MadNLP: nonlinear programming on GPUs

François Pacaud Joint work with: Sungho Shin, Alexis Montoison, and Mihai Anitescu

CAS, Mines Paris - PSL

October 29th, 2024 Julia & Optimization Days

An international team looking at the future of nonlinear programming

The sad truth...

Nonlinear programming has fallen out of fashion :-(

The sad truth...

Nonlinear programming has fallen out of fashion :-(

... but an open-door for new opportunity!

Can we make nonlinear programming great again using modern hardware?

0 Years of Microprocessor Trend Data

MadNLP: a structure exploiting interior-point solver Winner of the 2023 COIN-OR cup!

🗱 MadNLP 🕡

MadNLP

- Written in pure Julia
 - Filter line-search (ala lpopt)
 - Flexible & Modular
 - ✓ CUDA-compatible
 - ✓ MPI-compatible
 - ✓ Interfaced with the vectorized modeler ExaModels.jl
 - ✓ And now interfaced with Casadi, thanks to Tommaso Sartor!

- 1 using MadNLP, MadNLPTests
- 2 model = MadNLPTests.HS15Model()
- 3 solver = MadNLPSolver(model)
- 4 MadNLP.solve!(solver)

Fork on github!

https://github.com/MadNLP/MadNLP.jl/

https://github.com/exanauts/ExaModels.jl

Building extensively on the Julia ecosystem

GPU-premium

- CUDA.jl
- CUDSS.jl

Optimization-premium

- JuMP.jl
- NLPModels.jl & JuliaSmoothOptimizers

Nonlinear programming: a reminder

n variables, m inequality constraints, p equality constraints

- Useful framework to solve practical engineering problems
- Usually, we are interested only at finding a *local optimum*
- Mature solvers exist since the 2000s (Ipopt, Knitro, LOQO)

J. Nocedal, SJ. Wright. Numerical optimization.

Nonlinear programming: a reminder

n variables, m inequality constraints, p equality constraints

- Useful framework to solve practical engineering problems
- Usually, we are interested only at finding a *local optimum*
- Mature solvers exist since the 2000s (Ipopt, Knitro, LOQO)

J. Nocedal, SJ. Wright. Numerical optimization.

Problem Formulation

 $\min_{\substack{x\geq 0}} f(x)$ s.t. c(x) = 0

Problem Formulation $\min_{x \ge 0} f(x)$ s.t. c(x) = 0

- Classical nonlinear programming
 - the objective and constraints are smooth
 - large number of variables and constraints
 - the problem is highly sparse.

Problem Formulation $\min_{\substack{x \ge 0}} f(x)$ s.t. c(x) = 0

Line-Search $x^{(k+1)} = x^{(k)} + \alpha \Delta x$ $\lambda^{(k+1)} = \lambda^{(k)} + \alpha \Delta \lambda$

- Classical nonlinear programming
 - the objective and constraints are **smooth**
 - large number of variables and constraints
 - the problem is highly sparse.
- Interior-point methods
 - Inequalities $x \ge 0$ replaced by smooth log-barrier functions $f(x) \mu \sum_{i} \log(x[i])$.
 - Newton's Step is computed by solving a "KKT system" (large, sparse, symmetric indefinite, ill-conditioned system).
 - Line-search (along with several additional heuristics) ensures global convergence.

• Algebraic modeling systems provides **front-end** to specify models and (often) provides **derivative computation capabilities**.

- Algebraic modeling systems provides **front-end** to specify models and (often) provides **derivative computation capabilities**.
- Nonlinear optimization solvers apply iterations of optimization algorithms.

- Algebraic modeling systems provides **front-end** to specify models and (often) provides **derivative computation capabilities**.
- Nonlinear optimization solvers apply iterations of optimization algorithms.
- Sparse linear solvers solves KKT systems using **sparse matrix** factorization.

