
MadNLP: nonlinear programming on GPUs

François Pacaud
Joint work with: Sungho Shin, Alexis Montoison, and Mihai Anitescu

CAS, Mines Paris - PSL

October 29th, 2024
Julia & Optimization Days

Who are we?

An international team looking at the future of nonlinear programming

2 of 16
.

The sad truth...
Nonlinear programming has fallen out of fashion :-(

... but an open-door for new opportunity!
Can we make nonlinear programming great again using modern hardware?

Source of the figure: NVIDIA

3 of 16
.

The sad truth...
Nonlinear programming has fallen out of fashion :-(

... but an open-door for new opportunity!
Can we make nonlinear programming great again using modern hardware?

Source of the figure: NVIDIA 3 of 16
.

MadNLP: a structure exploiting interior-point solver
Winner of the 2023 COIN-OR cup!

Fork on github!
https://github.com/MadNLP/MadNLP.jl/

https://github.com/exanauts/ExaModels.jl

MadNLP
• Written in pure Julia
• Filter line-search (ala Ipopt)
• Flexible & Modular

✓ CUDA-compatible
✓ MPI-compatible
✓ Interfaced with the vectorized modeler

ExaModels.jl
✓ And now interfaced with Casadi,

thanks to Tommaso Sartor!

4 of 16
.

https://github.com/MadNLP/MadNLP.jl/
https://github.com/exanauts/ExaModels.jl

Building extensively on the Julia ecosystem

GPU-premium

• CUDA.jl
• CUDSS.jl

Optimization-premium

• JuMP.jl
• NLPModels.jl & JuliaSmoothOptimizers

5 of 16
.

Nonlinear programming: a reminder

n variables, m inequality constraints, p equality constraints

Continuous nonlinear problems

min
x∈Rn

f (x) subject to

 g(x) = 0

h(x) ≤ 0

Equality cons.
Objective

Inequality cons.
The functions f , g , h are smooth, possibly nonconvex

• Useful framework to solve practical engineering problems
• Usually, we are interested only at finding a local optimum
• Mature solvers exist since the 2000s (Ipopt, Knitro, LOQO)

J. Nocedal, SJ. Wright. Numerical optimization. 6 of 16
.

Nonlinear programming: a reminder

n variables, m inequality constraints, p equality constraints

Continuous nonlinear problems

min
x∈Rn,s∈Rm

f (x) subject to

 g(x) = 0

h(x) + s = 0 , s ≥ 0

Equality cons.
Objective

Slack
The functions f , g , h are smooth, possibly nonconvex

• Useful framework to solve practical engineering problems
• Usually, we are interested only at finding a local optimum
• Mature solvers exist since the 2000s (Ipopt, Knitro, LOQO)

J. Nocedal, SJ. Wright. Numerical optimization. 6 of 16
.

Nonlinear Optimization Software: State-of-the-Art on CPU

min
x≥0

f (x)

s.t. c(x) = 0

Problem Formulation

[
W A⊤

A 0

][
∆x
∆λ

]
=

[
px

pλ

]
︸ ︷︷ ︸

"KKT System" (ill-conditioned)

Newton’s Step Computation

x (k+1) = x (k) + α∆x

λ
(k+1) = λ

(k) + α∆λ

Line-Search

• Classical nonlinear programming
• the objective and constraints are smooth
• large number of variables and constraints
• the problem is highly sparse.

• Interior-point methods
• Inequalities x ≥ 0 replaced by smooth log-barrier functions

f (x) − µ
∑

i log(x [i]).
• Newton’s Step is computed by solving a “KKT system”

(large, sparse, symmetric indefinite, ill-conditioned system).
• Line-search (along with several additional heuristics) ensures global

convergence.

7 of 16
.

Nonlinear Optimization Software: State-of-the-Art on CPU

min
x≥0

f (x)

s.t. c(x) = 0

Problem Formulation

[
W A⊤

A 0

][
∆x
∆λ

]
=

[
px

pλ

]
︸ ︷︷ ︸

"KKT System" (ill-conditioned)

Newton’s Step Computation

x (k+1) = x (k) + α∆x

λ
(k+1) = λ

(k) + α∆λ

Line-Search

• Classical nonlinear programming
• the objective and constraints are smooth
• large number of variables and constraints
• the problem is highly sparse.

