

Modelling and decomposition

Julia And Optimization

Mathematical Programming (LP/MIP)

$$\begin{array}{ll} \text{Min} & \sum_{j} C_{j} \cdot x_{j} & (1) \\ \text{s.t.} & & \\ & \sum_{j} A_{i,j} \cdot x_{j} \geq b_{i} \quad \forall i & (2) \\ & x_{j} \in R^{+}/Z^{+} & (3) \end{array}$$

If you use either Linear Programming or Mixed Integer Programming in your research, then this presentation should be interesting for you.

 We are used to write models up in mathematics, but need to feed it to the advanced solvers in an easy way. For this, modelling languages were made:

- GAMS
- AMPL
- Mosel
- Zimpl
-

Why use modelling languages ? Ease of programming. I am **sure** that the days of the dedicated modelling languages are comming to an end ...

DTU

Outline

- DTU: Our use of Julia
- Modelling
- Decomposition
- Mathheuristic
- Multi-objective modelling

OR Courses at the Technical University of Denmark (DTU)

- 42101 Introduction to Operations Research (BSc)
- 42586 Decisions under uncertainty (BSc)
- 42112 Mathematical Programming Modelling (MSc)
- 42114 Integer Programming (MSc)
- 42115 Network Optimization (MSc)
- 42117 Transport Optimization (MSc)
- 42136 Large Scale Optimization using Decomposition (MSc)
- 42137 Optimization using metaheuristics (MSc)
- 42142 Recent Research Results in Management Science (MSc)

Today we use Julia/JuMP as the only language in all our courses

DTU

Why we use Julia/JuMP

- Our students were not good enough programmers ...
- Julia/JuMP was the only language which could be used in all our courses...
- JuMP is a fantastic package ...
- Julia and JuMP are open-source
- JuMP supports many different solvers ... including open-source solvers
- JuMP supports multi-objective modelling (as far as I know, as the first modelling language)

Out example in this lecture: Facility Location

Given $f \in F$ facilities and $c \in C$ customers. A volume of $Demand_c$ should be delivered to each customer from **one** depot. The cost for the whole demand from facility *f* to customer *c* is $DistCost_{f,c}$. Each facility *f* has a capacity of Cap_f and costs $FacCost_f$ to establish.

Mathematical programming model of Facility Location

Mixed Integer Programming model of the Facility Location problem:

$$\begin{split} & \text{Min} \quad \sum_{f \in F} \sum_{c \in C} \textit{DistCost}_{f,c} \cdot x_{f,c} + \sum_{f \in F} \textit{FacCost}_{f} \cdot y_{f} & (4) \\ & \text{s.t.} & \\ & \sum_{f \in F} x_{f,c} \geq 1 \quad \forall \ c \in C & (5) \\ & \sum_{c \in C} \textit{Dem}_{c} \cdot x_{f,c} \leq \textit{Cap}_{f} \cdot y_{f} & \forall \ f \in F & (6) \\ & x_{f,c}, y_{f} \in \{0,1\} & (7) \end{split}$$

DTU

JuMP model of Facility Location

$$\sum_{f \in F} x_{f,c} \geq 1 \quad \forall \ c \in C \mid \textit{Dem}_c \geq 10$$

1 @constraint(FL, [c=1:C; Dem[c]>=10], sum(x[f,c] for f=1:F) >= 1)

$$\sum_{f \in F | \textit{Cap}_c > = 100} x_{f,c} \geq 1 \quad \forall \ c \in \textit{C}$$

1 @constraint(FL, [c=1:C], sum(x[f,c] for f=1:F if Cap[c]>= 100) >= 1)

$$\sum_{f\in F} x_{f,c} \geq 1 | (c
eq 2) + 2 | (c = 2) \quad orall \ c \in C$$

1 @constraint(FL, [c=1:C], sum(x[f,c] for f=1:F) >= (c==2 ? 2 : 1))

