

Introduction aux matériaux magnétiques

Damien Le Roy ILM, CNRS et Univ. Lyon 1 Équipe « Nanostructures Magnétiques »

Organisation: Agnès Piednoir (ILM), Marie-Charlotte Deschamp (INL), Florence Marchi (I NEEL), David Albertini (INL)

15 novembre 2018

damien.le-roy@univ-lyon1.fr

Université Claude Bernard

Une grande variété de phénomènes

Dia/para/ferro/antiferro, transistions de phase, verres de spin, skyrmions, magnétostriction, magnéto-résistance, magnéto-calorique, magnéto-électrique, multiferroïque, exchange bias,...

Dans différents matériaux

métaux, céramiques, semi-conducteurs, composites à matrice polymère, aimants moléculaires, ... à l'état massif, sous forme de films minces, nanoparticules, ...

Des applications aujourd'hui dans les domaines de :

l'énergie

Moteurs électriques, réfrigération magnétique

le stockage d'information

Bit magnétique, dispositifs de lecture et d'écriture

la biologie

Nanoparticules, microsystèmes magnétiques

Electricité et Magnétisme

• 1820 : L'expérience de Oersted

H. C. Oersted

Théorème d'Ampère

A. M. Ampère

Une charge en mouvement créé un champ magnétique

Electricité et Magnétisme

Un moment magnétique équivalent à une spire de courant

m source d'un champ magnétique *B* dans son environnement Un aimant = un ensemble de dipôles magnétiques

Action d'un champ magnétique extérieur

Energy (Zeeman):

$$E_{Z} = -m'.B$$

Un moment magnétique m' en un point quelconque s'aligne selon B

Magnétisme dans la matière

1. Moment magnétique atomique

2. Ordre magnétique

3. Anisotropie magnétique

4. Energie magnétostatique

Contribution des électrons environ 1000 fois plus grande que celle du noyau

Moment magnétique associé à un électron

Moment orbital

Moment de spin (intrinsèque à l'électron)

Electron en rotation autour du noyau atomique

$$\mu_L = -\frac{e}{2m_e}L = -g_l\mu_B L$$

$$\mu_{s} = -g_{s}\mu_{B}S$$

avec $g_{\rm I}$ = 1, $g_{\rm s}$ = 2 et $\mu_{\rm B}$ le magneton de Bohr

$$\mu_{\rm B} \approx 9.274 \ 10^{-24} \ {\rm A.m^2}$$

$$\mu_{total} = \mu_L + \mu_S$$

Construction du moment magnétique d'un atome = contribution de tous les electrons

Distribution des e- sur les couches électroniques minimisant l'énergie Interactions électrostatiques + satisfaire le principe de Pauli

L'état quantique d'un électron = 4 nombres quantiques :

n (couche),

I (azimutal),

 m_l (nombre quantique magnétique = -l, -l+1,..., l),

 m_s (nombre quantique de moment de spin = +1/2 ou -1/2)

Ex : la couche 4f peut accueillir 14 électrons

Le moment de l'atome dépend de la somme des m_s et la somme des m_l

Cas des couches électroniques complètes

Ex : Couche électronique n=2									
n (Principal)	l (azimutal)	m _l (moment magnétique)							
		-1	0	+1					
n = 2	l = 0 (2s)		^↓						
	l = 1 (2p)	^↓	^↓	^↓					

$$f m_s = +1/2$$
 $\downarrow m_s = +1/2$

Dans les sous-couches électroniques complètes :

- la somme des *m*_l est nulle
- la somme des *m*_s est nulle
- ➔ Pas de moment magnétique

Le magnétisme est une propriété des couches électroniques incomplètes

Moment magnétique atomique

Cas d'une couche incomplète

Règles de Hund

- 1. Maximiser la somme des m_s = **spin total S**
- Maximiser la somme des m_l = moment cinétique orbital total L
- 3. Couplage Spin-Orbite :
 - (a) Couche moins qu'à moitié remplie J=IL-SI
 - (b) Couche plus qu'à moitié remplie J=IL+SI
 - (c) Couche à moitié remplie L=0, J=S

