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High-dimensional approximation

Goal: find an approximation of a high-dimensional function

u(x1, . . . , xd )

or a set of high-dimensional functions

K

by some simple functions (i.e. easy to evaluate) depending only on a few parameters
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Some high-dimensional problems in materials science:
electronic structure calculations

Schrödinger equation: Ψ(x1, . . . , xd , t)

i~∂t Ψ = − ~
2m

d∑
i=1

∆xi Ψ + V Ψ
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Some high-dimensional problems in materials science:
kinetic equations

Boltzmann equation: p(x1, . . . , xd , v1, . . . , vd , t)

∂tp +
d∑

i=1

vi ∂xi p +
d∑

i=1

Fi ∂vi p = H(p, p)
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Some high-dimensional problems in materials science:
molecular dynamics

Fokker-Planck equation: p(x1, . . . , xd , t)

∂tp +
d∑

i=1

∂xi (aip)− 1
2

d∑
i=1

d∑
j=1

∂2
xi xj

(bijp) = 0.

5 / 54



Some high-dimensional problems in materials science:
neutronics

Parametrized equation: u(µ; x) µ = (µ1, . . . , µp)

A(µ; u(µ; ·)) = f (µ; ·)

6 / 54



Curse of dimensionality: first intuition

Goal: find an approximation of a high-dimensional function

u(x1, . . . , xd )

Standard discretization approaches (such as classical finite element methods) suffer
from the so-called curse of dimensionality [Bellman,1961]

COMP = N2

COMP = N3

COMP = Nd
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High-dimensional approximation

Let us assume that u is an element of a given set of functions V (a normed vector
space for instance).

For a certain subset of functions Zn ⊂ V described by n parameters, the error of
best approximation of u by elements of Zn is defined by

eZn (u) = inf
v∈Zn
‖u − v‖V

A sequence of subsets (Zn)n≥1 is called an approximation tool.

Two types of approaches:
linear approximation: Zn are linear spaces
nonlinear approximation: Zn are not linear spaces

8 / 54



High-dimensional approximation

Let us assume that u is an element of a given set of functions V (a normed vector
space for instance).

For a certain subset of functions Zn ⊂ V described by n parameters, the error of
best approximation of u by elements of Zn is defined by

eZn (u) = inf
v∈Zn
‖u − v‖V

A sequence of subsets (Zn)n≥1 is called an approximation tool.

Two types of approaches:
linear approximation: Zn are linear spaces
nonlinear approximation: Zn are not linear spaces

8 / 54



High-dimensional approximation

Let us assume that u is an element of a given set of functions V (a normed vector
space for instance).

For a certain subset of functions Zn ⊂ V described by n parameters, the error of
best approximation of u by elements of Zn is defined by

eZn (u) = inf
v∈Zn
‖u − v‖V

A sequence of subsets (Zn)n≥1 is called an approximation tool.

Two types of approaches:
linear approximation: Zn are linear spaces
nonlinear approximation: Zn are not linear spaces

8 / 54



High-dimensional approximation

Let us assume that u is an element of a given set of functions V (a normed vector
space for instance).

For a certain subset of functions Zn ⊂ V described by n parameters, the error of
best approximation of u by elements of Zn is defined by

eZn (u) = inf
v∈Zn
‖u − v‖V

A sequence of subsets (Zn)n≥1 is called an approximation tool.

Two types of approaches:
linear approximation: Zn are linear spaces
nonlinear approximation: Zn are not linear spaces

8 / 54



High-dimensional approximation

Fundamental problems are:

to determine if and how fast eZn (u) goes to 0 for a certain function u (or a set of
functions K ) and a certain approximation tool (Zn)n≥1 ;

to provide algorithms which (hopefully) produce approximations un ∈ Zn of u such
that

‖u − un‖V ≤ CeZn (u),

with
(i) either C independent of n;
(ii) or C(n)eZn (u) −→

n→+∞
0.

to provide a posteriori error estimators to estimate the error ‖u − un‖V in practice.
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Linear approximations: Kolmogorov n-width

For a set of functions K in a normed vector space V , the Kolmogorov n-width of K is
defined as

dn(K ) = inf
Zn⊂V

sup
u∈K

inf
v∈Zn
‖u − v‖V

where the first infimum is taken over all linear subspaces Zn of V of dimension n.

The Kolmogorov width dn(K ) measures how well functions belonging to the set K can
be approximated by an n-dimensional linear space. It measures the ideal
performance that we can expect from linear approximation methods.

