

Modelling and decomposition

JuliaAndOptimization

Mathematical Programming (LP/MIP)

Min
$$
\sum_{j} C_j \cdot x_j
$$
 (1)
s.t.
 $\sum_{j} A_{i,j} \cdot x_j \ge b_i \quad \forall i$ (2)
 $x_j \in R^+/Z^+$ (3)

If you use either Linear Programming or Mixed Integer Programming in your research, then this presentation should be interesting for you.

DTU 笠 We are used to write models up in mathematics, but need to feed it to the advanced solvers in an easy way. For this, modelling languages were made:

- GAMS
- AMPL
- Mosel
- Zimpl
- \bullet

Why use modelling languages ? Ease of programming. I am **sure** that the days of the dedicated modelling languages are comming to an end ...

Outline

- DTU: Our use of Julia
- Modelling
- Decomposition
- Mathheuristic
- Multi-objective modelling

OR Courses at the Technical University of Denmark (DTU)

- 42101 Introduction to Operations Research (BSc)
- 42586 Decisions under uncertainty (BSc)
- 42112 Mathematical Programming Modelling (MSc)
- 42114 Integer Programming (MSc)
- 42115 Network Optimization (MSc)
- 42117 Transport Optimization (MSc)
- 42136 Large Scale Optimization using Decomposition (MSc)
- 42137 Optimization using metaheuristics (MSc)
- 42142 Recent Research Results in Management Science (MSc)

Today we use Julia/JuMP as the **only** language in **all** our courses

DTU ₩

Why we use Julia/JuMP

- Our students were not good enough programmers ...
- Julia/JuMP was the only language which could be used in all our courses...
- JuMP is a **fantastic** package ...
- Julia and JuMP are open-source
- JuMP supports many different solvers ... including open-source solvers
- JuMP supports multi-objective modelling (as far as I know, as the first modelling language)

DTU ₩

Out example in this lecture: Facility Location

Given *f* ∈ *F* facilities and *c* ∈ *C* customers. A volume of *Demand*_c should be delivered to each customer from **one** depot. The cost for the whole demand from facility *f* to customer *c* is *DistCostf*,*^c* . Each facility *f* has a capacity of *Cap^f* and costs *FacCost^f* to establish.

DTU ≋

Mathematical programming model of Facility Location

Mixed Integer Programming model of the Facility Location problem:

Min
$$
\sum_{f \in F} \sum_{c \in C} DistCost_{f,c} \cdot x_{f,c} + \sum_{f \in F} FacCost_f \cdot y_f
$$
 (4)
s.t.

$$
\sum_{f \in F} x_{f,c} \ge 1 \quad \forall c \in C
$$
 (5)

$$
\sum_{c \in C} Dem_c \cdot x_{f,c} \le Cap_f \cdot y_f \quad \forall f \in F
$$
 (6)

$$
x_{f,c}, y_f \in \{0, 1\}
$$
 (7)

二类

DTU ₩

JuMP model of Facility Location

 $_1$ FL = Model(HiGHS.Optimizer) @variable(FL, $x[1:C]$, Bin) @variable(FL, y[1:F],Bin) $4 \text{ @objective(FL, Max, sum(DistCost[f, c]*x[f, c] for f=1: F, c=1:C) +}$ sum($FacCost[f]*y[f]$ for $f=1:F$)) $@constraint(FL, [c=1:C], sum([x[f,c] for f=1:F) >= 1)$ @constraint(FL, $[f=1:F]$, sum(Dem[c]*x[f.c] for $f=1:F$) \leq \rightarrow Cap[f]*y[f]) optimize!(FL)

$$
\sum_{f \in F} x_{f,c} \ge 1 \quad \forall \ c \in C \mid Dem_{c} \ge 10
$$

 1 @constraint(FL, [c=1:C; Dem[c]>=10], sum(x[f,c] for f=1:F) >= 1)

$$
\sum_{f\in F|Cap_c>=100}x_{f,c}\geq 1\quad \forall\; c\in C
$$

1 $@constraint$ (FL, $[c=1:C]$, sum($x[f,c]$ for $f=1:F$ if $Cap[c] \ge 100$) ≥ 1)

$$
\sum_{f\in\mathcal{F}}x_{f,c}\geq 1|(c\neq 2)+2|(c=2)\quad\forall\;c\in C
$$

1 $@constant(FL, [c=1:C], sum([x[f,c] for f=1:F]) > = (c==2 ? 2 : 1))$

JuMP solvers (54)