JuMP solvers (54)

Alpine, J		M942		
Aradya Koltra	KNITROJ Manual Comm.			MILP. MISSORP. MINUP
BARON	BARONJ	Manual	Comm	MINU
Bonnin	Amph4/Mitter#		195	MINUT
Chi	Child		EP5.	MOP
CDCS	cocsa	Manual*	CPL	LP; SOCP; SOP
600	CDDsb.J		GPL	U U
Clarabel.)			Apache	LR OP, SOCP, SOP
Cu	C0-2		EPL	UP
COPT	00712		Comm.	(MULP, SOCP, SOP
COSMOJ			Apache	LR OF SOCP. SOP
Couenne	AmpNOVeter)		695.	MINUT
CPLEX	CPLEX	Manual	Comm	(MBJR (MISSOCP
CSOP	CSDPJ		695	LP, SOP
DAQP	DACPS		MIT	(Mixed-binary) QP
DGDP	05049		DEDP	LP, SOP
64603			MIT	MINU
6005	60053		CPL	LP, SOCP
FICO Xpress	Xpecul	Manual	Comm	MBR MISOCP
GLPK	GUNG		CPL	M0.7
Gundel	Guestia	Manual	Comm.	MB.R.MISOCP
HIGHS	HICKS		MIT	IMILF. QP
Hypertia J			MIT	LP. SOCP. SDP
lower	longed a		(P.	LR OR NUP
Auriper,3			MIT	MISCOR MINUP
Lonine.3			MIT	LP, 50P
Manara			MIT	LP OF NUP
MAINGO	MANCOJ		EPS 2.0	MINUT
Managetal			MIT	NP
MedZee	Meditional	Manual	MPL2	CP-M/
Montaur	Anabelieven	Manual	mp-the	MPER
HOME	Meanthalad	Manual	Cerren	MER MINOCE SOF
Mast	Marth		(8)	LR OR NUP
Oxformat	Anabiation		Gene	MINUP
Outin J			MIT	NR
0608	05088		Anathe	18.02
DATH	PATHSalves 2		MIT	MCP
Printland.			MPL2	MALE MISCORE MISCH
Dettad			MPL2	MNUT
Fasherd	Personal d		Comm	Name 174
Perclust 8			MPL-2	NP
DAAAARAYT	DALLARS.		MIT	10
BARASOCOR.	DALAND		MIT	107
ProvSD02			MIT	18 5008 508
DARCER	Anothe Writer 2	Manual	BADOSe	MINIZ
100	1000		Rear be	AND ARRES
101	1011		-quere	10.00.0000.000
1000	STRA STRAND		CR.	18.507
1000	100.00		100	18.858
SUPUR SUPUR	SUPURJ	Manual	11.00	19,909
507702	507702.5	Manual	10	18 5778 578
Sultana Sultana	Subat 2	Manual	(8	10,000,000
Deturbuilt State (192	incore)		MT	10, 000, 000
101			MRL2	10,02
1003			PPro 2	0

JuMP solvers

JuMP supports many different kinds of optimization solvers: Linear programming, Quadratic programming, Second-order conic programming Mixed-complementarity programming, Nonlinear programming, Semidefinite programming, Mixed Integer Programming, Constraint programming and Boolean satisfiability. Our focus is LP and MIP. These solvers are relevant:

- HiGHS: Current best open-source LP/MIP solver
- Gurobi: Best commercial LP/MIP solver
- CPLEX: Good commercial LP/MIP solver
- Xpress: Good commercial LP/MIP solver
- COPT: Good commercial LP/MIP solver
- Obsolete solvers: Cbc, Clp and GLPK (open source solvers replaced by HiGHS)

Decomposition

- Benders Decomposition:
 - Requires some theory and has limited application (Stochastic programming)
- Branch & Cut:
 - Very important, but hard to implement problem-specific: Which cut will you use ? JuMP supports generic cuts (Gurobi & CPLEX)
- Dantzig-Wolfe/Column Generation: A very important approach.