Example: Let V = Lp((0, 1)d ) and K the unit ball of W k,p((0, 1)d ).
Then, we have

dn(K ) ∼ n−k/d
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How to beat the curse of dimensionality?

The key is to consider sets of functions with specific low-dimensional structures
and to propose approximation tools (formats) which exploit these structures
(application-dependent).

Possible approaches:
build a sequence of linear approximation spaces (Zn)n≥1 specifically taylored to
the targeted application (reduced basis methods...)

nonlinear approximation tools (tensor methods, neural networks...)

Combine both worlds!
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Outline of the talk

1 Reduced basis methods

2 Tensors and neural networks
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Parametrized PDEs

The behaviour of many systems can be described by the solutions of a system of
Partial Differential Equations.

These equations can depend on one or several parameters µ = (µ1, · · · , µp) with
p ∈ N∗ which can take values in a set denoted by P ⊂ Rp.
In this case, for one particular value µ ∈ P of this vector of parameters, the
associated solution to the PDE system is a function uµ solution of

A(uµ;µ) = 0,

where A(·;µ) is some differential operator depending on the parameter vector µ.

Here, the set of functions one wishes to consider is the set of solutions to the
parametric PDE:

K = {uµ, µ ∈ P}

14 / 54



Parametrized PDEs

The behaviour of many systems can be described by the solutions of a system of
Partial Differential Equations.

These equations can depend on one or several parameters µ = (µ1, · · · , µp) with
p ∈ N∗ which can take values in a set denoted by P ⊂ Rp.
In this case, for one particular value µ ∈ P of this vector of parameters, the
associated solution to the PDE system is a function uµ solution of

A(uµ;µ) = 0,

where A(·;µ) is some differential operator depending on the parameter vector µ.

Here, the set of functions one wishes to consider is the set of solutions to the
parametric PDE:

K = {uµ, µ ∈ P}

14 / 54



Research nuclear core reactor

joint work with Yonah Conjugo-Taumhas, Geneviève Dussson, Tony Lelièvre, François Madiot
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Criticity calculation in a nuclear core reactor

Simple example: Two-group diffusion model

[Coste-Delclaux, Diop, Nicolas, Bonin, 2013], [Mula, 2014], [Giret, 2018], [Allaire, Blanc, Desprès, Golse, 2019]

Spatial domain Ω ⊂ Rd occupied by the nuclear core reactor

Neutrons are assumed to be separated into 2 groups according to their energy:
E = {E1,E2} (E1 > E2)

µ ∈ P: vector of parameters of the problem, which encodes the values of the
physical properties of the nuclear core

Problem of interest: Find

uµ = (u1,µ, u2,µ) : Ω→ R2: neutron scalar fluxes;

λµ > 0 eigenvalue with smallest modulus;

solution to the non-symmetric eigenvalue problem

Aµuµ = λµBµ =
1
kµ
Bµuµ

where Aµ and Bµ are linear operators such that A−1
µ Bµ satisfies the assumptions of

the Krein-Rutman theorem.
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Effective multiplication factor

kµ < 1: the fission reaction is not the prevailing phenomenon, then the total mean
number of neutrons tends towards zero along time;
the reactor is said to be subcritical
kµ = 1: both creation and absorption of neutrons take as much place as the other
inside the system;
the reactor is said to be critical
kµ > 1: the fission dominates the absorption phenomenon, therefore a chain
reaction phenomenon takes place inside the system, and the total mean number
of neutrons increases at an exponential rate, the system then tends to collapse;
the reactor is said to be supercritical
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Two-Group Diffusion Equation

Aµuµ = λµBµuµ

Two-group Diffusion Equation

−∇ ·
(
D1,µ∇u1,µ

)
+ Σ11,µu1,µ + Σ12,µu2,µ

= λµ
[
χ1,µ

(
(νΣf )1,µu1,µ + (νΣf )2,µu2,µ

)]
−∇.

(
D2,µ∇u2,µ

)
+ Σ22,µu2,µ + Σ21,µu1,µ

= λµ
[
χ2,µ

(
(νΣf )1,µu1,µ + (νΣf )2,µu2,µ

)]
(1)

Σii = Σti − Σs,ii ;
Σti : total cross-section of group i ;
Σs,ij : scattering cross-section from group i to group j ;
Σij = −Σs,ij ;
Di = 1

3Σti
: diffusion coefficient of group i ;

Σfi : fission cross-section of group i ;
νi : average number of neutrons of groupd i emitted per fission;
χi : fission spectrum of group i
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Parameters of the problem

µ ∈ P represents the physical properties of the core and its configuration.
The spatial domain of calculation Ω is split into a structured grid that defines K
regions. On each region Ωk , µk represents the set of material parameters inside
the domain Ωk , so that µ = (µ1, . . . , µK ) ∈ P.