JuMP solvers

JuMP supports many different kinds of optimization solvers: Linear programming, Quadratic programming, Second-order conic programming Mixed-complementarity programming, Nonlinear programming, Semidefinite programming, Mixed Integer Programming, Constraint programming and Boolean satisfiability. Our focus is LP and MIP. These solvers are relevant:

- HiGHS: Current best open-source LP/MIP solver
- Gurobi: Best commercial LP/MIP solver
- CPLEX: Good commercial LP/MIP solver
- Xpress: Good commercial LP/MIP solver
- COPT: Good commercial LP/MIP solver
- Obsolete solvers: Cbc, Clp and GLPK (open source solvers replaced by HiGHS)

Decomposition

- Benders Decomposition:
	- Requires some theory and has limited application (Stochastic programming)
- Branch & Cut:
	- Very important, but hard to implement problem-specific: Which cut will you use ? JuMP supports generic cuts (Gurobi & CPLEX)
- Dantzig-Wolfe/Column Generation: A very important approach.

Dantzig-Wolfe (DZ) decomposition

Min
$$
\sum_{j} C_{j} \cdot x_{j}
$$
 (8)
\ns.t.
\n $\sum_{j} A1_{i,j} \cdot x_{j} \ge b1_{i} \quad \forall i$ (9)
\n $\sum_{j} A2_{i,j} \cdot x_{j} \ge b2_{i} \quad \forall i$ (10)
\n $x_{j} \in R^{+}$ (11)

Why is DZ a good idea ?

Why is DZ decomposition a possible advantage

DTU
#

Dantzig-Wolfe (DZ) decomposition I

Min
$$
\sum_{f \in F} \sum_{c \in C} DistCost_{f,c} \cdot x_{f,c} + \sum_{f \in F} FacCost_f \cdot y_f
$$
 (12)
s.t.

$$
\sum_{f \in F} x_{f,c} \ge 1 \quad \forall c \in C
$$
 (13)

$$
\sum_{c \in C} Dem_c \cdot x_{f,c} \le Cap_f \cdot y_f \quad \forall f \in F
$$
 (14)

$$
x_{f,c}, y_f \in [0, 1]
$$
 (15)

111

111

Dantzig-Wolfe (DZ) decomposition II

Min
$$
\sum_{f \in F} \sum_{p \in P} Cost_{p,f} \cdot \lambda_{p,f}
$$
 (16)
s.t.
$$
\sum_{f \in F} x_{f,c} \ge 1 \quad \forall c \in C
$$
 (17)

$$
x_{f,c} = \sum_{p \in P_f} \overline{x_{f,c}^p} \cdot \lambda_{p,f} \quad \forall f \in F, c \in C
$$
 (18)

$$
\sum_{p \in P} \lambda_{p,f} \le 1 \quad \forall f \in F
$$
 (19)

$$
x_{f,c}, \lambda_{p,f} \in [0,1]
$$
 (20)

Dantzig-Wolfe (DZ) decomposition III

Min
$$
\sum_{f \in F, p \in P_f} Cost_{f, p} \cdot \lambda_{f, p}
$$
 (21)
s.t.

$$
\sum_{f \in F} \sum_{p \in P_f} \overline{x_{f, c}^p} * \lambda_{f, p} \ge 1 \quad \forall c \in C \quad \alpha_c \in R^+
$$
 (22)

$$
\sum_{p \in P_f} \lambda_{f, p} \le 1 \quad \forall f \in F \quad \beta_f \in R^-
$$
 (23)

$$
\lambda_{f, p} \in [0, 1]
$$
 (24)

Column Generation

The model just shown, assume that we pre-generate all the variables $\lambda_{f,p}$ and their constants x_t^p *f*,*c* . There are however exponentially many of these, making this approach un-usable for even small problems. Instead the sub-problem finds them by minimizing the reduced cost:

$$
Min_{f} \sum_{c \in C} DistCost_{f,c} \cdot x_c + FacCost_{f}
$$
\n
$$
- \sum_{c \in C} \alpha_c \cdot x_c - \beta_f
$$
\n
$$
s.t. \sum_{c} Dem_{c} \cdot x_c \le Cap_{f}
$$
\n
$$
x_c \in \{0, 1\}
$$
\n(28)

舞

JuMP model of sub-problem

But what about the first master-problem ?

