Basics of

Electrochemistry

Objectives

- « Electrophysics »:
- ions in solution
- electrophoresis, ζ potential
- solution in contact with a (metallic) electrode
- Electrochemistry:
- ec cell at equilibrium (Nernst equation)
- polarized ec cell (Faraday, Butler-Volmer)
- three-electrode ec cell

Myself and ec

- Post-Doc (CNRS LPLE, Dr. Allongue):
- Cu electroplating on n-Si(111)
- Currently (ETH LBB, Prof. Vörös):
- modification of polymer coatings
- metal 3D microprinting
- electrophysiology

ec in Daily Life

everywhere

uzh | eth | zürich

Electrochemistry

Electrochemistry is a discipline that deals with chemical reactions that involve an exchange of electric charges between two substances. Both chemical changes generating electric currents and chemical reactions triggered by the passage of electricity can be considered electrochemical reactions.

- Electrolytic processes

Reactions in which chemical changes occur on the passage of an electrical current

- Galvanic or Voltaic processes

Chemical reactions that result in the production of electrical energy

wikipedia.com
system: solution + electrodes
(solvent + solute) + electrodes (at least two)
(solvent (water?) + redox + salts + electrodes
uzh | eth | zürich

A solution is a homogeneous mixture of two or more substances. A solution may exist in any phase, but is composed of one phase (e.g., solid, liquid, gas).

A solution consists of a solvent and of a solute.
Solvent \rightarrow component of a solution that is present in the greatest amount (e.g. water, organic chemicals) \rightarrow polar or not-polar.\rightarrow dielectric constant (<15)

Solute \rightarrow substance that is dissolved in the solvent (e.g. salts, redox)

Solvent

$\mathbf{u z h}|\mathbf{e t h}|$ zürich

water is called the "universal solvent" because it dissolves more substances than any other liquid.

Salts

uzh | eth | zürich

salt: acid + base \rightarrow salt + water (complete reaction!)

Why dissolution? Water can dissolve a salt because the positive part of water molecules attracts the negative ions and the negative part of water molecules attracts the positive ions.
The amount of a substance that can dissolve in a liquid (at a particular temperature) is called the solubility of the substance.
Solutions containing dissolved salts, conduct electricity because the released ions in the solution are capable of carrying an electric current.

RedOx

uzh | eth | zürich

An oxidation-reduction (redox) reaction is a type of chemical reaction that involves a transfer of electrons between two species. An oxidation-reduction reaction is any chemical reaction in which the oxidation number of a molecule, atom, or ion changes by gaining or losing an electron.

Redox reactions are common and vital to some of the basic functions of life, including photosynthesis, respiration, combustion, and corrosion or rusting.

Redox reactions are comprised of two parts, a reduced half and an oxidized half, that always occur together. The reduced half gains electrons and the oxidation number decreases, while the oxidized half loses electrons and the oxidation number increases.

Electrodes

uzh | eth | zürich

 \title{
Solvation (Hydration) Shell
 \title{
Solvation (Hydration) Shell

 uzh | eth | zürich
}

 uzh | eth | zürich
}
(a) Cluster Continuum

(b) DFT-MD Chem. Sci. 2017 8:6131
$\vdots .55$ Debye (-Hückel) Length uzh | eth | zürich

What we know now is quite important:
If you are some Debye lengths away from these fixed charges, you will not "see" them anymore; their effect on the equilibrium carrier distribution then is vanishingly small. The Debye length resulting in any one of these situations thus is nothing but the typical distance needed for screening the surplus charge by the mobile carriers present in the material. In other words, after you moved about one Debye length away from the surplus charge, its effects on the mobile charges of the material are no longer felt.

Brownian Motion

uzh | eth | zürich

$$
\begin{aligned}
\langle\Delta x(t)\rangle & =0 \\
\langle\Delta y(t)\rangle & =0 \\
\left\langle\Delta x^{2}(t)\right\rangle & =2 D t \\
\left\langle\Delta y^{2}(t)\right\rangle & =2 D t \\
\left\langle\Delta r^{2}(t)\right\rangle & =4 D t
\end{aligned}
$$

Brownian motion is the random motion of particles suspended in a fluid (a liquid or a gas) resulting from their collision with the fast-moving atoms or molecules in the gas or liquid.

