


Modelling and decomposition

JuliaAndOptimization



Mathematical Programming (LP/MIP)

Min
∑

j

Cj · xj (1)

s.t.∑
j

Ai,j · xj ≥ bi ∀i (2)

xj ∈ R+/Z+ (3)

If you use either Linear Programming or Mixed Integer Programming in your
research, then this presentation should be interesting for you.
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Modelling languages

We are used to write models up in mathematics, but need to feed it to the
advanced solvers in an easy way. For this, modelling languages were made:

• GAMS
• AMPL
• Mosel
• Zimpl
• ....

Why use modelling languages ? Ease of programming. I am sure that the
days of the dedicated modelling languages are comming to an end ...
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Outline

• DTU: Our use of Julia
• Modelling
• Decomposition
• Mathheuristic
• Multi-objective modelling
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OR Courses at the Technical University of Denmark (DTU)

• 42101 - Introduction to Operations Research (BSc)
• 42586 - Decisions under uncertainty (BSc)
• 42112 - Mathematical Programming Modelling (MSc)
• 42114 - Integer Programming (MSc)
• 42115 - Network Optimization (MSc)
• 42117 - Transport Optimization (MSc)
• 42136 - Large Scale Optimization using Decomposition (MSc)
• 42137 - Optimization using metaheuristics (MSc)
• 42142 - Recent Research Results in Management Science (MSc)

Today we use Julia/JuMP as the only language in all our courses
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Why we use Julia/JuMP

• Our students were not good enough programmers ...
• Julia/JuMP was the only language which could be used in all our

courses...
• JuMP is a fantastic package ...
• Julia and JuMP are open-source
• JuMP supports many different solvers ... including open-source solvers
• JuMP supports multi-objective modelling (as far as I know, as the first

modelling language ....)
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Out example in this lecture: Facility Location

Given f ∈ F facilities and c ∈ C customers. A volume of Demandc should be
delivered to each customer from one depot. The cost for the whole demand
from facility f to customer c is DistCostf ,c . Each facility f has a capacity of
Capf and costs FacCostf to establish.
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Mathematical programming model of Facility Location

Mixed Integer Programming model of the Facility Location problem:

Min
∑
f∈F

∑
c∈C

DistCostf ,c · xf ,c +
∑
f∈F

FacCostf · yf (4)

s.t.∑
f∈F

xf ,c ≥ 1 ∀ c ∈ C (5)∑
c∈C

Demc · xf ,c ≤ Capf · yf ∀ f ∈ F (6)

xf ,c , yf ∈ {0,1} (7)
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JuMP model of Facility Location

1 FL = Model(HiGHS.Optimizer)
2 @variable(FL, x[1:C],Bin)
3 @variable(FL, y[1:F],Bin)
4 @objective(FL, Max, sum( DistCost[f,c]*x[f,c] for f=1:F,c=1:C) +
5 sum( FacCost[f]*y[f] for f=1:F))
6 @constraint(FL, [c=1:C], sum( x[f,c] for f=1:F) >= 1)
7 @constraint(FL, [f=1:F], sum( Dem[c]*x[f,c] for f=1:F) <=

Cap[f]*y[f])↪→

8 optimize!(FL)
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Conditional constraint

∑
f∈F

xf ,c ≥ 1 ∀ c ∈ C | Demc ≥ 10

1 @constraint(FL, [c=1:C; Dem[c]>=10], sum( x[f,c] for f=1:F) >= 1)
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Conditional sum

∑
f∈F |Capc>=100

xf ,c ≥ 1 ∀ c ∈ C

1 @constraint(FL, [c=1:C], sum( x[f,c] for f=1:F if Cap[c]>= 100) >= 1)
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Conditional term

∑
f∈F

xf ,c ≥ 1|(c ̸= 2) + 2|(c = 2) ∀ c ∈ C

1 @constraint(FL, [c=1:C], sum( x[f,c] for f=1:F ) >= (c==2 ? 2 : 1) )
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JuMP solvers (54)
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JuMP solvers