$$
\begin{array}{ll}\nMin & \sum_{c \in C} M \cdot \text{slack}_{f} & \text{(29)} \\
\text{s.t.} & \\
\text{slack}_{c} \ge 1 \quad \forall \ c \in C & \text{(30)} \\
0 \le 1 \quad \forall \ f \in F & \text{(31)} \\
\text{slack}_{f} \in R^{+} & \text{(32)}\n\end{array}
$$

111

DTU ≋

Initial Master Problem

- ¹ master=Model(HiGHS.Optimizer)
- ² set_silent(master)
- 3 @variable(master, $s[c=1:C] > = 0$)
- ⁴ @objective(master, Min, M*sum(s[c] for c=1:C))
- 5 @constraint(master, CoverCustomer[c=1:C], $s[c] \geq 1$)
- 6 0 constraint (master, FacLimit [f=1:F], $0 \le 1$)

Adding the newλ*f*,*^p*

```
1 function AddMasterVariable(xVal,f)
2 cost=FacCost[f] + sum( DistCost[c, f]*Demand[c]*xVal[c] for c=1:C)
3 oldvars = JuMP.all_variables(master)
4 new var = Qvariable(master,\rightarrow base_name="l_$(length(oldvars))_$(f)", lower_bound=0)
5 set_objective_coefficient(master, new_var, cost)
6 for c=1:C\tau if xVal[C]=18 set normalized coefficient(CoverCustomer[c], new var, 1)
9 end
10 end
11 set normalized coefficient(FacLimit[f], new var, 1)
12 end
```
111

Core Column Generation Algorithm

But we solved the relaxed problem !

In principle we should now use Branch & Price. This is more complicated so we choose the simple solution, hence we MIPIFY: Solve the master problem with the found column variables as binary variables: (we (probably) do not get the optimal solution, but we do get a gap):

⁴ optimize!(master)

Mathheuristics

This is another approach: Use a MIP solver iteratively to find a heuristic solution. Here we will make a simple hill-climber, using the following model:

Min
$$
\sum_{f \in F} \sum_{c \in C} DistCost_{f,c} \cdot x_{f,c} + \sum_{f \in F} FacCost_f \cdot y_f + M * \sum_{c \in C} q_c
$$
 (33)

$$
q_c + \sum_{f \in F} x_{f,c} \ge 1 \quad \forall \ c \in C \tag{34}
$$

$$
\sum_{c \in C} Dem_c \cdot x_{f,c} \le Cap_f \cdot y_f \quad \forall \ f \in F \tag{35}
$$

$$
\sum_{f,c|\overline{X_{f,c}}=0}X_{f,c}+\sum_{f,c|\overline{X_{f,c}}=1}(1-X_{f,c})\leq K
$$
\n(36)

$$
x_{f,c}, y_f, q_c \in \{0, 1\}
$$
 (37)

A mathheuristic in Julia

If we make a function which optimize but limit the changes into a hamming distance of *K*:

Optimizing with hamming distance constraint

Multiple objectives

But there are actually two objectives:

Min
$$
\sum_{f \in F} \sum_{c \in C} DistCost_{f,c} \cdot x_{f,c}
$$
 (38)
\nMin
$$
\sum_{f \in F} FacCost_f \cdot y_f
$$
 (39)
\ns.t.
\n
$$
\sum_{f \in F} x_{f,c} \ge 1 \quad \forall c \in C
$$
 (40)
\n
$$
\sum_{c \in C} Dem_c \cdot x_{f,c} \le Cap_f \cdot y_f \quad \forall f \in F
$$
 (41)
\n
$$
x_{f,c}, y_f \in \{0, 1\}
$$
 (42)

DTU ≈

How can we solve this directly in JuMP ?

- ¹ compact=Model()
- 2 α ariable(compact, γ [f=1:F], Bin)
- ³ @variable(compact, x[f=1:F,c=1:C],Bin)
- ⁴ @expression(compact, dist_expr, sum(Dist[c,f]*Demand[c]*x[f,c] for \rightarrow $c=1:C,f=1:F)$
- 5 @expression(compact, fixed_expr, sum($FacCost[f]*v[f]$ for $f=1:F$)) ⁶ @objective(compact, Min, [dist_expr, fixed_expr])
- 7 @constraint (compact, $[c=1:C]$, sum($x[f,c]$ for $f=1:F$) ==1)
- 8 $@constraint$ (compact, $[f=1:F]$, sum($Demand[c]*x[f,c]$ for $c=1:C$) \leq
	- \rightarrow FCap[f]*y[f])
- ⁹ set_optimizer(compact, () -> MOA.Optimizer(HiGHS.Optimizer))
- ¹⁰ set_attribute(compact, MOA.Algorithm(), MOA.EpsilonConstraint())
- ¹¹ set_attribute(compact, MOA.EpsilonConstraintStep(), 0.5)
- ¹² optimize!(compact)