• Interior-point methods
• Inequalities x ≥ 0 replaced by smooth log-barrier functions

f (x) − µ
∑

i log(x [i]).
• Newton’s Step is computed by solving a “KKT system”

(large, sparse, symmetric indefinite, ill-conditioned system).
• Line-search (along with several additional heuristics) ensures global

convergence.

7 of 16
.

Nonlinear Optimization Software: State-of-the-Art on CPU

min
x≥0

f (x)

s.t. c(x) = 0

Problem Formulation [
W A⊤

A 0

][
∆x
∆λ

]
=

[
px

pλ

]
︸ ︷︷ ︸

"KKT System" (ill-conditioned)

Newton’s Step Computation

x (k+1) = x (k) + α∆x

λ
(k+1) = λ

(k) + α∆λ

Line-Search

• Classical nonlinear programming
• the objective and constraints are smooth
• large number of variables and constraints
• the problem is highly sparse.

• Interior-point methods
• Inequalities x ≥ 0 replaced by smooth log-barrier functions

f (x) − µ
∑

i log(x [i]).
• Newton’s Step is computed by solving a “KKT system”

(large, sparse, symmetric indefinite, ill-conditioned system).
• Line-search (along with several additional heuristics) ensures global

convergence.

7 of 16
.

Nonlinear Optimization Software: State-of-the-Art on CPU

min
x≥0

f (x)

s.t. c(x) = 0

Problem Formulation [
W A⊤

A 0

][
∆x
∆λ

]
=

[
px

pλ

]
︸ ︷︷ ︸

"KKT System" (ill-conditioned)

Newton’s Step Computation

x (k+1) = x (k) + α∆x

λ
(k+1) = λ

(k) + α∆λ

Line-Search

• Algebraic modeling systems provides front-end to specify models and
(often) provides derivative computation capabilities.

• Nonlinear optimization solvers apply iterations of optimization algorithms.
• Sparse linear solvers solves KKT systems using sparse matrix

factorization.

Algebraic Modeling Systems
AMPL, CasADi,

JuMP, Gravity, ...

7 of 16
.

Nonlinear Optimization Software: State-of-the-Art on CPU

min
x≥0

f (x)

s.t. c(x) = 0

Problem Formulation [
W A⊤

A 0

][
∆x
∆λ

]
=

[
px

pλ

]
︸ ︷︷ ︸

"KKT System" (ill-conditioned)

Newton’s Step Computation

x (k+1) = x (k) + α∆x

λ
(k+1) = λ

(k) + α∆λ

Line-Search

• Algebraic modeling systems provides front-end to specify models and
(often) provides derivative computation capabilities.

• Nonlinear optimization solvers apply iterations of optimization algorithms.

• Sparse linear solvers solves KKT systems using sparse matrix
factorization.

Algebraic Modeling Systems
AMPL, CasADi,

JuMP, Gravity, ...

Nonlinear Opti-
mization Solvers

Ipopt, Knitro, MadNLP, ...

7 of 16
.

Nonlinear Optimization Software: State-of-the-Art on CPU

min
x≥0

f (x)

s.t. c(x) = 0

Problem Formulation [
W A⊤

A 0

][
∆x
∆λ

]
=

[
px

pλ

]
︸ ︷︷ ︸

"KKT System" (ill-conditioned)

Newton’s Step Computation

x (k+1) = x (k) + α∆x

λ
(k+1) = λ

(k) + α∆λ

Line-Search

• Algebraic modeling systems provides front-end to specify models and
(often) provides derivative computation capabilities.

• Nonlinear optimization solvers apply iterations of optimization algorithms.
• Sparse linear solvers solves KKT systems using sparse matrix

factorization.

Algebraic Modeling Systems
AMPL, CasADi,

JuMP, Gravity, ...

Sparse Linear Solvers
HSL (ma27, ma57,

...), Pardiso, ...

