

Microscopie STM électrochimique: analyse locale des altérations de surface générées par polarisation

V. Maurice

PSL Research University, CNRS - Chimie ParisTech, Institut de Recherche de Chimie Paris

30/11/2017 – Lyon

Microscopie EC-STM

Dispositif EC-STM Préparation pointes STM et surfaces métalliques

Couches d'oxydes à l'interface solution aqueuse/surface métallique

Adsorption d'ions hydroxydes Structure de couches passives 3D Réactivité de surfaces passivées

Relation microstructure/réactivité locale

Dissolution locale des joints de grains

Caractérisation des joints de grains par couplage EC-STM/EBSD

Dispositif EC-STM

Cellule à 4 électrodes

- pointe enduite
- contrôle indépendant de E_s et E_t => bipotentiostat
- nettoyage rigoureux de la cellule
- électrolyte de hte pureté

=> Mesures STM avec contrôle électrochimique de l'interface solide/liquide

Sonnenfeld & Hansma, Science 232 (1986) 211

Tip and surface preparation

Tip preparation (e.g. W)

- From W wire (0.5 mm diameter)
- Etching in NaOH(aq) 3M first at 10V and then 3 V vs Pt CE
- Coating with Apiezon wax

Surface preparation (e.g. Cu)

- Mechanical polishing Diamond paste $\rightarrow \frac{1}{4} \mu m$
- Electropolishing H₃PO₄ 66%, 1.4 V, 5 min
- HT annealing or not depending on sample

- Transfer to EC-STM cell
 - o 0.1 M NaOH(aq), pH 13
 - o 0.001 M HCl(aq), pH 3
- In situ reduction of native oxide
 - cathodic pre-treatment by CV from OCP to onset of hydrogen evolution and back
 - CV stopped at required potential for analysis of initial surface

Microscopie EC-STM Dispositif EC-STM Préparation pointes STM et surfaces métalliques

Couches d'oxydes à l'interface solution aqueuse/surface métallique

Adsorption d'ions hydroxydes Structure de couches passives 3D Réactivité de surfaces passivées

Relation microstructure/réactivité locale Dissolution locale des joints de grains Caractérisation des joints de grains par couplage EC-STM/EBSD

Passivation du Cu

ECSTM ; Cu(111)/NaOH(aq) 0,1M

-0,65 ≤E≤ -0,25V

- Adsorption de OH
- Reconstruction induite du Cu
- Formation d'un précurseur de croissance de Cu₂O

CV's (0.02V/s) for Cu(111) and Cu(001) in 0.1M NaOH

-0,25 ≤E≤ 0V

• Couche cristalline • $Cu_2O(111)$

- Cu substrate
 - Couche duplex cristalline • CuO(001)

Adsorption of OH⁻

Croissance 2D et reconstruction

Séquence EC-STM @ -0,6 V (seuil du pic anodique d'adsorption des OH)

38 s/image; X=Y=40 nm; Δ Z=1.2 nm ; I_t=2 nA; E_t=-0.4 V

• Germination préférentielle de la couche adsorbée aux bords de marches

- Croissance des îlots adsorbés
- Croissance latérale des terrasses
- \Rightarrow reconstruction induite

- Saturation par la couche adsorbée
- Formation d'îlots de Cu
- \Rightarrow reconstruction induite

Structure des OH_{ads} - reconstruction induite

• maille unitaire : $0.6 \pm 0.02 \text{ nm} \rightarrow$ recouvrement de 0.19 (1 OH_{ads}/maille), en accord avec les données EC (Cu + OH⁻ \rightarrow Cu-OH_{ads} + e⁻)

- reconstruction induite du Cu(111) \rightarrow structure moins compacte (1.28 x 10¹⁵ at.cm⁻² comparé à 1.76 x 10¹⁵ at.cm⁻²)
- structure des OH_{ads} : (2x2)
- OH adsorbé en site ternaire creux du plan reconstruit de Cu

• structure des plans OH et Cu-R similaire à celle des plans O et Cu dans $Cu_2O(111)$

Kunze et al., Electrochem Acta 48 (2003) 1157

Structure de l'oxyde anodique Cu(I)

X=Y=25nm; Z range = 2nm; I_t 2nA

- largeur des terrasses : 2.7nm
- hauteur des marches : $0.25 \sim 0.3$ nm \Rightarrow marches de Cu₂O(111) (0.246 nm dans le volume)
- réseau hexagonale de paramètre 0.3 ± 0.03 nm \Rightarrow sous-réseau Cu dans Cu₂O(111)
- épitaxie inclinée (~5°)
- hydroxylation superficielle

~7 monocouches de $Cu_2O(111)$ sur Cu(111)

Kunze et al., J Phys Chem B 105 (2001) 4263

Passivation du Ni

Surface métallique [101]