Electrophoresis

uzh | eth | zürich

$$
j_{\text {diffusion }}=-|Z| D \frac{d[C]}{d t} \quad \begin{aligned}
& \text { diffusion flux (Fick's law) } \\
& \text { (C concentration, } \mathrm{Z} \text { ion valence, } \mathrm{D} \text { diffusion constant) }
\end{aligned}
$$

$$
F_{e x t}=e Z \cdot E \text { charge eZ in presence of an electric field } E
$$

$$
F_{f r}=-f \cdot v \text { due to collisions between particles in solution }
$$

$$
F_{e x t}+F_{f r}=\underset{\text { equilibrium }}{0} \Rightarrow v_{\text {drift }}=-\mu E \rightarrow \mu, \text { mobility!!! }
$$

$$
\begin{gathered}
v_{d r i f t}=\frac{e Z E}{f} \\
\mu \equiv \frac{v_{d r i f t}}{E}=\frac{e Z}{f}
\end{gathered}
$$

$$
j_{d r i f t}=v_{d r i f t}|Z| F[C] \quad \text { Farady constant }
$$

$$
=-\mu|Z| F[C] E
$$

$$
=-\mu|Z| F[C] \frac{d V}{d x} \text { flux within E in a solution (Ohm's law) }
$$

uzh | eth | zürich

zeta 弓 Potential

Inside of the cell (measurement container)

Point of Zero Charge

Phys. Chem. Chem. Phys. 2011 13:13232

The point of zero charge (pzc), in physical chemistry, is a concept relating to the phenomenon of adsorption, and it describes the condition when the electrical charge density on a surface is zero.

Point of zero charge is of fundamental importance in surface science. For example, in the field of environmental science, it determines how easily a substrate is able to adsorb potentially harmful ions. It also has countless applications in technology of colloids, e.g., flotation of minerals.

At pzc, the colloidal system exhibits zero zeta potential (i.e., the particles remain stationary in an electric field), minimum stability (i.e., exhibits maximum coagulation/flocculationrate), maximum solubility of the solid phase, maximum viscosity of the dispersion, and other peculiarities.

Solution Conductivity

η, applied overpotential

https://andyjconnelly.wordpress.com/2017/07/14/conductivity-of-a-solution/

(Metallic) Electrodes

Formation of Crystal Bands

uzh | eth | zürich

Highest level of p band (fully antibonding)

(from Atkins-dePaula)

Occupation of Crystal Bands

uzh | eth | zürich

1s insulator or
semiconductor

Fermi-Dirac Distribution

uzh | eth | zürich

Fermi-Dirac distribution
$f(E)=\frac{1}{e^{\left(E-E_{F}\right) / k_{B} T}+1}$
(from Atkins-dePaula)
$\mathrm{k}_{\mathrm{B}}=1.380658 \times 10^{-23} \mathrm{~J} / \mathrm{K}=8.6 \times 10^{-5} \mathrm{eV} / \mathrm{K}$
Boltzmann constant

HOMO - LUMO

uzh | eth | zürich
Highest Occupied MO
Lowest Unoccupied MO

methylterrylene_iso2

the metallic electrode

uzh | eth | zürich

$\rho(E)$, density of states (band theory)
$\mathrm{f}(\mathrm{E})$, Fermi-Dirac distribution

Redox Energy Levels

uzh | eth | zürich

$\mathrm{E}_{\mathrm{O}} \neq \mathrm{E}_{\mathrm{R}}$ because different solvatation shell
E_{O} and E_{R} fluctuating because of the fluctuations of the solvent molecules around the O and r species

$$
\begin{aligned}
& W_{o}(\lambda, E)=\frac{1}{\sqrt{4 \pi \lambda k_{B} T}} e^{-\frac{\left(E-E_{F}-\lambda\right)^{2}}{4 \lambda k_{B} T}} \\
& W_{R}(\lambda, E)=\frac{1}{\sqrt{4 \pi \lambda k_{B} T}} e^{-\frac{\left(E-E_{F}+\lambda\right)^{2}}{4 \lambda k_{B} T}}
\end{aligned}
$$