La couche 4*f* peut accueillir 14 électrons

Pour le Tb³⁺: 8e- à répartir sur 14 niveaux

Moment porté par chaque atome :

$$\mu_J = g_J \mu_B \sqrt{J(J+1)}$$

Calc. : 9.7 μ_B ; Exp. : 9.8 μ_B

Liaison chimique → remplissage des couches électroniques

Peu d'éléments sont magnétiques dans la matière

Moment magnétique atomique

dans la matière

Deux classes : les métaux de transitions 3d et les terres rares 4f

Moment magnétique atomique

dans la matière

Deux séries d'éléments au comportement très différent

Couche 4*f* : couche profonde Couche 3*d* : couche externe

Magnétisme **délocalisé** (ou « itinérant ») dans les métaux de transition 3*d* Magnétisme **localisé** dans les terres rares 4*f*

Magnétisme **localisé** dans les terres rares 4f

Les éléments magnétiques de la série 3*d* : exemple du fer

A partir des règles de Hund : Fe³⁺ : $3d^5 \rightarrow \mu = 5.9 \mu_B$ Fe²⁺ : $3d^6 \rightarrow \mu = 6.7 \mu_B$

Fe à différents états dans la matière : FeO - Wustite (Fe²⁺) : $\mu = 5.33 \mu_B$ γ -Fe₂O₃ – Maghemite (Fe³⁺) : $\mu = 5 \mu_B$ α -Fe – ferrite metallique : $\mu = 2.2 \mu_B$ YFe₂ (intermétallique) : $\mu = 1.45 \mu_B$ Atomes de surface Fe : $\mu = 2.8 \mu_B$

Le moment cinétique total *J* ne rend pas compte du moment magnétique atomique

Les éléments magnétiques de la série 3*d* : Magnétisme de bande

Caractère itinérant des électrons à prendre en compte

Bandes électroniques avec des densités d'état différentes pour les spins « up » et les spins « down ».

La polarisation en spin (déséquilibre des densités d'état) → moment magnétique Moments atomiques + Volume de la maille élémentaire → Aimantation

Magnétisme dans la matière

1. Moment magnétique atomique

Combinaison de tous les électrons *Peu d'éléments sont magnétiques*

Des éléments 3*d* : Fe, Co, Ni Des éléments 4*f*

2. Ordre magnétique

i LM Assemblée de moments atomiques sans interaction

Réponse à un champ magnétique extérieur

Un cristal (1 cm³) de fer est amené à saturation (1.7 MA.m²) sous un champ de 5 mT. Moments atomiques sans interaction \rightarrow on s'attend à 10⁶ fois moins d'aimantation.

Une interaction au sein de la matière aligne les moments atomiques « Champ moléculaire » H_m (Weiss 1906)

Ne peut pas être d'origine dipolaire Interaction beaucoup plus forte
 Champ magnétique créé par les atomes voisins : ~1T (3 ordres de grandeur inférieur)

 $H = n_{_{W}}M + H_{_{ext}}$

Origine du champ moléculaire de Weiss

 (1929) Origine physique du champ moléculaire : Modèle d'Heisenberg Recouvrement des orbitales → origine électrostatique et principe de Pauli Interaction d'échange

$$\boldsymbol{\xi} = -2\sum_{i>j}J_{i,j}\boldsymbol{S_i}\cdot\boldsymbol{S_j}$$

Echange contrecarrée par l'agitation thermique

État ferromagnétique (basse T) \rightarrow état paramagnétique (haute T) Transition de phase à une température critique : **température de Curie**

Magnétisme dans la matière

1. Moment magnétique atomique

Combinaison de tous les électrons *Peu d'éléments sont magnétiques*

Des éléments 3*d* : Fe, Co, Ni Des éléments 4*f*

3. Anisotropie magnétique

Aimantation selon des directions privilégiées

Anisotropie magnétique

- Sur les courbes d'aimantation : la réponse dépend de la direction dans laquelle est appliqué le champ magnétique
- Une source principale : l'anisotropie magnéto-cristalline
 Orientation préférentielle du moment magnétique orbital dans un environnement ionique

J.H. van Vleck (1935)