Figure: Cross-sectional view of the BSS-11 nuclear core reactor
19 / 54



Motivation of model-order reduction methods

For a particular value of µ ∈ P, a numerical approximation of the solution uµ is
computed by some numerical scheme (for instance with a finite element code), the
resolution of which may be very costly from a computational point of view.

There exist a wide variety of contexts in which it is necessary to perform
parametric studies of the problem at hand, i.e. to compute (a numerical
approximation of) the solution uµ for a very large number of values of the
parameter vector µ as quickly as possible!

Examples:
Design optimization

Inverse problems

Real-time control

Uncertainty quantification

In such contexts, naive parametric studies using a standard finite element code may be
extremely expensive from a computational point of view and time-consuming!
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Principle of model-order reduction

Model-order reduction methods have been developped to circumvent this difficulty.
The principle of these methods is the following:

Offline stage: Compute uµ with a standard numerical scheme (for instance finite
elements) for a small number of well-chosen values of the parameter vector µ;
this stage can be quite expensive from a computational point of view.

Build another model, a reduced model from these few (expensive) computations
in order to compute numerical approximations of uµ for many other values of µ,
but at a computational cost which is much cheaper than the initial (finite element)
scheme.

Online stage: Use the reduced model (instead of the original finite element code)
in order to compute much faster uµ for a large number of values of µ.
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Reduced-basis method

A few seminal references:
Cohen, Dahmen, DeVore, Maday, Patera...

Reduced Basis Methods for Partial Differential Equations: An Introduction, Alfio
Quarteroni, Andrea Manzoni, Federico Negri

Certified Reduced Basis Methods for Parametrized Partial Differential Equations,
Jan S Hesthaven, Gianluigi Rozza, Benjamin Stamm

In this talk: Reduced Basis method for accelerating the resolution of parametrized
generalized non-symmetric eigenvalue problems, with a view to accelerating
parametric studies for criticity calculations.
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Two-Group Diffusion Equation (discrete formulation)

Discretization of the spatial domain Ω with P1 crossed-triangular finite elements
over a rectangle mesh

The solution uµ is approximated by an element uµ,h belonging to a
finite-dimensional subspace Vh of dimension Nh (number of DoFs):
Vh = Span{(ϕi )i=1,Nh}

Weak formulation of the problem

Find
(
uµ,h, u∗µ,h, kµ,h

)
∈ Vh × Vh × R∗+ such that

∀vh ∈ Vh, aµ,h(uµ,h, vh) =
1

kµ,h
bµ,h(uµ,h, vh).

Adjoint problem ∀vh ∈ Vh, aµ,h(vh, u∗µ,h) =
1

kµ,h
bµ,h(vh, u∗µ,h).
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Two-Group Diffusion Equation (matrix form)

uµ,h =

Nh∑
i=1

(Uµ,h)iϕi , u∗µ,h =

Nh∑
i=1

(U∗µ,h)iϕi (2)

Matrix form of the problem

Find
(
Uµ,h,U∗µ,h, kµ,h

)
∈ RNh × RNh × R∗+ such that

Aµ,hUµ,h =
1

kµ,h
Bµ,hUµ,h (3)

Adjoint problem AT
µ,hU∗µ,h =

1
kµ,h

BT
µ,hU∗µ,h

Generalized eigenvalue problem
Aµ,h ∈ RNh×Nh is non-symmetric and invertible

Bµ,h ∈ RNh×Nh is non-symmetric, not invertible and positive

−→ High-fidelity problem
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Reduced basis method

The resolution of the high-fidelity problem for a large number of values of the
parameter vector µ ∈ P may be very costly from a computational point of view
because Nh is large!

The principle of the reduced basis method is to approximate the solution(
uµ,h, u∗µ,h, kµ,h

)
by a Galerkin approximation associated to a linear subspace

VN ⊂ Vh of dimension at most 2N with N much smaller than Nh.

The reduced space VN is chosen such that

VN = Vect
{

uµ1,h, u
∗
µ1,h, · · · , uµN ,h, u

∗
µN ,h

}
,

where µ1, · · · , µN are N particular well-chosen values of the parameter vector µ.

