consuming!
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Principle of model-order reduction

Model-order reduction methods have been developped to circumvent this difficulty.
The principle of these methods is the following:
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Principle of model-order reduction

Model-order reduction methods have been developped to circumvent this difficulty.
The principle of these methods is the following:

o Offline stage: Compute u,, with a standard numerical scheme (for instance finite
elements) for a small number of well-chosen values of the parameter vector y;
this stage can be quite expensive from a computational point of view.
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Principle of model-order reduction

Model-order reduction methods have been developped to circumvent this difficulty.
The principle of these methods is the following:

o Offline stage: Compute u,, with a standard numerical scheme (for instance finite
elements) for a small number of well-chosen values of the parameter vector y;
this stage can be quite expensive from a computational point of view.

@ Build another model, a reduced model from these few (expensive) computations
in order to compute numerical approximations of u,, for many other values of .,
but at a computational cost which is much cheaper than the initial (finite element)
scheme.
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Principle of model-order reduction

Model-order reduction methods have been developped to circumvent this difficulty.
The principle of these methods is the following:

o Offline stage: Compute u,, with a standard numerical scheme (for instance finite
elements) for a small number of well-chosen values of the parameter vector y;
this stage can be quite expensive from a computational point of view.

@ Build another model, a reduced model from these few (expensive) computations
in order to compute numerical approximations of u,, for many other values of .,
but at a computational cost which is much cheaper than the initial (finite element)
scheme.

@ Online stage: Use the reduced model (instead of the original finite element code)
in order to compute much faster u,, for a large number of values of .

21/54



Reduced-basis method

A few seminal references:
@ Cohen, Dahmen, DeVore, Maday, Patera...

@ Reduced Basis Methods for Partial Differential Equations: An Introduction, Alfio
Quarteroni, Andrea Manzoni, Federico Negri

@ Certified Reduced Basis Methods for Parametrized Partial Differential Equations,
Jan S Hesthaven, Gianluigi Rozza, Benjamin Stamm

In this talk: Reduced Basis method for accelerating the resolution of parametrized
generalized non-symmetric eigenvalue problems, with a view to accelerating
parametric studies for criticity calculations.
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Two-Group Diffusion Equation (discrete formulation)

@ Discretization of the spatial domain Q with P1 crossed-triangular finite elements
over a rectangle mesh

@ The solution u, is approximated by an element u,, » belonging to a
finite-dimensional subspace V;, of dimension N}, (number of DoFs):
Vi = Span{(yi)i=1,n, }

23/54



Two-Group Diffusion Equation (discrete formulation)

@ Discretization of the spatial domain Q with P1 crossed-triangular finite elements
over a rectangle mesh

@ The solution u, is approximated by an element u,, » belonging to a
finite-dimensional subspace V;, of dimension N}, (number of DoFs):
Vi = Span{(yi)i=1,n, }

Weak formulation of the problem

Find (Uu,n, Ujs hy Kuin) € Vi x Vi x RS such that

Vh € Vi, @un(Up,hs Vi) = 7—Dp,n(Up,n, Vh)-

e
Ko

PN * 1 *
Adjoint problem Vv, € Vi, @, n(Vh, U 5) = rhbu,h(Vm Uy, h)-
L,
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Two-Group Diffusion Equation (matrix form)

Np Np

Uoh = Y (Uun)iei, Uin=>_(Uin)ier (2)

i=1 i=1

Matrix form of the problem

Find (U, n, U py kun) € RY x R™ x R such that

1
Au,hUu,h = rBu»hUmh (3)
w,h
Adjoint problem  A] .U, = kLBZYhU‘ﬁ,,,
w,h

@ Generalized eigenvalue problem
o A,n € RN is non-symmetric and invertible
@ B,he RNaxNa g non-symmetric, not invertible and positive

— High-fidelity problem
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Reduced basis method

@ The resolution of the high-fidelity problem for a large number of values of the
parameter vector p € P may be very costly from a computational point of view
because Nj is large!
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Reduced basis method

@ The resolution of the high-fidelity problem for a large number of values of the
parameter vector p € P may be very costly from a computational point of view
because Nj is large!

@ The principle of the reduced basis method is to approximate the solution

(Uyh, U, 1y Ku,n) by @ Galerkin approximation associated to a linear subspace

Vv C V;, of dimension at most 2N with N much smaller than Nj,.
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Reduced basis method

@ The resolution of the high-fidelity problem for a large number of values of the
parameter vector p € P may be very costly from a computational point of view
because Nj is large!