Dantzig-Wolfe (DZ) decomposition

$$\begin{array}{ll} \text{Min} & \sum_{j} C_{j} \cdot x_{j} & (8) \\ \text{s.t.} & \\ & \sum_{j} A \mathbf{1}_{i,j} \cdot x_{j} \geq b \mathbf{1}_{i} & \forall i & (9) \\ & \sum_{j} A \mathbf{2}_{i,j} \cdot x_{j} \geq b \mathbf{2}_{i} & \forall i & (10) \\ & x_{j} \in R^{+} & (11) \end{array}$$

Why is DZ a good idea ?

Why is DZ decomposition a possible advantage

$$\begin{split} & \text{Min} \quad \sum_{f \in F} \sum_{c \in C} \textit{DistCost}_{f,c} \cdot x_{f,c} + \sum_{f \in F} \textit{FacCost}_{f} \cdot y_{f} \end{split} \tag{12} \\ & \text{s.t.} \\ & \sum_{f \in F} x_{f,c} \geq 1 \quad \forall \ c \in C \end{aligned} \tag{13} \\ & \sum_{c \in C} \textit{Dem}_{c} \cdot x_{f,c} \leq \textit{Cap}_{f} \cdot y_{f} \quad \forall \ f \in F \end{aligned} \tag{14} \\ & x_{f,c}, y_{f} \in [0,1] \end{aligned}$$

DTU

Dantzig-Wolfe (DZ) decomposition II

$$\begin{array}{ll} \text{Min} & \sum_{f \in F} \sum_{p \in P} Cost_{p,f} \cdot \lambda_{p,f} & (16) \\ \text{s.t.} & \\ & \sum_{f \in F} x_{f,c} \geq 1 \quad \forall \ c \in C & (17) \\ & x_{f,c} = \sum_{p \in P_f} \overline{x_{f,c}^p} \cdot \lambda_{p,f} \quad \forall \ f \in F, c \in C & (18) \\ & \sum_{p \in P} \lambda_{p,f} \leq 1 \quad \forall \ f \in F & (19) \\ & x_{f,c}, \lambda_{p,f} \in [0,1] & (20) \end{array}$$

Dantzig-Wolfe (DZ) decomposition III

$$\begin{array}{ll} \text{Min} & \sum_{f \in F, p \in P_f} Cost_{f,p} \cdot \lambda_{f,p} \\ \text{s.t.} \\ & \sum_{f \in F} \sum_{p \in P_f} \overline{x_{f,c}^p} * \lambda_{f,p} \geq 1 \quad \forall \ c \in C \quad \alpha_c \in R^+ \\ & \sum_{p \in P_f} \lambda_{f,p} \leq 1 \quad \forall \ f \in F \quad \beta_f \in R^- \\ & \lambda_{f,p} \in [0,1] \end{array}$$

$$\begin{array}{ll} \text{(21)} \end{array}$$

Column Generation

The model just shown, assume that we pre-generate all the variables $\lambda_{f,p}$ and their constants $\overline{x_{f,c}^p}$. There are however exponentially many of these, making this approach un-usable for even small problems. Instead the sub-problem finds them by minimizing the reduced cost:

$$\begin{aligned} & \textit{Min}_{f} \quad \sum_{c \in C} \textit{DistCost}_{f,c} \cdot x_{c} + \textit{FacCost}_{f} \end{aligned} \tag{25} \\ & -\sum_{c \in C} \alpha_{c} \cdot x_{c} - \beta_{f} \end{aligned} \tag{26} \\ & \text{s.t.} \quad \sum_{c} \textit{Dem}_{c} \cdot x_{c} \leq \textit{Cap}_{f} \end{aligned} \tag{27} \\ & x_{c} \in \{0,1\} \end{aligned}$$