Nonlinear Opti-
mization Solvers

Ipopt, Knitro, MadNLP, ...

7 of 16
.

Nonlinear Optimization Software: State-of-the-Art on CPU

min
x≥0

f (x)

s.t. c(x) = 0

Problem Formulation [
W A⊤

A 0

][
∆x
∆λ

]
=

[
px

pλ

]
︸ ︷︷ ︸

"KKT System" (ill-conditioned)

Newton’s Step Computation

x (k+1) = x (k) + α∆x

λ
(k+1) = λ

(k) + α∆λ

Line-Search

Algebraic Modeling Systems
AMPL, CasADi,

JuMP, Gravity, ...

Sparse Linear Solvers
HSL (ma27, ma57,

...), Pardiso, ...

Nonlinear Opti-
mization Solvers

Ipopt, Knitro, MadNLP, ...

• These software tools have enabled the success of nonlinear optimization
on CPUs

• Many software tools have been developed in 1990s-2000s
(heavily optimized for CPUs)

• Now we need GPU-equivalent of these tools:
• Algebraic Modeling: ExaModels.jl
• Optimization solver: MadNLP.jl
• Sparse Linear Solvers: NVIDIA cuDSS (Cholesky & LDL)

7 of 16
.

Nonlinear Optimization Software: State-of-the-Art on CPU

min
x≥0

f (x)

s.t. c(x) = 0

Problem Formulation [
W A⊤

A 0

][
∆x
∆λ

]
=

[
px

pλ

]
︸ ︷︷ ︸

"KKT System" (ill-conditioned)

Newton’s Step Computation

x (k+1) = x (k) + α∆x

λ
(k+1) = λ

(k) + α∆λ

Line-Search

Algebraic Modeling Systems
AMPL, CasADi,

JuMP, Gravity, ...

Sparse Linear Solvers
HSL (ma27, ma57,

...), Pardiso, ...

Nonlinear Opti-
mization Solvers

Ipopt, Knitro, MadNLP, ...

• These software tools have enabled the success of nonlinear optimization
on CPUs

• Many software tools have been developed in 1990s-2000s
(heavily optimized for CPUs)

• Now we need GPU-equivalent of these tools:
• Algebraic Modeling: ExaModels.jl
• Optimization solver: MadNLP.jl
• Sparse Linear Solvers: NVIDIA cuDSS (Cholesky & LDL)

7 of 16
.

Nonlinear Optimization Software: State-of-the-Art on CPU

min
x≥0

f (x)

s.t. c(x) = 0

Problem Formulation [
W A⊤

A 0

][
∆x
∆λ

]
=

[
px

pλ

]
︸ ︷︷ ︸

"KKT System" (ill-conditioned)

Newton’s Step Computation

x (k+1) = x (k) + α∆x

λ
(k+1) = λ

(k) + α∆λ

Line-Search

Algebraic Modeling Systems
AMPL, CasADi,

JuMP, Gravity, ...

Sparse Linear Solvers
HSL (ma27, ma57,

...), Pardiso, ...

Nonlinear Opti-
mization Solvers

Ipopt, Knitro, MadNLP, ...

• These software tools have enabled the success of nonlinear optimization
on CPUs

• Many software tools have been developed in 1990s-2000s
(heavily optimized for CPUs)

• Now we need GPU-equivalent of these tools:
• Algebraic Modeling: ExaModels.jl
• Optimization solver: MadNLP.jl
• Sparse Linear Solvers: NVIDIA cuDSS (Cholesky & LDL)

7 of 16
.

Identifying the computational bottlenecks in IPM

1. Evaluate derivatives ∇Fµ

• Sparse Automatic differentiation
• Algebraic modeling systems (AMPL, JuMP, Casadi,...)

2. Solve KKT system ∇Fµdk = −Fk
• Symmetric indefinite system
• Efficient sparse linear solvers exist (HSL ma27/ma57, Pardiso, Mumps,...)

8 of 16
.