@ The principle of the reduced basis method is to approximate the solution

(Uyh, U, 1y Ku,n) by @ Galerkin approximation associated to a linear subspace

Vv C V;, of dimension at most 2N with N much smaller than Nj,.
@ The reduced space V) is chosen such that

*

*
VN = Vect {uu1,h7 u,u1,h7 Tty U,uN,ha U,uN,h} )

where p4,-- -, un are N particular well-chosen values of the parameter vector .
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Reduced basis method

@ The resolution of the high-fidelity problem for a large number of values of the
parameter vector p € P may be very costly from a computational point of view
because Nj is large!

@ The principle of the reduced basis method is to approximate the solution

(Uyh, U, 1y Ku,n) by @ Galerkin approximation associated to a linear subspace

Vv C V;, of dimension at most 2N with N much smaller than Nj,.
@ The reduced space V) is chosen such that

*

*
VN = Vect {uu1,h7 u,u1,h7 Tty U,uN,ha U,u,N,h} )

where p4,-- -, un are N particular well-chosen values of the parameter vector .

@ In the offline stage, the high-fidelity problem is only solved for this N values of the
parameter vector.

25/54



Online stage of the Reduced Basis method

Galerkin approximation of the eigenvalue problem in Vy

Weak formulation of the reduced problem

Find (Uun, U v, Kun) € Vv x Vi x RY such that

b
Vv € W,  aun(Uun, V) = rNbu,h(Uu,Na VN)-
7R

* 1 *
Adjoint problem Vvy € Vi, a,n(w, U n) = rNbu,h(VNy Uy N)-
,
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Online stage of the reduced basis method

@ In the online stage, for each new value of i € P, an atmost 2N-dimensional
matrix eigenvalue problem is solved. When N < N}, the resolution of the reduced
problem is much cheaper from a computational point of view than the resolution of
the original high-fidelity problem!

@ Reduced basis: Let n:= dimVjy and (61, - - - ,8,) be an orthonormal basis of Vy.
Denoting by

On = (01]---10n) € RM",
We define the n x n reduced matrices:

A.n=OLA, ON
B.n = ©kB,.nOn
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Approximate solutions given by the reduced basis method

Reduced problem

Find (c..n, Cins Kun) € R” x R” x R} such that

1
Au,NCu,N = TNB”’NC”’N and UH,N = eNCH’N
I

T 1 i * *
AuNCuN = NB;L,NC;,N and U, n = OnC,n
1

Np

Nn
Uyn = Z (UunN); i U= Z (Uin), @i
i—1

i=1
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How to build Vy ?

This is usually done via an iterative algorithm called a greedy algorithm.

Need to choose a finite subset Pyain C P, called training set.

Naive Greedy algorithm

@ Choose randomly p1 € Pyain-

Vi = Vect {Um,h, U;hh}
@ lteration N: Choose un € Prain Such that

pn € argmax |k, n — K n—1|
Meptrain

*

.
Vv = Vect {Uyuy s Upy iy 5 Uny,hs Uy }

A naive version of the Greedy algorithm requires to evaluate k,, p, for all ;& € Ayain
— too expensive...

Practical algorithm:
Replace ef,_ (1) := |k, » — k. n—1| by an easy-to-compute a posteriori error
, 1
estimator A%, (u).
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Error on the eigenvalue

@ Residuals:
Run = (Bun — KuNAyup) Un

;,N = (Bl,h - k,u,NAL—,h) U:z,N (4)

Proposition.A posteriori error estimator

There exists a positive constant C*(1) > 0 (called the prefactor) such that for all

neP,
| RN TRl

K1) = |k — ko n| < CK = C*(u)nk 5
en(p) = Ku,n — Kunl (w) G2 Ay NG N) () () (5)

, | Ru IRl
with nf(p) =
N( ) <C;1,,N7AP”NCM’N> )
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How to build Vy ?

@ Practical a posteriori error estimator:

k NBunllIBinll =«

Ay =7C =
n () CN(C;N,AM,NC;L,N) NN (1)

where 5’;, is a heuristic estimation of the prefactor C* (1)

@ A% () can be efficiently computed with complexity O(n?) if the data of the
problem is separated.
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How to build Vy ?

Actual Greedy algorithm
@ Choose randomly pi1 € Prain.