• These software tools have enabled the success of nonlinear optimization on CPUs

- These software tools have enabled the success of nonlinear optimization on CPUs
- Many software tools have been developed in 1990s-2000s (heavily optimized for CPUs)

- These software tools have enabled the success of nonlinear optimization on CPUs
- Many software tools have been developed in 1990s-2000s (heavily optimized for CPUs)
- Now we need **GPU-equivalent** of these tools:
 - Algebraic Modeling: ExaModels.jl
 - Optimization solver: MadNLP.jl
 - Sparse Linear Solvers: NVIDIA cuDSS (Cholesky & LDL)

Identifying the computational bottlenecks in IPM

1. Evaluate derivatives ∇F_{μ}

- Sparse Automatic differentiation
- Algebraic modeling systems (AMPL, JuMP, Casadi,...)

2. Solve KKT system $\nabla F_{\mu} d^k = -F_k$

- Symmetric indefinite system
- Efficient sparse linear solvers exist (HSL ma27/ma57, Pardiso, Mumps,...)

First step: Sparse automatic differentiation on GPU with ExaModels.jl

• Large-scale optimization problems almost always have repetitive patterns

$$\min_{x^{b} \leq x \leq x^{\sharp}} \sum_{l \in [L]} \sum_{i \in [I_{l}]} f^{(l)}(x; p_{i}^{(l)})$$
(SIMD abstraction)
subject to $\left[g^{(m)}(x; q_{j})\right]_{j \in [J_{m}]} + \sum_{n \in [N_{m}]} \sum_{k \in [K_{n}]} h^{(n)}(x; s_{k}^{(n)}) = 0, \quad \forall m \in [M]$

• Repeated patterns are made available by always specifying the models as iterable objects

$$constraint(c, 3 * x[i+1]^3 + 2 * sin(x[i+2]) for i = 1:N-2)$$

• For each repeatitive pattern, the derivative evaluation kernel is constructed & compiled, and executed in parallel over multiple data

Second step: Solving the KKT system on the GPU

Figure: Matrix factorization using a direct solver

Linear solve: Solve the KKT system $\nabla F_{\mu}d_k = -F_k$

- Usually require factorizing ∇F_{μ} (symmetric indefinite: LBL)
- KKT system is highly ill-conditioned \rightarrow numerical pivoting

Challenge: solving the sparse linear system on the GPU

- Ill-conditioning of the KKT system
 (= iterative solvers are often not practical)
- Direct solver requires numerical pivoting for stability (= difficult to parallelize)

Solution : Condensation of the linear system

Solution: Condensation

- Reduce the KKT system to a sparse positive definite matrix
- Sparse Cholesky is stable without numerical pivoting → runs in parallel on the GPU (cuDSS)

S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point me S. Regev et al., "HyKKT: a hybrid direct-iterative method for solving KKT linear systems." Optimization Methods and Software 38, no. 2 (2023)

Application: AC-OPF problem

Observations

- We use the newly released cuDSS solver (sparse Cholesky and LDL)
- Up to 10x speed-up compared to lpopt

	HSL MA27				LiftedKKT+cuDSS				HyKKT+cuDSS			
Case	it	init	lin	total	it	init	lin	total	it	init	lin	total
13659_pegase	63	0.45	7.21	10.14	75	0.83	1.05	2.96	62	0.84	0.93	2.47
19402_goc	69	0.63	31.71	36.92	73	1.42	2.28	5.38	69	1.44	1.93	4.31
20758_epigrids	51	0.63	14.27	18.21	53	1.34	1.05	3.57	51	1.35	1.55	3.51
78484_epigrids	102	2.57	179.29	207.79	101	5.94	5.62	18.03	104	6.29	9.01	18.90

Table: OPF benchmark, solved by MadNLP with a tolerance tol=1e-6. (A100 GPU)

Application: Nonlinear dynamic optimization

Solving the distillation problem - CPU vs GPU

Figure: Time per iteration solve the problem to optimality (in seconds).

How expensive should be your GPU?

Benchmarking different GPUs

- A100 (80GB)
- A30 (24GB)
- A1000 (4GB)

HPC (\$10,000) workstation (\$5,000) laptop

Figure: Time to solve the problem to optimality (in seconds).

Roadmap

- Better accuracy
 - Improve accuracy of condensed-space method
 - Support of multi-precision (Float128)
- Better robustness
 - Degenerate problems (e.g. optimal control with state constraints)
 - Complementarity problems (MPEC)

Want (super) fast optimization solvers?

Always looking for new collaborations!

frapac.github.io