JuMP supports many different kinds of optimization solvers: Linear
programming, Quadratic programming, Second-order conic programming
Mixed-complementarity programming, Nonlinear programming, Semidefinite
programming, Mixed Integer Programming, Constraint programming and
Boolean satisfiability. Our focus is LP and MIP. These solvers are relevant:
• HiGHS: Current best open-source LP/MIP solver
• Gurobi: Best commercial LP/MIP solver
• CPLEX: Good commercial LP/MIP solver
• Xpress: Good commercial LP/MIP solver
• COPT: Good commercial LP/MIP solver
• Obsolete solvers: Cbc, Clp and GLPK (open source solvers replaced by

HiGHS)
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JuMP

Decomposition
• Benders Decomposition:

• Requires some theory and has limited application (Stochastic
programming)

• Branch & Cut:
• Very important, but hard to implement problem-specific: Which cut will

you use ? JuMP supports generic cuts (Gurobi & CPLEX)
• Dantzig-Wolfe/Column Generation: A very important approach.
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Dantzig-Wolfe (DZ) decomposition

Min
∑

j

Cj · xj (8)

s.t.∑
j

A1i,j · xj ≥ b1i ∀i (9)

∑
j

A2i,j · xj ≥ b2i ∀i (10)

xj ∈ R+ (11)

Why is DZ a good idea ?
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Why is DZ decomposition a possible advantage

1 2 3 4

1

3

4

2

A2

A1

A1’
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Dantzig-Wolfe (DZ) decomposition I

Min
∑
f∈F

∑
c∈C

DistCostf ,c · xf ,c +
∑
f∈F

FacCostf · yf (12)

s.t.∑
f∈F

xf ,c ≥ 1 ∀ c ∈ C (13)∑
c∈C

Demc · xf ,c ≤ Capf · yf ∀ f ∈ F (14)

xf ,c , yf ∈ [0,1] (15)
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Dantzig-Wolfe (DZ) decomposition II

Min
∑
f∈F

∑
p∈P

Costp,f · λp,f (16)

s.t.∑
f∈F

xf ,c ≥ 1 ∀ c ∈ C (17)

xf ,c =
∑
p∈Pf

xp
f ,c · λp,f ∀ f ∈ F , c ∈ C (18)

∑
p∈P

λp,f ≤ 1 ∀ f ∈ F (19)

xf ,c , λp,f ∈ [0,1] (20)
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Dantzig-Wolfe (DZ) decomposition III

Min
∑

f∈F ,p∈Pf

Costf ,p · λf ,p (21)

s.t.∑
f∈F

∑
p∈Pf

xp
f ,c ∗ λf ,p ≥ 1 ∀ c ∈ C αc ∈ R+ (22)

∑
p∈Pf

λf ,p ≤ 1 ∀ f ∈ F βf ∈ R− (23)

λf ,p ∈ [0,1] (24)
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Column Generation
The model just shown, assume that we pre-generate all the variables λf ,p

and their constants xp
f ,c . There are however exponentially many of these,

making this approach un-usable for even small problems. Instead the
sub-problem finds them by minimizing the reduced cost:

Minf

∑
c∈C

DistCostf ,c · xc + FacCostf (25)

−
∑
c∈C

αc · xc − βf (26)

s.t.
∑

c

Demc · xc ≤ Capf (27)

xc ∈ {0,1} (28)
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JuMP model of sub-problem

1 function SolveSub(alpha,beta,f)
2 sub=Model(HiGHS.Optimizer)
3 @variable(sub, x[c=1:C], Bin)
4 @objective(sub, Min, FacCost[f] + sum( DistCost[c,f]*x[c] for

c=1:C )↪→

5 - sum( alpha[c]*x[c] for c=1:C) - beta[f] )
6 @constraint(sub, sum( Demand[c]*x[c] for c=1:C) <= Cap[f])
7 optimize!(sub)
8 if termination_status(sub) != MOI.OPTIMAL
9 throw("Error: Non-optimal sub-problem status")

10 end
11 return

(objective_value(sub),round.(Int,value.(x)),solve_time(sub))↪→

12 end
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But what about the first master-problem ?