Equilibrium (in words)

In a chemical process, chemical equilibrium is the state in which the chemical activities or concentrations of the reactants and products have no net change over time. Usually, this state results when the forward chemical process proceeds at the same rate as their reverse reaction. The reaction rates of the forward and reverse reactions are generally not zero but, being equal, there are no net changes in any of the reactant or product concentrations. This process is known as dynamic equilibrium.

From Wikipedia

Chemical Potential

$\mathrm{G} \equiv \mathrm{U}+\mathrm{pV}-\mathrm{TS} \quad$ (definition of Gibbs free energy)

$$
\mu_{\mathrm{j}} \equiv\left(\frac{\partial \mathrm{U}}{\partial \mathrm{n}_{\mathrm{j}}}\right)_{\mathrm{S}, \mathrm{~V}, \mathrm{n}^{\prime}}
$$

$$
\mu_{\mathrm{j}} \equiv\left(\frac{\partial \mathrm{G}}{\partial \mathrm{n}_{\mathrm{j}}}\right)_{\mathrm{p}, \mathrm{~T}, \mathrm{n}^{\prime}}
$$

Equilibrium (formula)

$$
\begin{gathered}
\mathbf{A} \rightleftharpoons \mathbf{B} \\
\mathrm{d} \xi_{\mathrm{A}} \rightleftharpoons \mathrm{~d} \xi_{\mathrm{B}} \quad \mathrm{~d} \xi \equiv \text { extent of reaction } \\
\mathrm{dn}_{\mathrm{A}}= \\
=-\mathrm{d} \xi \quad \mathrm{dn}_{\mathrm{B}}=+\mathrm{d} \xi \\
\left.\mathrm{dG}\right|_{\mathrm{p}, \mathrm{~T}}= \\
=\mu_{\mathrm{A}} \mathrm{dn}_{\mathrm{A}}+\mu_{\mathrm{B}} \mathrm{dn}_{\mathrm{B}} \\
\\
=\left(\mu_{\mathrm{B}}-\mu_{\mathrm{A}}\right) \mathrm{d} \xi
\end{gathered}
$$

$$
\text { equilibrium }\left.\rightarrow \mathrm{dG}\right|_{\mathrm{p}, \mathrm{~T}}=0 \Rightarrow \mu_{\mathrm{B}}=\mu_{\mathrm{A}}
$$

$$
\left.\left.\Delta_{\mathrm{r}} \mathrm{G} \equiv \frac{\mathrm{dG}}{\mathrm{~d} \xi}\right|_{\mathrm{p}, \mathrm{~T}}=\sum_{j} v_{j} \mu_{\mathrm{j}} \underset{\substack{\mathrm{j}}}{ } \text { (poichiometric coefficient }- \text { react }\right)=0(\text { Gibbs-Duhem })
$$

uzh | eth | zürich

Contact Potential

uzh | eth | zürich

Schottky Barrier

Siemens, 1938
\rightarrow diodes

metal

n-semicon
d, donor

$\boldsymbol{d}_{\text {sch }}$, depletion region (\rightarrow because of the very low charge mobility in semiconductors) 28
$\boldsymbol{V}_{\boldsymbol{b}}$, energy barrier generated at the interface

p-n Junction

Russel Ohl, Bell Laboratories, 1939

\boldsymbol{d}, donor
a, acceptor
\rightarrow p-n diodes, transitors, etc.