DTU

JuMP model of sub-problem

$1 {\rm func}$	ction SolveSub(alpha,beta,f)
2	<pre>sub=Model(HiGHS.Optimizer)</pre>
3	<pre>@variable(sub, x[c=1:C], Bin)</pre>
4	<pre>@objective(sub, Min, FacCost[f] + sum(DistCost[c,f]*x[c] for</pre>
	\hookrightarrow c=1:C)
5	<pre>- sum(alpha[c]*x[c] for c=1:C) - beta[f])</pre>
6	<pre>@constraint(sub, sum(Demand[c]*x[c] for c=1:C) <= Cap[f])</pre>
7	optimize!(sub)
8	if termination_status(sub) != MOI.OPTIMAL
9	<pre>throw("Error: Non-optimal sub-problem status")</pre>
10	end
11	return
	→ (objective_value(sub),round.(Int,value.(x)),solve_time(sub))
12 end	

But what about the first master-problem?

$$\begin{array}{ll} \textit{Min} & \sum_{c \in C} M \cdot \textit{slack}_f & (29) \\ \text{s.t.} & \\ \textit{slack}_c \geq 1 \quad \forall \ c \in C & (30) \\ 0 \leq 1 \quad \forall \ f \in F & (31) \\ \textit{slack}_f \in R^+ & (32) \end{array}$$

DTU

Initial Master Problem

- 1 master=Model(HiGHS.Optimizer)
- 2 set_silent(master)
- 3 @variable(master, s[c=1:C] >= 0)
- 4 @objective(master, Min, M*sum(s[c] for c=1:C))
- $_5$ @constraint(master, CoverCustomer[c=1:C], s[c] >= 1)
- 6 @constraint(master, FacLimit[f=1:F], 0 <= 1)</pre>

Adding the new $\lambda_{f,p}$

```
1 function AddMasterVariable(xVal.f)
      cost=FacCost[f] + sum( DistCost[c,f]*Demand[c]*xVal[c] for c=1:C)
2
      oldvars = JuMP.all variables(master)
3
4
      new var = @variable(master.
      \rightarrow base_name="1_$(length(oldvars))_$(f)", lower_bound=0)
      set_objective_coefficient(master, new_var, cost)
5
      for c=1:C
6
          if xVal[c] == 1
7
               set_normalized_coefficient(CoverCustomer[c], new_var, 1)
8
          end
9
      end
10
      set_normalized_coefficient(FacLimit[f], new_var, 1)
11
12 end
```

DTU

Core Column Generation Algorithm

1	improving=true
2	while improving
3	optimize!(master)
4	<pre>mas_obj=objective_value(master)</pre>
5	alpha = dual.(CoverCustomer)
6	beta = dual.(FacLimit)
7	improving=false
8	for f=1:F
9	<pre>(redCost, xVal) = SolveSub(alpha,beta,f)</pre>
10	if $redCost < -0.001$
11	AddMasterVariable(xVal,f)
12	<pre>improving = true</pre>
13	end
14	end
15	end

But we solved the relaxed problem !

In principle we should now use Branch & Price. This is more complicated so we choose the simple solution, hence we MIPIFY: Solve the master problem with the found column variables as binary variables: (we (probably) do not get the optimal solution, but we do get a gap):

- 1 for v=1:length(all_variables)
- 2 set_binary(all_variables[v])

3 end

4 optimize!(master)

Mathheuristics

This is another approach: Use a MIP solver iteratively to find a heuristic solution. Here we will make a simple hill-climber, using the following model:

$$\begin{split} & \text{Min} \quad \sum_{f \in F} \sum_{c \in C} \textit{DistCost}_{f,c} \cdot x_{f,c} + \sum_{f \in F} \textit{FacCost}_{f} \cdot y_{f} + \textit{M} * \sum_{c \in C} q_{c} \end{split}$$
(33) s.t.