Vi = Vect {U;L1,h, U;;,h}
@ lteration N: Choose un € Pyain Such that

k
un € argmax Ay ().
HEPhrain

*

"
Vi = Vect {um oy Upgny oo Uy hy uI»Lth}
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First toy test case: the MiniCore problem

Vacuum

mm UGDI12
mm UO2
IReflector

Vacuum Vacuum

Vacuum

25 spatial regions

L=107.52 cm

UGD12: mix of uranium dioxyde and Galinium oxyde

UQ2: uranium dioxyde

BC: u.(x) =0, xe€0Q

Ny, = 2602 DoFs per group

Training set of parameters P4, Of cardinality 1000 generated randomly

© 6 6 6 06 000
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High-fidelity and reduced solver

Reduced-order model obtained with N = 100

FE solution - phi 1

FE solution - phi 2

0.000200
100

0.00032

0.000175 80
0.00028 60
0.000150 o
0.00024
20
0.000125
0.00020
0 50 100 0 50 100
0.000100
0.00016 RB solution - phi 1 RB solution - phi 2
£.00012 0.000075 1%
. 80
0.00008 0-000050 60
40
0.00004 0.000025
20
0.00000

0.000000 0
]
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Convergence of the reduced basis : mean

@ Pest C P with cardinality 50 (test set)

@ Ppet C P with cardinality 10 (prefactor set)

Max errors for u

Max errors for u*

relative errors over Pigst

10! 10!
— —— ey
— &l —— IRyl
10" 100 — af
210! £ 101
= =5 '\.\’
10-2 10-2
10-3 10~
20 10 60 80 20 0 60 80

Dimension of the reduced space N Dimension of the reduced space N

Max errors for kesp

100

20 40 60 80
Dimension of the reduced space N
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Parametric variability of the prefactor

3 %1071

it -

21075
= o
61072

o] T A
10 o 4 -2
= ax(w) 4% 10

kin)

50 0 10 20 30 40 50

0 10 20 30 40
Index for test parameter

Index for test parameter

Figure: Parametric variability of the prefactor

36/54



Gain in computational time

n|:'€
= [

Relative time saving

20 40 60 80 100
Dimension of the reduced space N

Figure: Relative time saving of the reduced solver
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3D test case in APOLLOS code (MINARET solver)

Figure: Cross-sectional views of the 3D core

@ 9 spatial regions

@ BC:uu(x) =0, xe€9Q

@ N, = 108800 DoFs per group

@ Training set of parameters Pyain 0f cardinality 100 generated randomly
@ Prefactor set Pyrer 0Of cardinality 5

@ Test set Prest Of cardinality 10
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Convergence of the reduced basis approximation

Errors.

Errors on Kerr

Errors on the direct flux uy

Errors on the adjoint flux uy

K
—— Erroref,

—— Errorel,

—+ Errorestimate nf,,, | 107' — Error estimate Ry | 10-1 — Error estimate |R] |
- "
—— Error estimate 4] Error estimate &, p — Error estimate &),
10-24 o 102
i 43
£ S
fo i
. 10-34
10774
107 4

—— Erore),;

20 40 60 80
Dimension of v,

T T U T
o 20 40 60 80

Dimension of vy

U T T T
20 10 60 80

pimension of Vi
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Computational runtime of the reduced-order model

1071 4

102 4

1073 4

Time (s)

1075 4 .

Dimension of Vj
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What else?

Conclusions:

@ Example of linear approximation method dedicated to one specific application in a
high-dimensional context: efficient reduced-order model for criticity calculations in
neutronics using the reduced basis method

@ Very encouraging results obtained on two-group diffusion models with the
APOLLOS3 code

To go beyond:

@ What if the linear approximation spaces built by the greedy algorithms had not
yielded accurate enough approximations?

@ Current trend: combine linear and nonlinear approximation approaches.
@ What if we are not in a parametric setting?
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Outline of the talk

e Tensors and neural networks
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Nonlinear approximation

Goal: find an approximation of a high-dimensional function
U(X17"'7Xd)

and assume that u belongs to some Hilbert space V.
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Nonlinear approximation

Goal: find an approximation of a high-dimensional function
U(X1a"'7Xd)
and assume that u belongs to some Hilbert space V.
For a certain subset of functions Z C V described by a small number n parameters,
find a best approximation z* of u by elements of Z is defined by

Z* =inf |lu—z|v
zeZ
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Nonlinear approximation

Goal: find an approximation of a high-dimensional function
U(X1a"'7Xd)

and assume that u belongs to some Hilbert space V.

