



### Systèmes optiques intégrés dans Advanced Virgo et adaptation au vide poussé

R. Gouaty







Réseau Optique Photonique, Journée « Optique en milieux extrêmes », Ecole Polytechnique 13/12/2017

### Les ondes gravitationnelles

- Générées par des masses en accélération
- > Fluctuations de la courbure de l'espace-temps se propageant dans l'espace
- L'espace se déforme: les distances séparant des masses libres changent
- > Effet opposé sur deux axes orthogonaux
- > Relation entre l'amplitude de l'onde et la variation de longueur:



## $h = 2 \frac{\delta L}{L}$

#### Des interféromètres pour les détecter:

- Mesurer une variation de distance entre des masses tests
- Intensité lumineuse des faisceaux interférant dépend de la différence de chemin parcouru dans les deux « bras »





L'interféromètre doit être grand :  $\Delta L$  proportionnel à L

→ bras de plusieurs km!

### Un réseau mondial d'interféromètres



### Les premières détections



Pour GW170814: h = 5 x  $10^{-22} \rightarrow \delta L$  (Virgo) =  $\pm 0.8$  x  $10^{-18}$  m

**≡ Observer une variation de la distance entre la Terre et le Soleil correspondant à la taille d'un atome** → un défi expérimental

### Les sources de bruit de fond



### L'interféromètre Advanced Virgo

□ Configuration optique pour minimiser le bruit de photons :

 $\widetilde{h} \geq \frac{\lambda}{4\pi} \frac{1}{L} \sqrt{\frac{2\hbar\omega}{P}}$ 

L: longueur des bras P: puissance injectée

> Cavités Fabry-Perot : Finesse = 450 → ~280 allers-retours → chemin optique effectif = 840 km

200W laser

Cavité de recyclage: puissance x 39

#### Isolation sismique des miroirs

> Série de 7 pendules en cascades + atténuation verticale

#### Minimisation des bruits thermiques

- > Faisceau de grande taille: w = 49-58 mm
  - → miroirs de 35 cm de diamètre (55 cm pour la séparatrice)
  - → télescopes pour réduire la taille des faisceaux avant détection
- Miroirs de 42 Kg
- Suspensions monolithiques (en cours d'installation)

#### Contrôle actif des aberrations optiques

- > Anneaux chauffants autour des miroirs
- Laser CO2 projeté sur des lames compensatrices

#### Boucles d'asservissements

- > contrôler les conditions d'interférence
- > maintenir les cavités résonantes
- > stabilisation du laser



### **Miroirs**

- Grands miroirs
- Miroirs quasi-parfaits
  - Défaut de planéité < 0.5 nm RMS (sur 150 mm de diamètre)</p>
  - > Substrats de très faible absorption (0.2 ppm/cm)
  - Traitements de surface réalisés par le Laboratoire des Matériaux Avancés à Lyon
- Manipulés en salles blanches











### Sous ultra vide

#### **Motivations:**

- Se protéger du bruit acoustique
- Éviter le bruit de mesure qui proviendrait des fluctuations d'indice de réfraction de l'air
- Conserver la propreté des miroirs

#### Le vide d'Advanced Virgo en quelques chiffres:

- □ Une enceinte à vide d'un volume de 7000 m³
- Des niveaux de vide différents:
  - > Jusqu'à 10<sup>-9</sup> mbar dans les bras de 3 km
  - $ightarrow 10^{-6}$  à  $10^{-7}$  mbar dans les tours abritant les miroirs et leurs suspensions
- Séparation entre bras et tours assurée par des pièges cryogéniques





### Le système de détection

#### But: extraire les faisceaux de l'interféromètre

Canal pour la détection des ondes gravitationnelles

Canaux de contrôle

#### En quoi cela consiste:

Six bancs optiques suspendus et placés sous vide

Isolation sismique et acoustique

Evolution de Virgo à Advanced Virgo: 5 nouveaux bancs

Télescopes pour réduire la taille des faisceaux

Cavités de filtrage: « mode cleaner » de sortie

Photodiodes, cameras

Electronique embarquée





West End Benches

EWEB1

WE

EWEB2

Beams & optical benches for Advanced Virgo

Under-vacuum benches

**External benches** 

### Bancs optiques suspendus et sous vide

#### • Objectifs:

- → Minimiser l'impact de la lumière diffusée
- → Assurer la stabilité de la position du faisceau par rapport aux optiques & photodiodes