In the offline stage, the high-fidelity problem is only solved for this N values of the
parameter vector.
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The reduced space VN is chosen such that

VN = Vect
{

uµ1,h, u
∗
µ1,h, · · · , uµN ,h, u

∗
µN ,h

}
,

where µ1, · · · , µN are N particular well-chosen values of the parameter vector µ.

In the offline stage, the high-fidelity problem is only solved for this N values of the
parameter vector.
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Online stage of the Reduced Basis method

Galerkin approximation of the eigenvalue problem in VN

Weak formulation of the reduced problem

Find
(
uµ,N , u∗µ,N , kµ,N

)
∈ VN × VN × R∗+ such that

∀vN ∈ VN , aµ,h(uµ,N , vN) =
1

kµ,N
bµ,h(uµ,N , vN).

Adjoint problem ∀vN ∈ VN , aµ,h(vN , u∗µ,N) =
1

kµ,N
bµ,h(vN , u∗µ,N).
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Online stage of the reduced basis method

In the online stage, for each new value of µ ∈ P, an atmost 2N-dimensional
matrix eigenvalue problem is solved. When N � Nh, the resolution of the reduced
problem is much cheaper from a computational point of view than the resolution of
the original high-fidelity problem!

Reduced basis: Let n := dimVN and (θ1, · · · , θn) be an orthonormal basis of VN .
Denoting by

ΘN := (θ1| · · · |θn) ∈ RNh×n,

We define the n × n reduced matrices:{
Aµ,N = ΘT

NAµ,hΘN

Bµ,N = ΘT
NBµ,hΘN

.
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Approximate solutions given by the reduced basis method

Reduced problem

Find
(
cµ,N , c∗µ,N , kµ,N

)
∈ Rn × Rn × R∗+ such that

Aµ,Ncµ,N =
1

kµ,N
Bµ,Ncµ,N and Uµ,N = ΘNcµ,N

AT
µ,Nc∗µ,N =

1
kµ,N

BT
µ,Nc∗µ,N and U∗µ,N = ΘNc∗µ,N

uµ,N :=

Nh∑
i=1

(Uµ,N)i ϕi , u∗µ,N :=

Nh∑
i=1

(
U∗µ,N

)
i ϕi .
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How to build VN ?

This is usually done via an iterative algorithm called a greedy algorithm.

Need to choose a finite subset Ptrain ⊂ P, called training set.

Naive Greedy algorithm
Choose randomly µ1 ∈ Ptrain.

V1 = Vect
{

uµ1,h, u
∗
µ1,h
}

Iteration N: Choose µN ∈ Ptrain such that

µN ∈ argmax
µ∈Ptrain

|kµ,h − kµ,N−1|

VN = Vect
{

uµ1,h, u
∗
µ1,h, · · · , uµN ,h, u

∗
µN ,h

}
A naive version of the Greedy algorithm requires to evaluate kµ,h, for all µ ∈ Λtrain

→ too expensive...

Practical algorithm:
Replace ek

N−1(µ) := |kµ,h − kµ,N−1| by an easy-to-compute a posteriori error
estimator ∆k

N−1(µ).
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Error on the eigenvalue

Residuals:

Rµ,N = (Bµ,h − kµ,NAµ,h) uµ,N

R∗µ,N =
(

BT
µ,h − kµ,NAT

µ,h

)
u∗µ,N (4)

Proposition.A posteriori error estimator

There exists a positive constant Ck (µ) > 0 (called the prefactor) such that for all
µ ∈ P,

ek
N(µ) = |kµ,h − kµ,N | 6 Ck (µ)

‖Rµ,N‖‖R∗µ,N‖
〈c∗µ,N ,Aµ,Ncµ,N〉

= Ck (µ)ηk
N(µ) (5)

with ηk
N(µ) :=

‖Rµ,N‖‖R∗µ,N‖
〈c∗µ,N ,Aµ,Ncµ,N〉

.
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How to build VN ?

Practical a posteriori error estimator:

∆k
N(µ) = C

k
N
‖Rµ,N‖‖R∗µ,N‖
〈c∗µ,N ,Aµ,Ncµ,N〉

= C
k
Nη

k
N(µ)

where C
k
N is a heuristic estimation of the prefactor Ck (µ)

∆k
N(µ) can be efficiently computed with complexity O(n2) if the data of the

problem is separated.
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How to build VN ?