$$q_c + \sum_{f \in F} x_{f,c} \ge 1 \quad \forall \ c \in C$$
(34)

$$\sum_{c \in C} Dem_c \cdot x_{f,c} \leq Cap_f \cdot y_f \quad \forall \ f \in F$$
(35)

$$\sum_{f,c|x_{f,c}|} x_{f,c} + \sum_{f,c|x_{f,c}|} (1 - x_{f,c}) \le K$$
(36)

$$x_{f,c}, y_f, q_c \in \{0, 1\}$$
(37)

A mathheuristic in Julia

If we make a function which optimize but limit the changes into a hamming distance of K:

```
it=1
1
     while it<200
2
          (total,xVal,yVal,qVal)=AddKConstraintAndOptimize(xVal,K)
3
          if total>=old total
4
               K = K + 2
5
6
          end
          old total=total
7
          it + = 1
8
     end
9
```

Optimizing with hamming distance constraint

1 func	ction AddKConstraintAndOptimize(xVal,K)
2	<pre>@constraint(compact, Kconstraint,</pre>
3	<pre>sum(x[c,f] for f=1:F, c=1:C if xVal[c,f]==0) +</pre>
4	sum((1-x[c,f]) for f=1:F, c=1:C if xVal[c,f]==1)
5	<= K)
6	optimize!(compact)
7	<pre>total=objective_value(compact)</pre>
8	xVal=round.(Int,value.(x))
9	yVal=round.(Int,value.(y))
10	qVal=round.(Int,value.(q))
11	delete(compact, Kconstraint)
12	unregister(compact, :Kconstraint)
13	return (total,xVal,yVal,qVal)
14 end	

DTU

Multiple objectives

But there are actually two objectives:

$$\begin{array}{ll} \text{Min} & \sum_{f \in F} \sum_{c \in C} \text{DistCost}_{f,c} \cdot x_{f,c} & (38) \\ \\ \text{Min} & \sum_{f \in F} \text{FacCost}_{f} \cdot y_{f} & (39) \\ \\ \text{s.t.} & \\ & \sum_{f \in F} x_{f,c} \geq 1 \quad \forall \ c \in C & (40) \\ & & \sum_{c \in C} \text{Dem}_{c} \cdot x_{f,c} \leq \text{Cap}_{f} \cdot y_{f} \quad \forall \ f \in F & (41) \\ & & x_{f,c}, y_{f} \in \{0,1\} & (42) \end{array}$$

DTU

How can we solve this directly in JuMP?

- 1 compact=Model()
- 2 @variable(compact, y[f=1:F],Bin)
- 3 @variable(compact, x[f=1:F,c=1:C],Bin)
- 4 @expression(compact, dist_expr, sum(Dist[c,f]*Demand[c]*x[f,c] for \hookrightarrow c=1:C,f=1:F))
- 5 @expression(compact, fixed_expr, sum(FacCost[f]*y[f] for f=1:F))
 6 @objective(compact, Min, [dist_expr, fixed_expr])
- 7 @constraint(compact, [c=1:C], sum(x[f,c] for f=1:F) ==1)
- & @constraint(compact, [f=1:F], sum(Demand[c]*x[f,c] for c=1:C) <=</pre>
 - \hookrightarrow FCap[f]*y[f])
- 9 set_optimizer(compact, () -> MOA.Optimizer(HiGHS.Optimizer))
- 10 set_attribute(compact, MOA.Algorithm(), MOA.EpsilonConstraint())
- 11 set_attribute(compact, MOA.EpsilonConstraintStep(), 0.5)
- 12 optimize!(compact)

Conclusion

JuMP, in side the Julia language is really good:

- JuMP enables easy modelling
- Julia/JuMP enables easy implementation of decomposition algorithms
- Julia/JuMP enables easy implementation of mathheuristics
- Julia/JuMP/MultiObjectiveAlgorithms enables easy modelling and solution of multi-objective MIP models
- But: Startup is slower (than GAMS) and index type failures are not found.