First step: Sparse automatic differentiation on GPU with ExaModels.jl

• Large-scale optimization problems almost always have repetitive
patterns

min
x♭≤x≤x♯

∑
l∈[L]

∑
i∈[Il]

f (l)(x ; p(l)
i) (SIMD abstraction)

subject to
[
g (m)(x ; qj)

]
j∈[Jm]

+
∑

n∈[Nm]

∑
k∈[Kn]

h(n)(x ; s(n)
k) = 0, ∀m ∈ [M]

• Repeated patterns are made available by always specifying the models as
iterable objects

constraint(c, 3 * x[i+1]ˆ3 + 2 * sin(x[i+2]) for i = 1:N-2)

• For each repeatitive pattern, the derivative evaluation kernel is
constructed & compiled, and executed in parallel over multiple data

S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point methods, arXiv:2307.16830.9 of 16
.

Second step: Solving the KKT system on the GPU

= ×

Figure: Matrix factorization using a direct solver

Linear solve: Solve the KKT system ∇Fµdk = −Fk

- Usually require factorizing ∇Fµ (symmetric indefinite: LBL)
- KKT system is highly ill-conditioned → numerical pivoting

Challenge: solving the sparse linear system on the GPU

• Ill-conditioning of the KKT system
(= iterative solvers are often not practical)

• Direct solver requires numerical pivoting for stability
(= difficult to parallelize)

B. Tasseff, C. Coffrin, A. Wächter, C. Laird. "Exploring benefits of linear solver parallelism on modern nonlinear optimization applications.", 2019 10 of 16
.

Solution : Condensation of the linear system

Solution: Condensation
• Reduce the KKT system to a sparse positive definite matrix
• Sparse Cholesky is stable without numerical pivoting

→ runs in parallel on the GPU (cuDSS)

S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point methods, arXiv:2307.16830.
S. Regev et al., "HyKKT: a hybrid direct-iterative method for solving KKT linear systems." Optimization Methods and Software 38, no. 2 (2023) 11 of 16
.

Application: AC-OPF problem
Observations

• We use the newly released cuDSS solver (sparse Cholesky and LDL)
• Up to 10x speed-up compared to Ipopt

HSL MA27 LiftedKKT+cuDSS HyKKT+cuDSS
Case it init lin total it init lin total it init lin total
13659_pegase 63 0.45 7.21 10.14 75 0.83 1.05 2.96 62 0.84 0.93 2.47
19402_goc 69 0.63 31.71 36.92 73 1.42 2.28 5.38 69 1.44 1.93 4.31
20758_epigrids 51 0.63 14.27 18.21 53 1.34 1.05 3.57 51 1.35 1.55 3.51
78484_epigrids 102 2.57 179.29 207.79 101 5.94 5.62 18.03 104 6.29 9.01 18.90

Table: OPF benchmark, solved by MadNLP with a tolerance tol=1e-6. (A100 GPU)

Figure: Performance profile

12 of 16
.

Application: Nonlinear dynamic optimization

Figure: Time per iteration solve the problem to optimality (in seconds).

Pacaud et Shin, "Condensed-space methods for nonlinear programming on GPUs" 13 of 16
.

How expensive should be your GPU?
Benchmarking different GPUs

• A100 (80GB) HPC ($10,000)
• A30 (24GB) workstation ($5,000)
• A1000 (4GB) laptop

CPU A1000 A30 A100
0

2

4

6

8

Ti
m

e
(s

)

9241pegase

CPU A1000 A30 A100
0

10

20

30

40

50

60

70

Ti
m

e
(s

)

30000goc

CPU A1000 A30 A100
0

25

50

75

100

125

150

175

200

Ti
m

e
(s

)

78484epigrids

Figure: Time to solve the problem to optimality (in seconds).

14 of 16
.

What comes next?

Roadmap
• Better accuracy

- Improve accuracy of condensed-space method
- Support of multi-precision (Float128)

• Better robustness
- Degenerate problems (e.g. optimal control with state constraints)
- Complementarity problems (MPEC)

15 of 16
.

Want (super) fast optimization solvers?

Always looking for new collaborations!

frapac.github.io

16 of 16
.

frapac.github.io