$\boldsymbol{d}_{\boldsymbol{p}, \boldsymbol{n}}$, depletion region

$\mu_{\text {redox }}$

uzh | eth | zürich

where $D_{o}\left(\lambda, E^{*}\right)=D_{R}\left(\lambda, E^{*}\right)$

Energy Levels

uzh | eth | zürich

REDUCTION

OXIDATION

Faraday Disc 2006 131:197

Electrode-Solution Interface

 equilibrium $\rightarrow \overline{\boldsymbol{\mu}}_{\text {metal }}=\overline{\boldsymbol{\mu}}_{\text {redox }}$

$\Delta \varphi$ and μ

$$
\begin{gathered}
\bar{\mu}_{j}=\mu_{j} \pm Z_{j} F \Delta \varphi \\
\Delta_{r} G=\sum_{\text {prod }} v_{i} \mu_{i}-\sum_{\text {react }} v_{i} \mu_{i}
\end{gathered}
$$

Ox + ne \rightarrow Red

$$
\begin{array}{rlr}
\Delta_{r} G_{r e d o x} & =\sum_{\text {red }} v_{j} \bar{\mu}_{j}-\sum_{o x} v_{j} \bar{\mu}_{j}-n \bar{\mu}_{e} \\
& =\sum_{\text {red }} v_{j} \mu_{j}-\sum_{o x} v_{j} \mu_{j}-n \mu_{e}+n F \Delta \varphi r & e \rightarrow \varphi_{(M)} \\
0 \text { at equilibrium! } & \sum_{\text {red }} v_{j} Z_{j}-\sum_{i o n s} \rightarrow \varphi_{(S)} v_{j} Z_{j}=n \\
\text { charge conservation }
\end{array}
$$

$$
\Delta \varphi=\frac{1}{n F}\left(\sum_{o x} v_{j} \mu_{j}-\sum_{r e d} v_{j} \mu_{j}+n \mu_{e}\right)
$$

How Many Potentials!

The internal potential is defined by the work, which is required to bring a test charge from an infinite distance and from a vacuum into the interior of the phase far from the phase boundary.

DOI: 10.1109/JSEN.2008.918758

Figure 5.15: Illustration of the Galvani φ, Volta ψ, and surface potential χ.

Physics and Chemistry of Interfaces 1st Edition Wiley 2003

Reference Electrode

Galvani potential cannot be measured in an absolute way!
\Rightarrow need of a second electrode, the reference electrode

- NHE (hydrogen)
- $\mathrm{Ag} / \mathrm{AgCl}$
stable! \Rightarrow according to the chosen solution
- SCE (Calomel)

(a) Saturated calomel electrode (SCE)

(b) Glass electrode

Nernst Equation

$$
\Delta \varphi=\frac{1}{n F}\left(\sum_{o x} v_{j} \mu_{j}-\sum_{r e d} v_{j} \mu_{j}+n \mu_{e}\right)
$$

$$
\mu_{j}=\mu_{j}^{0}+R T \ln a_{j}
$$

$$
\begin{aligned}
& 0=\text { standard conditions } \\
& a_{\text {ion }}=\text { activity }
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\Delta \varphi & =\Delta \varphi_{\mathrm{c}}^{\mathrm{o}}+\frac{\mathrm{RT}}{\mathrm{nF}}\left(\sum_{\mathrm{ox}} \ln a_{\mathrm{ox}, \mathrm{j}}-\sum_{\text {red }} \ln a_{\mathrm{red}, \mathrm{j}}\right) \\
=\Delta \varphi_{\mathrm{c}}^{\mathrm{o}}-\frac{\mathrm{RT}}{\mathrm{nF}} \operatorname{lnQ} \quad \mathrm{Q}=\left(\prod_{\mathrm{j}} a_{\mathrm{j}}^{\mathrm{v}_{\mathrm{j}}}\right)_{\text {equilibrium }} \\
v_{\text {vood }}>0 \\
v_{\text {read }}<0
\end{array}\right) .
$$

gas constant $\mathrm{R}, \mathrm{R}=8.31$
J

$$
\operatorname{molK} R=N_{A} k_{B}
$$

$\Delta \varphi$ and Ion Concentration

$$
\begin{aligned}
\Delta \varphi & =\Delta \varphi_{\mathrm{c}}^{\mathrm{o}}-\frac{\mathrm{RT}}{\mathrm{nF}} \ln \mathrm{Q} \\
& =C_{1}+C_{2} \ln a_{i o n}
\end{aligned}
$$

