



# Systèmes optiques intégrés dans Advanced Virgo et adaptation au vide poussé

R. Gouaty







Réseau Optique Photonique, Journée « Optique en milieux extrêmes », Ecole Polytechnique 13/12/2017

### Les ondes gravitationnelles

- Générées par des masses en accélération
- > Fluctuations de la courbure de l'espace-temps se propageant dans l'espace
- L'espace se déforme: les distances séparant des masses libres changent
- Effet opposé sur deux axes orthogonaux
- Relation entre l'amplitude de l'onde et la variation de longueur:

 $h = 2 \frac{\delta L}{L}$ 

#### Des interféromètres pour les détecter:

X

- Mesurer une variation de distance entre des masses tests
- Intensité lumineuse des faisceaux interférant dépend de la différence de chemin parcouru dans les deux « bras »
- Miroirs suspendus = masses en chute libre

L'interféromètre doit être grand :  $\Delta L$  proportionnel à L

➔ bras de plusieurs km !

**Y**4



### Un réseau mondial d'interféromètres



# Les premières détections



#### Amplitude détectée:

Pour GW170814: h = 5 x  $10^{-22} \rightarrow \delta L$  (Virgo) = ± 0.8 x  $10^{-18}$  m

≡ Observer une variation de la distance entre la Terre et le Soleil correspondant à la taille d'un atome

→ un défi expérimental

### Les sources de bruit de fond



# L'interféromètre Advanced Virgo



# Miroirs

- Grands miroirs
- Miroirs quasi-parfaits
  - > Défaut de planéité < 0.5 nm RMS (sur 150 mm de diamètre)
  - Substrats de très faible absorption (0.2 ppm/cm)
  - Traitements de surface réalisés par le Laboratoire des Matériaux Avancés à Lyon
- Manipulés en salles blanches





-2.42





### Sous ultra vide

#### **Motivations:**

- Se protéger du bruit acoustique
- Éviter le bruit de mesure qui proviendrait des fluctuations d'indice de réfraction de l'air
- Conserver la propreté des miroirs

#### Le vide d'Advanced Virgo en quelques chiffres:

- Dure enceinte à vide d'un volume de 7000 m<sup>3</sup>
- Des niveaux de vide différents:
  - > Jusqu'à 10<sup>-9</sup> mbar dans les bras de 3 km
  - $\succ~10^{-6}$  à  $10^{-7}$  mbar dans les tours abritant les miroirs et leurs suspensions
- Séparation entre bras et tours assurée par des pièges cryogéniques





# Le système de détection

FIB

#### But: extraire les faisceaux de l'interféromètre B6PR, B6pPR, B9PR, B9pPR

- Canal pour la détection des ondes gravitationnelles
- Canaux de contrôle

### En quoi cela consiste:

- Six bancs optiques suspendus et placés sous vide
  - Isolation sismigue et acoustigue  $\geq$
  - Evolution de Virgo à Advanced Virgo: 5 nouveaux bancs  $\geq$
- Télescopes pour réduire la taille des faisceaux
- Cavités de filtrage: « mode cleaner » de sortie
- Photodiodes, cameras
- Electronique embarquée









## Bancs optiques suspendus et sous vide

- Objectifs:
  - → Minimiser l'impact de la lumière diffusée
  - $\rightarrow$  Assurer la stabilité de la position du faisceau par rapport aux optiques & photodiodes
- Parmi les défis : fortes contraintes spatiales
  - $\rightarrow$  Enceintes à vide compactes: « minitours »
  - ightarrow Système d'isolation sismique compact
  - → Electronique embarquée pour ne pas détériorer l'isolation sismique avec le cablage
  - → Signaux numérisés transmis à la DAQ par liens optiques
- Enceintes à vide:
  - $\rightarrow$  conçues pour un vide jusqu'à 10<sup>-5</sup> 10<sup>-6</sup> mbar
  - $\rightarrow$  séparées du vide principal par des hublots