For a certain subset of functions Z C V described by a small number n parameters,
find a best approximation z* of u by elements of Z is defined by

Z* =inf |lu—z|v
zeZ

The set Z is not a linear space in general.
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Typical examples of subsets Z

@ Low-rank tensors:

u(Xy, ..., Xq) ~ Z (). .. (xy)

@ Neural networks:

u(xi, ..., Xg) = u(x) ~ o (Ao (Aa(. .. o(AX + bL)...) + be) + b)

where for all 1 < j < L, A; are matrices, b; vectors and o : R — R is called the
activation function
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Tensor methods

For r',..., r? univariate functions,
@@ (X, Xg) =r' (%) r(xq)
and assume that r' @ - - - @ r¥ belongs to V.

The function r' @ --- @ r? is then called a pure tensor product function.
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and assume that r' @ - - - @ r¥ belongs to V.
The function r' @ --- @ r? is then called a pure tensor product function.
Tensor methods are one family of approximation tools used for the resolution of

high-dimensional PDEs. The solution u € V of a high-dimensional PDE is
approximated as some linear combination of pure tensor product functions.
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Tensor methods

For r',..., r? univariate functions,
@@, xg) =r' (%) r(xq)
and assume that r' @ - - - @ r¥ belongs to V.
The function r' @ --- @ r? is then called a pure tensor product function.
Tensor methods are one family of approximation tools used for the resolution of

high-dimensional PDEs. The solution u € V of a high-dimensional PDE is
approximated as some linear combination of pure tensor product functions.

Classical tensor methods consist in approximating v in a certain tensor format, i.e. by a
function which belongs to some subset Z of V, the elements of which can be
characterized as particular linear combinations of pure tensor product functions with
low complexity.
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Tensor formats

(Grasedyck, Khoromskij, Kolda, Hackbusch, Lubich, Oseledets, )
@ Canonical polyadic format of rank lower than R € N*:

R
Zﬁan:_{z—Zd@...@rg}. (6)
k=1

] COMP = O(RNd) \
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Tensor formats

(Grasedyck, Khoromskij, Kolda, Hackbusch, Lubich, Oseledets, )
@ Canonical polyadic format of rank lower than R € N*:

R
Zﬁan:_{z—Zd@...@rg}. (6)
k=1

] COMP = O(RNd) \

@ Tucker format withrank R := (R,--- ,R) with Re N* :

_ R R 1 d
Zucker . Z=3 kot Dokt Ckroeniky i ®R' - ®Rrkd’ @)
= X .

(Ck1 77777 ku)1gk1gﬂ,4..,1gkdgﬁ’ €R

| COMP = O(R® + NRd)
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Tensor formats

(Grasedyck, Khoromskij, Kolda, Hackbusch, Lubich, Oseledets, )
@ Canonical polyadic format of rank lower than R € N*:

R
Zgan:_{z—Zr}:@...@rg}_ (6)
k=1

] COMP = O(RNd) \

@ Tucker format withrank R := (R,--- ,R) with Re N* :

_ «—R R 1 d
Z;ucker L { zZ= Zk1:1 o 'de:1 Chki,..., kdrk1 Q- rkd7 }

Rx---xR
(Ck1 77777 ku)1gk1gﬂ,4..,1gkdgﬁ’ €R

| COMP = O(R® + NRd)

@ Tensor Train format with rank R := (R,R,--- , R) with R € N*:

ZTT L Z(X1 sy Xd) = S1 (X1 )TMz(Xg) s Md71 (Xd,1)Sd(Xd), (8)
B0 Sia) e RR, Sy(xa) € RF Mi(x)) e RF*A va<j<d—1 [°

COMP = O(R?Nd)
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Greedy algorithms

Greedy algorithms are iterative algorithms used in nonlinear approximation theory.
([Temlyakov, 2008], Cohen, Dahmen, DeVore, Le Bris, Lelievre, Maday...)
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Greedy algorithms

Greedy algorithms are iterative algorithms used in nonlinear approximation theory.
([Temlyakov, 2008], Cohen, Dahmen, DeVore, Le Bris, Lelievre, Maday...)