for pure phases, $a=1$

$$
\begin{aligned}
\Delta \varphi & =\mathrm{C}_{1}+\mathrm{C}_{2} \ln (\mathrm{r}[\text { ion }]) \\
& =\left(\mathrm{C}_{1}+\mathrm{C}_{2} \ln \right)+\mathrm{C}_{2} \ln [\text { ion }] \\
& =\mathrm{C}^{\prime}+\mathrm{C}_{2} \ln [\text { ion }]
\end{aligned}
$$

Debye-Hückel theory
$a_{\text {ion }}=r[i o n]$
$r_{\text {ion }}=\frac{A Z^{2} \sqrt{I}}{1+B a \sqrt{I}}$
$I=\frac{1}{2} \sum_{j}[\text { ion }]_{j} Z_{j}^{2}$
A, B \rightarrow constants from theory
a \rightarrow ion size parameter
$\mathbf{Z} \rightarrow$ number of ion charges
I \rightarrow ionic strength
$\mathrm{C}_{2}=59 \mathrm{mV}$ when "log" instead of "ln", $\mathrm{n}=1, \mathrm{~T}=25^{\circ} \mathrm{C}_{37}$

RedOx Current

KáӨoठos cathode $\begin{gathered}\text { reduction }\end{gathered} O(a q)+e^{-}(m) \underset{k_{o x}}{\stackrel{k_{\text {red }}}{\rightleftharpoons}} R(a q) \quad$ negative (*)
a̋voठos $\underset{\text { oxidation }}{\operatorname{anode}} R^{\prime}(a q) \underset{k_{\text {red }}^{\prime}}{\stackrel{k_{o x}^{\prime}}{\rightleftharpoons}} O^{\prime}(a q)+e^{-}(m) \quad$ positive (*)

J. Neural Eng. 2016 13:052001

η in the Gerischer's View

cathodic polarization

$$
\mathrm{i}^{+} \gg \mathrm{i}^{-}
$$

anodic polarization
39

Faraday’s Laws

First law: In electrolysis, the quantities of substances involved in the chemical change are proportional to the quantity of electricity which passes through the electrolyte.

Second law: The masses of different substances set free or dissolved by a given amount of electricity are proportional to their chemical equivalents.

$$
m=\frac{q \times E W}{F}=\frac{i \times t \times E W}{F} \quad E W=\frac{\text { molecular weight }}{\text { valency }}
$$

The mass of a compound which will combine with 8 g of oxygen or 1 g of hydrogen is said to be the equivalent weight of the compound.

Gibbs Free Energy G

uzh | eth | zürich

$$
\begin{array}{ll}
\mathrm{G}=\mathrm{U}+\mathrm{pV}-\mathrm{TS} & \mathrm{~T} \text {, temperature } \\
\mathrm{U}, \text { internal energy } \\
\text { P, pressure } \\
\text { V, volume } \\
& \text { S, entropy }
\end{array}
$$

Every system (T, p constant!) seeks to achieve a minimum of free energy

chemical reactions in a laboratory

Transition State Theory

uzh | eth | zürich

Energy Barrier

$$
\mathrm{Ox}_{\mathrm{aq}}+n \mathrm{e}_{\mathrm{m}} \underset{\mathrm{k}_{\mathrm{ox}}}{\stackrel{\mathrm{k}_{\mathrm{red}}}{\rightleftharpoons}} \operatorname{Red}_{\mathrm{aq}}
$$

reaction coordinate q

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{red}}=v_{r e d} \mathrm{e}^{\frac{-\Delta^{\ddagger} \mathrm{G}_{\mathrm{red}}}{\mathrm{RT}}} \\
& \mathrm{k}_{\mathrm{ox}}=v_{o x} \mathrm{e}^{\frac{-\Delta^{\ddagger} \mathrm{G}_{\mathrm{ox}}}{\mathrm{RT}}} \\
& \Delta^{\ddagger} \mathrm{G}_{\mathrm{red}}={ }^{\ddagger} \mathrm{G}-\mathrm{G}_{\mathrm{ox}, \min } \\
& \Delta^{\ddagger} \mathrm{G}_{\mathrm{ox}}={ }^{ \pm} \mathrm{G}-\mathrm{G}_{\mathrm{red}, \min }
\end{aligned}
$$

