
Demystifying metaprogramming and package
precompilation

by Cédric Belmant

@serenity4Julia Optimization Days 2024 — Toulouse — ENSEEIHT

About myself

Engineer by training, majoring in Applied Mathematics.

2

Working as a software consultant for 3+ years, exclusively in Julia.

Involved in Julia projects related to GPU rendering (Vulkan) for 4+ years.

Metaprogramming

3

Metaprogramming

Metaprogramming is a computer programming technique in which computer
programs have the ability to treat other programs as their data.

4

Metaprogramming is the ability to programmatically generate code.

Metaprogramming

5

● Expresses complex operations with a simple syntax, given well-defined semantics.

● May define domain-specific languages (DSL).

● Generally relies on macros, expanding to code programmatically generated.

Metaprogramming

6

When should I use a macro over a function?

● Macros are oftentimes unnecessary.

● If you can use a function, use a function.

● But, macros can be very convenient if you visualize a handy mapping from syntax to
code.

Metaprogramming

7

Demo

https://github.com/serenity4/JuliaOptimizationDays2024

Metaprogramming

8

Leverage Julia syntax with macro-specific semantics, or by writing source files.

Macros are special functions that return code, executed at parsing time.

Scoping rules and macro hygiene are probably the most difficult part of macros.

Package precompilation

9

Package precompilation

10

Issue: package users notice significant latency on first execution.

Reason: methods need to be compiled before being executed.

Solution: compile methods ahead of time!

… simple, right?

Long precompile times

Representative workloads

Package precompilation

11

Invalidations

More invalidations

Latency not gone

… simple, right?

Invalidation can’t be fixed

More invalid
atio

ns

… simple, right?

Package precompilation

12

Precompilation
Source files .ji file

Types

Functions

Methods

Globals

…
Compiled code

Package precompilation

13

Challenges

● Find workloads that fit library usage.

● Avoid excessive compilation.

● Prevent compiled code from being discarded.

Package precompilation

14

Demo

https://github.com/serenity4/JuliaOptimizationDays2024

Summary

15

Leverage Julia syntax with macro-specific
semantics.

Macros are special functions that return code,
expanded when parsed.

Scoping rules and hygiene are probably the
most difficult part of macros.

Metaprogramming Package precompilation

Compiled code gets saved when the package
gets processed on first use.

The challenge lies in identifying code paths
to explicitly compile during this stage.

Invalidations may occur when inserting new
methods; they discard previously compiled
code, beware!

Resources

Code available here: https://github.com/serenity4/JuliaOptimizationDays2024

Metaprogramming documentation: https://docs.julialang.org/en/v1/manual/metaprogramming

PrecompileTools.jl official documentation: https://julialang.github.io/PrecompileTools.jl

SnoopCompile.jl tutorial on invalidations:
https://timholy.github.io/SnoopCompile.jl/stable/tutorials/invalidations

GitHub/Discourse:
Zulip/Slack:

 Email:

@serenity4
Cédric Belmant
cedric.bel@hotmail.fr

https://github.com/serenity4/JuliaOptimizationDays2024
https://docs.julialang.org/en/v1/manual/metaprogramming
https://julialang.github.io/PrecompileTools.jl
https://timholy.github.io/SnoopCompile.jl/stable/tutorials/invalidations/

Thank you!

17