Min
∑
c∈C

M · slackf (29)

s.t.
slackc ≥ 1 ∀ c ∈ C (30)
0 ≤ 1 ∀ f ∈ F (31)
slackf ∈ R+ (32)
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Initial Master Problem

1 master=Model(HiGHS.Optimizer)
2 set_silent(master)
3 @variable(master, s[c=1:C] >= 0)
4 @objective(master, Min, M*sum(s[c] for c=1:C) )
5 @constraint(master, CoverCustomer[c=1:C], s[c] >= 1 )
6 @constraint(master, FacLimit[f=1:F], 0 <= 1 )
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Adding the newλf ,p

1 function AddMasterVariable(xVal,f)
2 cost=FacCost[f] + sum( DistCost[c,f]*Demand[c]*xVal[c] for c=1:C)
3 oldvars = JuMP.all_variables(master)
4 new_var = @variable(master,

base_name="l_$(length(oldvars))_$(f)", lower_bound=0)↪→

5 set_objective_coefficient(master, new_var, cost)
6 for c=1:C
7 if xVal[c]==1
8 set_normalized_coefficient(CoverCustomer[c], new_var, 1)
9 end

10 end
11 set_normalized_coefficient(FacLimit[f], new_var, 1)
12 end
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Core Column Generation Algorithm

1 improving=true
2 while improving
3 optimize!(master)
4 mas_obj=objective_value(master)
5 alpha = dual.(CoverCustomer)
6 beta = dual.(FacLimit)
7 improving=false
8 for f=1:F
9 (redCost, xVal) = SolveSub(alpha,beta,f)

10 if redCost < -0.001
11 AddMasterVariable(xVal,f)
12 improving = true
13 end
14 end
15 end
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But we solved the relaxed problem !

In principle we should now use Branch & Price. This is more complicated so
we choose the simple solution, hence we MIPIFY: Solve the master problem
with the found column variables as binary variables: (we (probably) do not
get the optimal solution, but we do get a gap):

1 for v=1:length(all_variables)
2 set_binary(all_variables[v])
3 end
4 optimize!(master)
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Mathheuristics
This is another approach: Use a MIP solver iteratively to find a heuristic
solution. Here we will make a simple hill-climber, using the following model:

Min
∑
f∈F

∑
c∈C

DistCostf ,c · xf ,c +
∑
f∈F

FacCostf · yf + M ∗
∑
c∈C

qc (33)

s.t.

qc +
∑
f∈F

xf ,c ≥ 1 ∀ c ∈ C (34)∑
c∈C

Demc · xf ,c ≤ Capf · yf ∀ f ∈ F (35)∑
f ,c|xf ,c=0

xf ,c +
∑

f ,c|xf ,c=1

(1 − xf ,c) ≤ K (36)

xf ,c , yf ,qc ∈ {0,1} (37)
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A mathheuristic in Julia

If we make a function which optimize but limit the changes into a hamming
distance of K :

1 it=1
2 while it<200
3 (total,xVal,yVal,qVal)=AddKConstraintAndOptimize(xVal,K)
4 if total>=old_total
5 K=K+2
6 end
7 old_total=total
8 it+=1
9 end
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Optimizing with hamming distance constraint

1 function AddKConstraintAndOptimize(xVal,K)
2 @constraint(compact, Kconstraint,
3 sum( x[c,f] for f=1:F, c=1:C if xVal[c,f]==0) +
4 sum( (1-x[c,f]) for f=1:F, c=1:C if xVal[c,f]==1)
5 <= K)
6 optimize!(compact)
7 total=objective_value(compact)
8 xVal=round.(Int,value.(x))
9 yVal=round.(Int,value.(y))

10 qVal=round.(Int,value.(q))
11 delete(compact, Kconstraint)
12 unregister(compact, :Kconstraint)
13 return (total,xVal,yVal,qVal)
14 end
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Multiple objectives
But there are actually two objectives:

Min
∑
f∈F

∑
c∈C

DistCostf ,c · xf ,c (38)

Min
∑
f∈F

FacCostf · yf (39)

s.t.∑
f∈F

xf ,c ≥ 1 ∀ c ∈ C (40)∑
c∈C

Demc · xf ,c ≤ Capf · yf ∀ f ∈ F (41)

xf ,c , yf ∈ {0,1} (42)
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How can we solve this directly in JuMP ?