η effect on G-1

interfacial potential

$$
O^{z+}(a q)+n e^{-}(m) \rightleftharpoons R^{(z-n)+}(a q)
$$

F, Faraday constant!

$$
\begin{aligned}
\mathrm{G}_{\text {react }} & =\mathrm{G}_{\text {react }}^{\prime}+\mathrm{zF} \varphi_{\mathrm{S}}-\mathrm{nF} \varphi_{\mathrm{M}} \\
& =\mathrm{G}_{\text {react }}^{\prime}+(\mathrm{z}-\mathrm{n}) \mathrm{F} \varphi_{\mathrm{S}}-\mathrm{nF}\left(\varphi_{\mathrm{M}}-\varphi_{\mathrm{S}}\right)
\end{aligned}
$$

$$
G_{\text {prod }}=G_{\text {prod }}^{\prime}+(z-n) F \varphi_{S}
$$

overpotential

$$
\begin{aligned}
\eta & \equiv \varphi_{\mathrm{S}}-\varphi_{\mathrm{M}} \\
& \left.\equiv \Delta \varphi\right|_{\text {appl }}-\left.\Delta \varphi\right|_{\text {equil }}
\end{aligned}
$$

$$
\left.\Delta \varphi\right|_{\text {equil. }} \stackrel{\text { Nernst }}{=} \Delta \varphi^{0}+\frac{R T}{n F} \ln \frac{[O]}{[R]}
$$

η effect on G-2

reaction coordinate q

Transfer Coefficient α

$$
\alpha \equiv \text { transfer coefficient }
$$

Reaction Coordinate

Butler-Volmer Equation - 1

$$
\begin{aligned}
& \Delta^{\ddagger} \mathrm{G}_{\text {red }}=\Delta^{\ddagger} \mathrm{G}_{\text {red, }, 0}+n \alpha \mathrm{~F} \eta \\
& \Delta^{\ddagger} \mathrm{G}_{\text {ox }}=\Delta^{ \pm} \mathrm{G}_{\text {ox }, 0}-n(1-\alpha) \mathrm{F} \eta \\
& \mathrm{k}_{\text {red }}=\mathrm{A}_{\text {red }} \mathrm{e}^{-\frac{\Delta^{ \pm} \mathrm{G}_{\text {red }}}{\mathrm{RT}}} \\
& \mathrm{k}_{\text {ox }}=\mathrm{A}_{\text {ox }} \mathrm{e}^{-\frac{\Delta^{\ddagger} \mathrm{G}_{\text {ox }}}{\mathrm{RT}}} \\
& \mathrm{k}_{\text {red }}=\mathrm{A}_{\text {red }} \mathrm{e}^{-\frac{\Delta^{ \pm} \mathrm{G}_{\text {red }, 0}}{\mathrm{RT}}} \mathrm{e}^{-n a f \eta} \\
& \mathrm{k}_{\text {ox }}=\mathrm{A}_{\text {ox }} \mathrm{e}^{-\frac{\Delta^{\ddagger} \mathrm{G}_{\text {ox }, 0}}{\mathrm{RT}}} \mathrm{e}^{n(1-\alpha) \mathrm{f} \eta}
\end{aligned}
$$

Butler-Volmer Equation - 2

zero net current! (\rightarrow corrosion!)
at equilibrium with $\mathrm{C}(0, \mathrm{t})=\mathrm{C}^{*}, \eta=0 \Rightarrow \mathrm{k}_{\mathrm{ox}}=\mathrm{k}_{\mathrm{red}} \equiv \mathrm{k}_{0}$