After n iterations of a greedy algorithm, an element u € V is approximated as the sum
of n elements belonging to a subset Z C V, called a dictionary of V.

More precisely, at the n” iteration of the greedy algorithm,
U~ Up = Up-1+2Zn

for some best element z, € Z, the definition of which depends on the problem u is
solution to.
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Greedy algorithms

Greedy algorithms are iterative algorithms used in nonlinear approximation theory.
([Temlyakov, 2008], Cohen, Dahmen, DeVore, Le Bris, Lelievre, Maday...)

After n iterations of a greedy algorithm, an element u € V is approximated as the sum
of n elements belonging to a subset Z C V, called a dictionary of V.

More precisely, at the n” iteration of the greedy algorithm,
U~ Up = Up-1+2Zn

for some best element z, € Z, the definition of which depends on the problem u is
solution to.

In computational mechanics, the Progressive Generalized Decomposition (PGD)
method is a particular type of greedy algorithm used for the resolution of
high-dimensional PDEs, which has been used in a wide variety of contexts (Ladeveze,

Chinesta, Nouy, Néron, Chamoin“.)
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Dictionary

Assume V is a Hilbert space.

A set Z C Vis called a dictionary of V if and only if it satisfies the three following
conditions:

(D1) The set Span Z is dense in V.

(D2) ForalAe Randze Z, Az € Z.

(D3) Z is weakly closed in V.

48/54



Example: convex minimization

Let £: V — R be a strongly convex differentiable functional so that V& is Lipschitz on
bounded sets.

u = argmin £(V)

veV
Pure Greedy algorithm:
@ setup=0andn=1;
@ find z, € Z such that
Zp € argmin € (Up—1 + 2) . 9)
zZeEX

© set u, = up—1 + zpand n = n+ 1. Return to step 2.

The iterations of the Pure Greedy algorithm are well-defined (i.e. there exists at least
one minimizer z, € Z to (11) for all n € N* and z, is non-zero if and only if u,—1 # u).
Moreover, the sequence (un)nen+ Strongly converges in V towards u.
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Example: convex minimization

Let £ : V — R be a strongly convex differentiable functional so that V& is Lipschitz on
bounded sets.

u = argmin £(V)

veV
Orthogonal Greedy algorithm:
@ setuy=0andn=1;
@ find z, € Z such that
zp € argmin & (Up_1 + 2) . (10)
zex
Q set
up= argmin  £(v). (11)

veSpan{zy,..., Zn}

and n= n+ 1. Return to step 2.

Galerkin method in the linear space spanned by the elements z, ..., z,
A posteriori error estimators!
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Theoretical convergence results on greedy algorithms

Temlyakov, Lelievre, Le Bris, Maday, Cances, Falco, Nouy, Ehrlacher...
@ Convex minimization problems:

u = argmin&(Vv).
veV

© Linear bounded from below symmetric eigenvalue problems:

Au = \u.

@ Non-symmetric linear problems:
vveV, a(u,v)=b(v).

© Parabolic evolution problems:

ou+Au="f.

@ Schrodinger evolution problems:

ioiu+ Hu = f.
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Applications of greedy algorithms in materials science

Leliévre, Monmarché, Dabaghi, Stréssner, Lombardi, Grigori, Song, Ruiz, Dupuy, Guillot..

@ Molecular dynamics

@ Kinetic equations

@ Electronic structure
calculations
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@ Very recently, new numerical schemes for the resolution of high-dimensional
PDEs, called Galerkin neural networks, have been introduced in
[Ainsworth, Dong, 2022], [Siegel, Hong, Jin, Hao, Xu,2023]
These are greedy algorithms associated to a dictionary Z defined by means of
neural networks.
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@ Current trend in numerical methods for high-dimensional PDEs:

Maday, Farhat, Somacal, Cohen...

combine methods and approaches from both the linear and nonlinear
approximation world

53/54



@ Very recently, new numerical schemes for the resolution of high-dimensional
PDEs, called Galerkin neural networks, have been introduced in
[Ainsworth, Dong, 2022], [Siegel, Hong, Jin, Hao, Xu,2023]

These are greedy algorithms associated to a dictionary Z defined by means of
neural networks.

@ Current trend in numerical methods for high-dimensional PDEs:

Maday, Farhat, Somacal, Cohen...

combine methods and approaches from both the linear and nonlinear
approximation world

Thank you for your attention!
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Many thanks to all my collaborators!

ALY 2
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