Actual Greedy algorithm
Choose randomly µ1 ∈ Ptrain.

V1 = Vect
{

uµ1,h, u
∗
µ1,h
}

Iteration N: Choose µN ∈ Ptrain such that

µN ∈ argmax
µ∈Ptrain

∆k
N−1(µ).

VN = Vect
{

uµ1,h, u
∗
µ1,h, · · · , uµN ,h, u

∗
µN ,h

}
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First toy test case: the MiniCore problem

25 spatial regions
L = 107.52 cm
UGD12: mix of uranium dioxyde and Galinium oxyde
UO2: uranium dioxyde
BC: uµ(x) = 0, x ∈ ∂Ω

Nh = 2602 DoFs per group
Training set of parameters Ptrain of cardinality 1000 generated randomly
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High-fidelity and reduced solver

Reduced-order model obtained with N = 100
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Convergence of the reduced basis : mean relative errors over Ptest

Ptest ⊂ P with cardinality 50 (test set)
Ppref ⊂ P with cardinality 10 (prefactor set)

Figure: Mean relative errors over Ptest
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Parametric variability of the prefactor

Figure: Parametric variability of the prefactor
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Gain in computational time

Figure: Relative time saving of the reduced solver
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3D test case in APOLLO3 code (MINARET solver)

Figure: Cross-sectional views of the 3D core

9 spatial regions
BC: uµ(x) = 0, x ∈ ∂Ω
Nh = 108800 DoFs per group
Training set of parameters Ptrain of cardinality 100 generated randomly
Prefactor set Ppref of cardinality 5
Test set Ptest of cardinality 10
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Convergence of the reduced basis approximation
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Computational runtime of the reduced-order model
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What else?

Conclusions:
Example of linear approximation method dedicated to one specific application in a
high-dimensional context: efficient reduced-order model for criticity calculations in
neutronics using the reduced basis method

Very encouraging results obtained on two-group diffusion models with the
APOLLO3 code

To go beyond:
What if the linear approximation spaces built by the greedy algorithms had not
yielded accurate enough approximations?

Current trend: combine linear and nonlinear approximation approaches.

What if we are not in a parametric setting?
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Outline of the talk

1 Reduced basis methods

2 Tensors and neural networks
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Nonlinear approximation

Goal: find an approximation of a high-dimensional function

u(x1, . . . , xd )

and assume that u belongs to some Hilbert space V .

For a certain subset of functions Z ⊂ V described by a small number n parameters,
find a best approximation z∗ of u by elements of Z is defined by

z∗ = inf
z∈Z
‖u − z‖V

The set Z is not a linear space in general.
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Typical examples of subsets Z

Low-rank tensors:

u(x1, . . . , xd ) ≈
R∑

k=1

r (1)
k (x1)r (2)

k (x2) . . . r (d)
k (xd )

Neural networks:

u(x1, . . . , xd ) = u(x) ≈ σ (A1σ(A2(. . . σ(ALx + bL) . . .) + b2) + b1)

where for all 1 ≤ i ≤ L, Ai are matrices, bi vectors and σ : R→ R is called the
activation function

...
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Tensor methods

For r 1, . . . , r d univariate functions,

r 1 ⊗ · · · ⊗ r d (x1, · · · , xd ) = r 1(x1) · · · r d (xd )

and assume that r 1 ⊗ · · · ⊗ r d belongs to V .

The function r 1 ⊗ · · · ⊗ r d is then called a pure tensor product function.

Tensor methods are one family of approximation tools used for the resolution of
high-dimensional PDEs. The solution u ∈ V of a high-dimensional PDE is
approximated as some linear combination of pure tensor product functions.

Classical tensor methods consist in approximating u in a certain tensor format, i.e. by a
function which belongs to some subset Z of V , the elements of which can be
characterized as particular linear combinations of pure tensor product functions with
low complexity.
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Tensor formats

(Grasedyck, Khoromskij, Kolda, Hackbusch, Lubich, Oseledets, ...)
Canonical polyadic format of rank lower than R ∈ N∗:

Z can
R :=

{
z =

R∑
k=1

r 1
k ⊗ · · · ⊗ r d

k

}
. (6)

COMP = O(RNd)

Tucker format with rank R := (R, · · · ,R) with R ∈ N∗ :

Z Tucker
R :=

{
z =

∑R
k1=1 · · ·

∑R
kd =1 ck1,...,kd r 1

k1
⊗ · · · ⊗ r d

kd
,(

ck1,...,kd

)
1≤k1≤R,...,1≤kd≤R ∈ RR×···×R

}
. (7)