Dans un solide = dans un environnement ionique

L'anisotropie magnéto-cristalline reflète la symétrie du cristal

Symétrie hexagonale

Anisotropie – diagramme de phase

En général, on peut considérer uniquement les deux premiers termes

Cas particulier : $K_1 > 0$ et K_2 négligeable devant K_1

Modèle du macrospin

Rotation cohérente des moments magnétiques \rightarrow « macrospin » (μ = N x μ_{at}) *C'est le cas dans les nanoparticules de quelques nanomètres*

• Anisotropie uniaxiale = un axe facile et un plan difficile

Réponse à un champ magnétique

Compétition entre deux termes d'énergie :

(1) « Zeeman » (les moments s'alignent dans la direction du champ)

(2) anisotropie (les moments s'alignent selon la direction facile).

$$E = -\mu_0 M_s H \cos(\theta - \varphi) + K_u \sin^2 \theta$$

Réponse à un champ magnétique

Compétition entre deux termes d'énergie :

(1) « Zeeman » (les moments s'alignent dans la direction du champ)

(2) anisotropie (les moments s'alignent selon la direction facile).

$$E = -\mu_0 M_S H \cos(\theta - \varphi) + K_u \sin^2 \theta$$

Compétition entre deux termes d'énergie :

φ

Plan difficile

Η

Μ

θ

Axe facile

(1) « Zeeman » (les moments s'alignent dans la direction du champ)

(2) anisotropie (les moments s'alignent selon la direction facile).

$$E = -\mu_0 M_s H \cos(\theta - \varphi) + K_u \sin^2 \theta$$

Champ de retournement en 3D

Retournement d'aimantation

Validation expérimentale du modèle de Stoner-Wohlfarth

 $H_{SW} = H_A(\sin^{2/3}\varphi + \cos^{2/3}\varphi)$

Mesure de H_{SW} sur une nanoparticule de Co *cfc Magnétométrie sur nano-objet unique par* µSQUID

Boucle µ-SQUID (Nb)

Agrégat Co cfc

Retournement d'aimantation

Agitation thermique

Quand K_uV comparable à k_BT \rightarrow Retournement activé thermiquement $\rightarrow \tau$ comparable au temps de mesure **limite** superparamagnétique

$$\tau = \tau_0 \exp\left(\frac{K_u V}{k_B T}\right)$$

Un enjeux pour les applications : augmenter la stabilité thermique

Magnétisme dans la matière

Combinaison de tous les électrons *Peu d'éléments sont magnétiques*

Des éléments 3*d* : Fe, Co, Ni Des éléments 4*f*

4. Energie magnétostatique

• Interaction dipolaire entre deux aimants :

L'énergie dipolaire entre deux moments magnétiques m_1 et m_2

$$E_{dip} = \frac{\mu_0}{4\pi r^3} \left(\vec{m}_1 \cdot \vec{m}_2 - \frac{3}{r^2} (\vec{m}_1 \cdot \vec{r}) (\vec{m}_2 \cdot \vec{r}) \right)$$

Les pôles nord(/sud) se repoussent

Interaction dipolaire (par rapport à l'interaction d'échange) : faible, longue distance

*Un objet aimanté rayonne un champ magnétique à l'extérieur et dans son volume (champ démagnétisant H_d) H*_d s'oppose à *M*

• Energie magnétostatique (dipolaire) associée à H_d

$$\varepsilon_d = \frac{1}{2} \int \mu_0 H_d^2 \mathrm{d}^3 r$$

*Un objet aimanté rayonne un champ magnétique à l'extérieur et dans son volume (champ démagnétisant H_d) H*_d s'oppose à *M*

Energie magnétostatique (dipolaire) associée à H_d

$$\varepsilon_d = \frac{1}{2} \int \mu_0 H_d^2 \mathrm{d}^3 r$$

Minimiser le champ dipolaire (démagnétisant) de objet aimanté par l'alternance de région d'aimantation opposée

Anisotropie cubique

Explique l'aimantation nulle des matériaux ferromagnétiques (doux)

Formation de paroi de domaine \rightarrow Coût en énergie (échange – anisotropie)