If you are interested in learning modelling in Julia/JuMP, we (my college Richard Lusby and I) have written an open-source book: https://www.man.dtu.dk/mathprogrammingwithjulia

If you are interested in Dantzig-Wolfe/Column Generation, look at the book "Branch And Price", Desrosiers, Lübbecke, Desaulniers, & Gauthier [1]

If you are interested mathheuristics, there are a number of articles to take a look at [2, 3, 4, 5]

Appendix

Speed of Julia

We (our OR group) wanted to test the speed of Julia, applied to metaheuristics. Hence we tested a **simple** Simulated Annealing, on a simple standard TSP problem:

- 5 different TSP data-sets: berlin52, bier127, eil51, eil76 & st70
- Test every dataset for 30 sec. 10 times.

Notice, our interest is **not** solution quality, but speed, hence the number of SA iterations in 30 seconds.

Speed of Julia

- Implement a very simple Simulated Annealing algorithm (the simplest metaheuristic) on the most researched OR problem, TSP
- How many iterations can be done ?
- How fast is Julia compared to:
 - C, Thomas Stidsen, Bernd Dammann
 - C#, Simon Christensen
 - Java, Dario Pacino
 - Python, Niels Christian Fink Bagger
 - Julia, Stefan Røpke, Dario Pacino & Thomas Stidsen

Speed of Julia

Algorithm 1: Simple Simulated Annealing for TSP

- ReadTSPDistanceMatrix()
- 2 cur=CreateRandomStartTour()
- 3 temp=StartTemperature()
- 4 while time() < 30 do
- 5 (i,j)=SelectTwoRandomDifferentCities()
- $\textbf{6} \quad delta=SwitchCostIfCitySwap(cur,i,j) \longrightarrow delta-evaluation$
- τ if delta < 0 or exp(delta/temp) < Rand(0, 1) then
 - cur=Swap(cur,i,j)

$$\mathbf{e} \mid \mathbf{b} \mid \mathbf{b} \in \mathbf{a} \cdot \mathbf{b}$$

8

Results

Language	C	Java	Julia	C#	Python	O-Python	O-Julia
Mill. it pr. 30 sec.	978	480	542	485	9	732	963
Pr. sec.	32	16	18	16	0.3	24	32
C speed factor	1	2,05	1,81	2,02	104,71	1,35	1,02

My background

- Assoiciate professor at the Technical University of Denmark (DTU)
- Teaching mathematical modelling, decomposition and metaheuristics for 20 years
- Research focus: Scheduling/timetabling, manpower planning and multi-objective optimization
- Programming background:
 - Previously: GAMS and C++
 - Now: Julia

OR at DTU

- 8 faculty members, 10-15 PhD students
- Strong applied research in many areas: Transport, energy, timetables ...
- EURO-2024 was hosted by our group at DTU in Copenhagen, more than 3000 participants

Suggested literature

Suggested literature

Jacques Desrosiers, Marco Lübbecke, Guy Desaulniers, and Jean-Bertrand Gauthier.

Branch-and-price, volume G-2024-36. Les cahiers du gerad edition, June 2024.

- Matteo Fischetti and Andrea Lodi. Local branching. Mathematical programming, 98:23–47, 2003.
- Enrico Angelelli, Renata Mansini, and M Grazia Speranza. Kernel search: A general heuristic for the multi-dimensional knapsack problem. *Computers & Operations Research*, 37(11):2017–2026, 2010.
- Sharlee Climer and Weixiong Zhang.

Suggested literature Cut-and-solve: An iterative search strategy for combinatorial optimization problems. Artificial Intelligence, 170(8-9):714–738, 2006.

Matteo Fischetti and Michele Monaci. Proximity search for 0-1 mixed-integer convex programming. Journal of Heuristics, 20:709-731, 2014.