COMP = O(Rd + NRd)

Tensor Train format with rank R := (R,R, · · · ,R) with R ∈ N∗:

Z TT
R :=

{
z(x1, . . . , xd ) = S1(x1)T M2(x2) · · ·Md−1(xd−1)Sd (xd ),

S1(x1) ∈ RR , Sd (xd ) ∈ RR ,Mi (xi ) ∈ RR×R , ∀2 ≤ i ≤ d − 1

}
. (8)

COMP = O(R2Nd)
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Greedy algorithms

Greedy algorithms are iterative algorithms used in nonlinear approximation theory.
([Temlyakov, 2008], Cohen, Dahmen, DeVore, Le Bris, Lelièvre, Maday...)

After n iterations of a greedy algorithm, an element u ∈ V is approximated as the sum
of n elements belonging to a subset Z ⊂ V , called a dictionary of V .

More precisely, at the nth iteration of the greedy algorithm,

u ≈ un = un−1 + zn

for some best element zn ∈ Z , the definition of which depends on the problem u is
solution to.

In computational mechanics, the Progressive Generalized Decomposition (PGD)
method is a particular type of greedy algorithm used for the resolution of
high-dimensional PDEs, which has been used in a wide variety of contexts (Ladevèze,

Chinesta, Nouy, Néron, Chamoin...)
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Dictionary

Assume V is a Hilbert space.

Definition

A set Z ⊂ V is called a dictionary of V if and only if it satisfies the three following
conditions:

(D1) The set Span Z is dense in V .

(D2) For all λ ∈ R and z ∈ Z , λz ∈ Z .

(D3) Z is weakly closed in V .
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Example: convex minimization

Let E : V → R be a strongly convex differentiable functional so that ∇E is Lipschitz on
bounded sets.

u = argmin
v∈V

E(v)

Pure Greedy algorithm:
1 set u0 = 0 and n = 1;
2 find zn ∈ Z such that

zn ∈ argmin
z∈Σ

E (un−1 + z) . (9)

3 set un = un−1 + zn and n = n + 1. Return to step 2.

Theorem

The iterations of the Pure Greedy algorithm are well-defined (i.e. there exists at least
one minimizer zn ∈ Z to (11) for all n ∈ N∗ and zn is non-zero if and only if un−1 6= u).
Moreover, the sequence (un)n∈N∗ strongly converges in V towards u.
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Example: convex minimization

Let E : V → R be a strongly convex differentiable functional so that ∇E is Lipschitz on
bounded sets.

u = argmin
v∈V

E(v)

Orthogonal Greedy algorithm:
1 set u0 = 0 and n = 1;
2 find zn ∈ Z such that

zn ∈ argmin
z∈Σ

E (un−1 + z) . (10)

3 set
un = argmin

v∈Span{z1,...,zn}
E (v) . (11)

and n = n + 1. Return to step 2.

Galerkin method in the linear space spanned by the elements z1, . . . , zn

A posteriori error estimators!

50 / 54



Theoretical convergence results on greedy algorithms

Temlyakov, Lelièvre, Le Bris, Maday, Cancès, Falco, Nouy, Ehrlacher...

1 Convex minimization problems:

u = argmin
v∈V

E(v).

2 Linear bounded from below symmetric eigenvalue problems:

Au = λu.

3 Non-symmetric linear problems:

∀v ∈ V , a(u, v) = b(v).

4 Parabolic evolution problems:

∂tu + Au = f .

5 Schrödinger evolution problems:

i∂tu + Hu = f .
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Applications of greedy algorithms in materials science

Lelièvre, Monmarché, Dabaghi, Strössner, Lombardi, Grigori, Song, Ruiz, Dupuy, Guillot..

Molecular dynamics

Kinetic equations

Electronic structure
calculations
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Perspectives

Very recently, new numerical schemes for the resolution of high-dimensional
PDEs, called Galerkin neural networks, have been introduced in
[Ainsworth, Dong, 2022], [Siegel, Hong, Jin, Hao, Xu,2023]

These are greedy algorithms associated to a dictionary Z defined by means of
neural networks.

Current trend in numerical methods for high-dimensional PDEs:
Maday, Farhat, Somacal, Cohen...

combine methods and approaches from both the linear and nonlinear
approximation world

Thank you for your attention!
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Many thanks to all my collaborators!
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