0,24 nm 0,26 nm 0,26 nm

- ⇒ XPS : bicouche oxyde/hydroxyde
- ⇒ EC-STM : structure externe granulaire et amorphe, attribuée à Ni sous forme hydroxyde
- ⇒ EC-STM : structure interne cristalline attribuée à NiO(111)-(1x1), épitaxie inclinée entre les réseaux de l'oxyde et du métal (confirmée par SXS)

Dissolution de la surface passivée

Ni(111) dans H_2SO_4 (pH 3) ; Séquence EC-STM @ +0.85 V/SHE (E_{pit} - 0.05 V)

- dissolution localisée aux bords de marches => mécanisme 2D de rétraction des terrasses
- Bords de marches orientés suivant les directions compactes de l'oxyde se dissolvent moins rapidement

 \Rightarrow le mécanisme de dissolution est gouverné par la structure de l'oxyde. Il tend à stabiliser une surface terminée par des contre-marches orientées selon les directions les plus stables de l'oxyde (NiO{100})

Maurice et al., Surf Interf Anal 34 (2002) 139

Structure sensitive 2D dissolution

Ag(111) / 0.1M NaOH(aq) - EC-STM sequence @ E = 0.15 V (116 s/image)

100 x 100 nm ; E_{tip} =-0.35 V ; I_{tip} =1.5 nA ; Δz =0.45nm

- Dissolution nucleates and propagates in non-ordered areas of 2D hydroxide/oxide layer.
- Dissolution is blocked in ordered 2D areas and by 3D grains (oxide nuclei).
- => Morphology of the corroding surface is governed by the structure of the passivating layer

10 x 10 nm E_{tip} =-0.45 V I_{tip} =1.9 nA ; Δz =0.12nm

Initiation of 3D dissolution

Ag(111) / 0.1M NaOH(aq) - EC-STM sequence @ E = 0.15 V (58 s/image)

150 x 150 nm ; E_{tip} =-0.35 V ; I_{tip} =1.5 nA ; Δz =0.6nm

- Dissolution of the second layer also nucleates and propagates in non-ordered areas of 2D hydroxide/oxide layer newly formed
- Dissolution is blocked by the ordered 2D areas of the first layer and by the 3D grains.

=> A similar structure sensitive dissolution mechanism induces the layer-by-layer propagation of the 3D nanopits.

Microscopie EC-STM Dispositif EC-STM Préparation pointes STM et surfaces métalliques

Couches d'oxydes à l'interface solution aqueuse/surface métallique

Adsorption d'ions hydroxydes Structure de couches passives 3D Réactivité de surfaces passivées

Relation microstructure/réactivité locale

Dissolution locale des joints de grains Caractérisation des joints de grains par couplage EC-STM/EBSD

Microcrystalline sample

EBSD IPF map

Material:

- Electrolytic tough pitch (ETP-) Cu
- 6N purity
- Cryogenic rolling to final reduction of 90%
- Post annealing 2 min at 200°C

EBSD grain analysis:

- Grain size: 0.1 to 37 μ m (1.4 μ m in average)
- Random texture

EBSD IQ map

TD

Experimental protocol

1 mM HCl(aq); ECSTM cell; 0.02 V/s

- In situ cathodic pre-treatment in order to reduce native oxide
- STM identification of a zone of interest
- Application of dissolution cycles (up to 6)
- STM imaging of surface alteration after cycling

ECSTM analysis at GBs

Initial metallic state

 Δ Z= 18 nm, $E_{Cu} = -0.75$ V, $E_{tip} = -0.6$ V, $I_{tip} = 2$ nA Dissolution charge density / equivalent thickness: (2): 84.8 μ C. cm⁻² / δ = 0.10 nm (6): 275.6 μ C. cm⁻² / δ = 0.34 nm

$$\Delta$$
Z= 24 nm, $E_{Cu} = -0.75$ V, $E_{tip} = -0.6$ V,
 $I_{tip} = 2$ nA

- Grains and GBs localized
- Local topography measured after 2 and 6 (+4) dissolution cycles
- GB depth and its variation measured from height profiles

Coupling ECSTM with EBSD

Lifter:

Use of STM tip to indent the sample surface and marked the area pre-analyzed by ECSTM for EBSD repositioning

ECSTM / EBSD coupling protocol

- Cellule EC-STM à 4 électrodes contrôlée par un bipotentiostat
- Nettoyage rigoureux de la cellule (contamination...)
- Préparation adéquate des pointes et surfaces (rugosité...)
- Caractérisation préalable du comportement électrochimique de l'interface
- Transfert de matière limité
- Caractérisation locale généralement réalisée après altération
- Suivi dynamique en temps réel possible si altérations lentes
- Couplage avec d'autres méthodes d'analyse locale possible par repositionnement