# Problématiques liées au vide

- Impact sur le choix des matériaux, des composants
- Contraintes pour l'électronique embarquée

   nécessité d'un containeur étanche intégré au banc
- Dissipation de l'énergie thermique
  - jusqu'à 200W de chaleur dissipée par l'électronique
  - la température de la surface du banc doit restée ≤ 40°c
- Contraintes sur la propreté





- Accessibilité des bancs optiques pour les réglages (commissioning)
  - séparation du vide principal facilite l'accès

→ interventions ponctuelles pour remplacement des composants défectueux avant le run O2: « shut down »  $\leq$  2-3h

• Contrôles à distance nécessaires

ightarrow requiert des actionneurs compatibles vide

# **Exemples de composants sur les bancs**

- Montures optiques compatibles vide: acier inox et aluminium
- Actionneurs pour l'alignement fin des optiques
  - picomoteurs compatibles vide
  - miroirs actionnés par couples aimant-bobine (galvanomètre)
  - ightarrow pilotage de ces actionneurs à partir de l'électronique placée dans containeur
- Photodiodes et caméras placées dans de petits caissons étanches
  - → inclue un PCB avec premier étage de préamplification
  - ightarrow monitoring de la température et pression
  - $\rightarrow$  obturateur automatisé pour protéger les photodiodes des excès de lumière

→ bloqueurs de faisceaux intégrés (verre noir ou acier poli traité AR) pour le contrôle des réflexions parasites











### **Electronique des photodiodes**



### Extraire la chaleur des composants électroniques

#### Radiateur



Extraction de la chaleur dissipée par les composants électroniques par conduction thermique → chaleur propagée dans le corps du banc

Problème: comment dissiper la chaleur emmagasinée par le banc ?



Préparation de joints thermiques

# Dissipation de l'énergie thermique

Problématique:

- jusqu'à 200W de chaleur dissipée par l'électronique contenue dans le banc
- la surface du banc doit restée ≤ 40°c (température max de fonctionnement des picomoteurs)
- dissipation par rayon nement thermique uniquement: émissivité de l'aluminium  $\leq 10\%$

 $\rightarrow$  insuffisant d'après modélisation thermique

Solutions mises en œuvre:

- Anodisation du banc en aluminium:

→ émissivité augmentée (proche de 100%)

- $\rightarrow$  fine couche d'anodisation (~10 µm): compatible avec le niveau de vide recherché
- Sablage de l'enceinte à vide en acier inox:
   → émissivité augmentée d'un facteur 2 (~45-50%)

Modélisation thermique validée avec un prototype de banc







### Transitoire thermique observé avec un banc d'Advanced Virgo

- Puissance dissipée par l'électronique ≈ 120 W
- Variation de température mesurée dans le containeur électronique ≈ 4°c
  - En accord avec la modélisation thermique
  - Température de surface du banc ≤ 40°c même avec deux fois plus de dissipation
     → Objectif atteint





# Préservation de la propreté

- Nécessaire pour le vide mais également pour les optiques (lumière diffusée + risque de dommages par exposition au laser)
- Assemblage des bancs optiques en salle blanche:
   → local en surpression d'air filtré + plafonds soufflants
   → taux de particules de taille ≥ 1µm : 0







© Cyril Frésillon / Lapp / CNRS Photothèque



# **Résumé et conclusion**

❑ Le vide est essentiel pour les détecteurs d'ondes gravitationnelles:
 → Isolation du faisceau laser, des miroirs, et des bancs optiques

L'extraction et la lecture des faisceaux de l'interféromètre est réalisée à partir de bancs optiques suspendus et sous vide, intégrant de l'électronique

□ La problématique du vide a fortement contraint le design de ces bancs optiques:

- Optimisation du rayonnement thermique
- Electronique placée dans des caissons étanches
- Un grand nombre d'actionneurs pour permettre des ajustements à distance
- Ces bancs optiques sont opérationnels et ont rempli leur fonction avec succès pendant la prise de données O2