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{red}}=\mathrm{k}_{0} \mathrm{e}^{-n \alpha f \eta} \\
& \mathrm{k}_{\mathrm{ox}}=\mathrm{k}_{0} \mathrm{e}^{n(1-\alpha) f \eta} \\
& \mathrm{i}=\operatorname{nFAk}_{0}\left[\mathrm{C}_{\mathrm{ox}}(0, \mathrm{t}) \mathrm{e}^{-\alpha \mathrm{nf} \eta}-\mathrm{C}_{\mathrm{red}}(0, \mathrm{t}) \mathrm{e}^{(1-\alpha) \mathrm{nf} \eta}\right]
\end{aligned}
$$

$\mathrm{n} \equiv$ number of e^{-}exchanged

$$
\begin{aligned}
& \mathrm{f}=\frac{\mathrm{F}}{\mathrm{RT}}=\frac{1}{25.69 \mathrm{mV}}(\text { at } 298 \mathrm{~K}) \\
& \mathrm{F}=9.6485 \times 10^{4} \mathrm{C} \mathrm{~mol}^{-1} \\
& \mathrm{R}=8.3145 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

Helmoltz double layer

The inner-most or compact layer is composed of solvent, ions, and molecules that are not fully solvated, and which are said to be specifically adsorbed to the electrode surface

The center of this adsorbed layer defines the inner Helmholtz plane (IHP).

OHP represents the closest approach of solvated ions to the surface of the electrode. These solvated ions interact with the surface of the electrode in a longrange electrostatic fashion only, and are said to be non-specifically adsorbed. The center of this second layer defines the outer Helmholtz plane
 \title{
Gouy-Chapman (diffuse)
}
 \title{
Gouy-Chapman (diffuse)
}

Diffusion plane

- Assumed Poisson-Boltzmann distribution of ions from surface
- ions are point charges
- ions do not interact with each other
- Assumed that diffuse layer begins at some distance from the surface

Stern-Grahame

Stern (1924) / Grahame (1947) Model

In different approaches the linear decay is assumed to be until the shear plane, since there is the barrier where the charges considered static. In this
courese however we will assume that the decay is linear until the Stern plane.

all in one

 Inner Helmholtz Outer Helmholtz Plane (IHP) plane (OHP)

equivalent circuit

A common equivalent electric circuit

Diffusion and charge transfer

EIS

Open Circuit Potential

2 electrodes? better 3!

Three-Electrodes Cell

Cyclic Voltammetry

hypothesis \rightarrow at t_{1} only Ox in solution

\rightarrow concentrations
\rightarrow diffusion constants
\rightarrow reaction mechanism

CV, irreversible step

Atkins 25.47
irreversible step \rightarrow NO reverse peak $1!!!$
p-chlorobenzonitrile
$\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CN}+\mathrm{e}^{-} \rightleftharpoons \mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CN}^{-} \quad$ 1, rev.
$\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CN}^{-}+\mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}+\mathrm{Cl}^{-} \quad 2$, irrev.
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}+\mathrm{e}^{-} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}^{-} \quad 3$, rev.

CV, sweep rate

p-bromonitrobenzene

$$
\left.\begin{array}{l}
\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}+\mathrm{e}^{-} \rightarrow \mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}^{-} \\
\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}^{-} \rightarrow \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}+\mathrm{Br}^{-} \\
\cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}+\mathrm{e}^{-} \rightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}^{-} \\
\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}
\end{array}\right\}^{2, \text { rev. }}
$$

Atkins 25.46
irreversible step \rightarrow NO reverse peak!!!
...but if CV faster than irreversible step \rightarrow reversible CV!!!

Water Electrolysis

bibliography

- P. Atkins, J. de Paula, Physical Chemistry, Oxford
- C.H. Hamann, A. Hammett, W. Vielstich, Electrochemistry, Wiley-VCH.
- A.J. Bard, L.R. Faulkner, Electrochemical Methods, Wiley