#### • Parmi les défis : fortes contraintes spatiales

- → Enceintes à vide compactes: « minitours »
- → Système d'isolation sismique compact
- → Electronique embarquée pour ne pas détériorer l'isolation sismique avec le cablage
- → Signaux numérisés transmis à la DAQ par liens optiques

#### • Enceintes à vide:

- → conçues pour un vide jusqu'à 10<sup>-5</sup> 10<sup>-6</sup> mbar
- → séparées du vide principal par des hublots







### Problématiques liées au vide

- Impact sur le choix des matériaux, des composants
- Contraintes pour l'électronique embarquée
  - → nécessité d'un containeur étanche intégré au banc



- jusqu'à 200W de chaleur dissipée par l'électronique
- la température de la surface du banc doit restée ≤ 40°c
- Contraintes sur la propreté
- Accessibilité des bancs optiques pour les réglages (commissioning)
  - séparation du vide principal facilite l'accès
    - → interventions ponctuelles pour remplacement des composants défectueux avant le run O2: « shut down » ≤ 2-3h
- Contrôles à distance nécessaires
  - → requiert des actionneurs compatibles vide





### Exemples de composants sur les bancs

- Montures optiques compatibles vide: acier inox et aluminium
- Actionneurs pour l'alignement fin des optiques
  - picomoteurs compatibles vide
  - miroirs actionnés par couples aimant-bobine (galvanomètre)
  - → pilotage de ces actionneurs à partir de l'électronique placée dans containeur
- Photodiodes et caméras placées dans de petits caissons étanches
  - → inclue un PCB avec premier étage de préamplification
  - → monitoring de la température et pression
  - → obturateur automatisé pour protéger les photodiodes des excès de lumière
  - → bloqueurs de faisceaux intégrés (verre noir ou acier poli traité AR) pour le contrôle des réflexions parasites









### Electronique des photodiodes



### Extraire la chaleur des composants électroniques

#### Radiateur



Extraction de la chaleur dissipée par les composants électroniques par conduction thermique → chaleur propagée dans le corps du banc

Problème: comment dissiper la chaleur emmagasinée par le banc ?



Préparation de joints thermiques

### Dissipation de l'énergie thermique

#### Problématique:

- jusqu'à 200W de chaleur dissipée par l'électronique contenue dans le banc
- la surface du banc doit restée ≤ 40°c (température max de fonctionnement des picomoteurs)
- dissipation par rayonnement thermique uniquement: émissivité de l'aluminium ≤ 10%

→ insuffisant d'après modélisation thermique

#### Solutions mises en œuvre:

- Anodisation du banc en aluminium:
  - → émissivité augmentée (proche de 100%)
  - → fine couche d'anodisation (~10 µm): compatible avec le niveau de vide recherché
- Sablage de l'enceinte à vide en acier inox:
  - → émissivité augmentée d'un facteur 2 (~45-50%)

#### Modélisation thermique validée avec un prototype de banc







# Transitoire thermique observé avec un banc d'Advanced Virgo

- Puissance dissipée par l'électronique ≈ 120 W
- Variation de température mesurée dans le containeur électronique ≈ 4°c
  - En accord avec la modélisation thermique
  - Température de surface du banc ≤ 40°c même avec deux fois plus de dissipation
    → Objectif atteint





### Préservation de la propreté

- Nécessaire pour le vide mais également pour les optiques (lumière diffusée + risque de dommages par exposition au laser)
- Assemblage des bancs optiques en salle blanche:
  - → local en surpression d'air filtré + plafonds soufflants
  - $\rightarrow$  taux de particules de taille ≥ 1µm : 0









### Résumé et conclusion

- ☐ Le vide est essentiel pour les détecteurs d'ondes gravitationnelles:
  - → Isolation du faisceau laser, des miroirs, et des bancs optiques
- L'extraction et la lecture des faisceaux de l'interféromètre est réalisée à partir de bancs optiques suspendus et sous vide, intégrant de l'électronique
- ☐ La problématique du vide a fortement contraint le design de ces bancs optiques:
  - Optimisation du rayonnement thermique
  - Electronique placée dans des caissons étanches
  - Un grand nombre d'actionneurs pour permettre des ajustements à distance
- ☐ Ces bancs optiques sont opérationnels et ont rempli leur fonction avec succès pendant la prise de données O2