Conclusion

JuMP, in side the Julia language is really good:

- JuMP enables easy modelling
- Julia/JuMP enables easy implementation of decomposition algorithms
- Julia/JuMP enables easy implementation of mathheuristics
- Julia/JuMP/MultiObjectiveAlgorithms enables easy modelling and solution of multi-objective MIP models
- But: Startup is slower (than GAMS) and index type failures are not found.

If you are interested in learning modelling in Julia/JuMP, we (my college Richard Lusby and I) have written an open-source book: <https://www.man.dtu.dk/mathprogrammingwithjulia>

If you are interested in Dantzig-Wolfe/Column Generation, look at the book "Branch And Price", Desrosiers, Lübbecke, Desaulniers, & Gauthier [\[1\]](#page-43-0)

If you are interested mathheuristics, there are a number of articles to take a look at [\[2,](#page-43-1) [3,](#page-43-2) [4,](#page-43-3) [5\]](#page-44-0)

Appendix

Speed of Julia

We (our OR group) wanted to test the speed of Julia, applied to metaheuristics. Hence we tested a **simple** Simulated Annealing, on a simple standard TSP problem:

- 5 different TSP data-sets: berlin52, bier127, eil51, eil76 & st70
- Test every dataset for 30 sec. 10 times.

Notice, our interest is **not** solution quality, but speed, hence the number of SA iterations in 30 seconds.

Speed of Julia

- Implement a very simple Simulated Annealing algorithm (the simplest metaheuristic) on the most researched OR problem, TSP
- How many iterations can be done?
- How fast is Julia compared to:
	- C, Thomas Stidsen, Bernd Dammann
	- C#. Simon Christensen
	- Java, Dario Pacino
	- Python, Niels Christian Fink Bagger
	- Julia, Stefan Røpke, Dario Pacino & Thomas Stidsen

Speed of Julia

Algorithm 1: Simple Simulated Annealing for TSP

- **1** ReadTSPDistanceMatrix()
- **2** cur=CreateRandomStartTour()
- **3** temp=StartTemperature()
- **4 while** *time*() < 30 **do**
- **5** (i,j)=SelectTwoRandomDifferentCities()
- **6** delta=SwitchCostIfCitySwap(cur,i,j) → delta-evaluation
- **7 if** *delta* < 0 *or exp*(*delta*/*temp*) < *Rand*(0, 1) **then**
- $8 \mid \mid$ cur=Swap(cur,i,j)

$$
\mathsf{s} \mid \mid \text{ temp=}\alpha \cdot t
$$

Results

My background

- Assoiciate professor at the Technical University of Denmark (DTU)
- Teaching mathematical modelling, decomposition and metaheuristics for 20 years
- Research focus: Scheduling/timetabling, manpower planning and multi-objective optimization
- Programming background:
	- Previously: GAMS and C++
	- Now: Julia

OR at DTU

- 8 faculty members, 10-15 PhD students
- Strong applied research in many areas: Transport, energy, timetables ...
- EURO-2024 was hosted by our group at DTU in Copenhagen, more than 3000 participants

Suggested literature

Suggested literature

Jacques Desrosiers, Marco Lübbecke, Guy Desaulniers, and Jean-Bertrand Gauthier.

Branch-and-price, volume G-2024-36. Les cahiers du gerad edition, June 2024.

- Matteo Fischetti and Andrea Lodi. Local branching. *Mathematical programming*, 98:23–47, 2003.
- Enrico Angelelli, Renata Mansini, and M Grazia Speranza. 螶 Kernel search: A general heuristic for the multi-dimensional knapsack problem.

Computers & Operations Research, 37(11):2017–2026, 2010.

Sharlee Climer and Weixiong Zhang.

Suggested literature

 $\widetilde{\text{Cut}}$ -and-solve: An iterative search strategy for combinatorial optimization problems.

Artificial Intelligence, 170(8-9):714–738, 2006.

Matteo Fischetti and Michele Monaci. E. Proximity search for 0-1 mixed-integer convex programming. *Journal of Heuristics*, 20:709–731, 2014.