1 compact=Model()
2 @variable(compact, y[f=1:F],Bin)
3 @variable(compact, x[f=1:F,c=1:C],Bin)
4 @expression(compact, dist_expr, sum( Dist[c,f]*Demand[c]*x[f,c] for

c=1:C,f=1:F ))↪→

5 @expression(compact, fixed_expr, sum( FacCost[f]*y[f] for f=1:F))
6 @objective(compact, Min, [dist_expr, fixed_expr])
7 @constraint(compact, [c=1:C], sum( x[f,c] for f=1:F) ==1)
8 @constraint(compact, [f=1:F], sum( Demand[c]*x[f,c] for c=1:C) <=

FCap[f]*y[f])↪→

9 set_optimizer(compact, () -> MOA.Optimizer(HiGHS.Optimizer))
10 set_attribute(compact, MOA.Algorithm(), MOA.EpsilonConstraint())
11 set_attribute(compact, MOA.EpsilonConstraintStep(), 0.5)
12 optimize!(compact)
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Conclusion

JuMP, in side the Julia language is really good:
• JuMP enables easy modelling
• Julia/JuMP enables easy implementation of decomposition algorithms
• Julia/JuMP enables easy implementation of mathheuristics
• Julia/JuMP/MultiObjectiveAlgorithms enables easy modelling and

solution of multi-objective MIP models
But: Startup is slower (than GAMS) and index type failures are not found.
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Where to go from here

If you are interested in learning modelling in Julia/JuMP, we (my college
Richard Lusby and I) have written an open-source book:
https://www.man.dtu.dk/mathprogrammingwithjulia

If you are interested in Dantzig-Wolfe/Column Generation, look at the book
"Branch And Price", Desrosiers, Lübbecke, Desaulniers, & Gauthier [1]

If you are interested mathheuristics, there are a number of articles to take a
look at [2, 3, 4, 5]
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Appendix
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Speed of Julia

We (our OR group) wanted to test the speed of Julia, applied to
metaheuristics. Hence we tested a simple Simulated Annealing, on a simple
standard TSP problem:
• 5 different TSP data-sets: berlin52, bier127, eil51, eil76 & st70
• Test every dataset for 30 sec. 10 times.

Notice, our interest is not solution quality, but speed, hence the number of
SA iterations in 30 seconds.
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Speed of Julia

• Implement a very simple Simulated Annealing algorithm (the simplest
metaheuristic) on the most researched OR problem, TSP

• How many iterations can be done ?
• How fast is Julia compared to:

• C, Thomas Stidsen, Bernd Dammann
• C#, Simon Christensen
• Java, Dario Pacino
• Python, Niels Christian Fink Bagger
• Julia, Stefan Røpke, Dario Pacino & Thomas Stidsen
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Speed of Julia

Algorithm 1: Simple Simulated Annealing for TSP

1 ReadTSPDistanceMatrix()
2 cur=CreateRandomStartTour()
3 temp=StartTemperature()
4 while time() < 30 do
5 (i,j)=SelectTwoRandomDifferentCities()
6 delta=SwitchCostIfCitySwap(cur,i,j) −→ delta-evaluation
7 if delta < 0 or exp(delta/temp) < Rand(0,1) then
8 cur=Swap(cur,i,j)

9 temp=α · t
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Results

Language C Java Julia C# Python O-Python O-Julia
Mill. it pr. 30 sec. 978 480 542 485 9 732 963
Pr. sec. 32 16 18 16 0.3 24 32
C speed factor 1 2,05 1,81 2,02 104,71 1,35 1,02
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My background

• Assoiciate professor at the Technical University of Denmark (DTU)
• Teaching mathematical modelling, decomposition and metaheuristics for

20 years
• Research focus: Scheduling/timetabling, manpower planning and

multi-objective optimization
• Programming background:

• Previously: GAMS and C++
• Now: Julia
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OR at DTU

• 8 faculty members, 10-15 PhD students
• Strong applied research in many areas: Transport, energy, timetables ...
• EURO-2024 was hosted by our group at DTU in Copenhagen, more

than 3000 participants
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