Les parois de domaine

Minimisation de l'énergie du système → satisfaire le terme d'énergie dipolaire

Coût en énergie d'échange Coût en énergie d'anisotropie

• Energie d'une paroi de domaine (densité surfacique) :

$$E_{DW} \propto \sqrt{AK}$$

Une source d'anisotropie magnétique

a

Dans une ellipsoïde, le champ démagnétisant H_{d} est uniforme

selon les axes principaux : $H_d = -NM$ avec $N_x + N_y + N_z = 1$

$$K_{sh} = \frac{1}{4}\mu_0 M_s^2 (1 - 3N)$$

N le facteur démagnétisant dans la direction facile Exemple : N = 0, $\mu_0 M_s = 1 T \rightarrow K_{sh} = 200 \text{ kJ/m}^3$

Forme	Direction d'aimantation	N	Substance		K	K
Longue aiguille	Parallèle axe long	0	Substance	μ ₀ /// _s (T)	∧ _{sh} (kJ.m ⁻³)	∧ _{<i>MC</i>} (kJ.m ⁻³)
	Perpendiculaire axe long	1/2	$Fe_{0.65}Co_{0.35}$	2.45	1200	18
Sphère	Toute direction	1/3	$Md_2Fe_{14}B$	1.61	520	4900
Ellipsoïde de révolution	$N_{\rm c} = (1 - 2N_{\rm a})$		SmCo ₅	1.07	229	17200

1. Moment magnétique atomique

- La contribution des électrons dominent le moment magnétique atomique (deux contributions : **moment magnétique orbital et moment magnétique de spin**)
- Les interactions électrostatiques et le principe de Pauli régissent la construction du moment magnétique atomique

2. Ordre magnétique

 Les moments magnétiques atomiques voisins peuvent être fortement couplés par interaction d'échange

3. Anisotropie magnétique

• L'A.M. peut avoir différentes origines : la structure cristalline (environnement ionique), la forme (énergie magnétostatique), autre...

4. Energie magnétostatique

 Elle est liée à l'action du champ démagnétisant et conduit à la formation de domaines magnétiques

Lectures sur le sujet

- Magnetism and Magnetic Materials, J. M. D. Coey

- Introduction to magnetic materials, Cullity

Magnétisme à l'échelle macro

Quatre contributions à l'énergie magnétique d'un système

Interaction d'échange E_{ex}

Favorise une aimantation uniforme dans le matériau Très forte / à courte distance

Interaction dipolaire E_{dip} Minimise la création de pôles magnétiques Faible / à longue distance

Anisotropie E_{κ} Favorise certaine direction pour l'aimantation Origine multiple: cristalline, forme, interface,...

Energie Zeeman E_z Favorise l'orientation de l'aimantation selon la direction du champ

Pour un matériau ferromagnétique homogène, minimisation de l'énergie:

$$E = E_{ex} + E_{dip} + E_K + E_Z$$

- Projection des moments magnétiques sur la direction du champ appliqué
- Paramètres: forme du cycle, *M*_R, *H*_C, ...

Matériaux magnétiques durs et doux

- Deux grandes familles de matériaux ferromagnétiques :
- « ferro dur » et ferro « doux »

Avancées obtenues sur la valeur du champ coercitif au cours du temps

Les aimants permanents

• Une demande grandissante pour des aimants plus « performants » Record de performance aujourd'hui: aimants à base de NdFeB

Deux paramètres (extrinsèques) importants:
 *M*_R et *H*_C
 Performance = produit énergétique max
 « (BH)_{max} »
 Au delà d'un seuil de *H*_C, ne dépend que de *M*_S

Valeur maximale théorique (intrinsèque):

$$\left(BH\right)_{MAX} = \frac{1}{4}\mu_0 M_S^2$$

Les aimants permanents

L'évolution du (BH)_{max} des aimants permanents en un siècle

Les aimants permanents nanocomposites

- **Principe : mélange de deux phases magnétiques** (grande aimantation) + (grande anisotropie)
- Condition principale : grains nanométriques Etude théorique : R. Skomski et JMD Coey 1993 Taille des grains « doux »: $D_s \leq 2\delta^h$ (10nm)

Projet ANR SHAMAN 2016-2020
 Inst. NEEL, ESRF (ID12), SPCTS, ILM (PLYRA)
 Systèmes modèles d'aimants nanocomposites
 Microstructure contrôlée à l'échelle du nanomètre
 Thèse à l'ILM: Charles Paléo, 2018-2021, ED PHAST

Système modèle d'aimants par LECBD

Dépôt séquentiel d'agrégats nanométriques Co et couches minces FePt

