An overview on ...

Spintec

www.spintec.fr

email olivier.fruchart@cea.fr

Measurements using magnetic force microscopy

Spin IN ELECTRONICS **Í**ÉEL

Olivier FRUCHART

Univ. Grenoble Alpes / CNRS / CEA-INAC, France

Univ. Grenoble Alpes / CNRS, France

ReMiSoL – Microscopie à champ proche magnétique

LOCATIONS IN GRENOBLE

Olivier FRUCHART Les mesures en microscopie à force magnétique 15 Nov 2018 **ReMiSoL network – CNRS**

ÉEL

TABLE OF CONTENTS

Motivation and criteria

Working principle

Choice of tips

Image analysis

Panorama of other microscopies

EEL Spintec

Olivier FRUCHART Les mesures en microscopie à force magnétique

TABLE OF CONTENTS

- Motivation and criteria
- Working principle

Choice of tips

Image analysis

cea Conrs

Panorama of other microscopies

ÉEL Spintec

5

Olivier FRUCHART Les mesures en microscopie à force magnétique

MOTIVATION / Length scales (fundamental)

Magnetic domains

Numerous and complex magnetic domains

(History : Weiss domains)

MOTIVATION / Length scales (technology)

Relevant spatial resolution

🏷 10-100nm

Olivier FRUCHART Les mesures en microscopie à force magnétique

MOTIVATION / Link with structure

Example : domain wall to be moved along a 1d system

FFL

spintec

E. Kondorski, On the nature of coercive force and irreversible changes in magnetisation, Phys. Z.

MOTIVATION / Practical considerations

Versatility

- Samples made with lithography or ex situ OK ?
- \Rightarrow Need for sample preparation ?
- Compatible with various environments ? (temperature, field etc.)

Speed of acquisition

- ⇒ Sample preparation needed ?
- \Rightarrow How much time for one image ?

Access

- ➡ Large-scale instrument or in-lab ?
- ⇒ Expensive or cheap ?

What is probed

- ⇒ Surface or volume technique ?
- ➡ Sensitivity ?
- ➡ Magnetization, stray field, other ?

Conclusion

No universal technique

Many criteria to be balanced

TABLE OF CONTENTS

Motivation and criteria

Working principle

Choice of tips

Image analysis

Panorama of other microscopies

EEL Spintec

MFM / Working principle of an AFM

Overview

Scheme Stress (vertical and lateral) between sample and tip

VÉEL Spintec

UNIVERSITÉ

UNIVERSITÉ Grenoble

CINIS

cea

Les mesures en microscopie à force magnétique

MFM / Conventional cantilevers and tips

Full tip + apex

Cantilever

JÉEL Dspintec

Overview ↔ Price 10-200eur/tip ↔ Radius of curvature ≈ 5nm

Images : Olympus catalog (http://www.olympus.co.jp/probe)

Olivier FRUCHART Les mesures en microscopie à force magnétique

Mechanical excitation of cantilevers

VÉEL

spin

Notations

Seek solutions <i>F</i> for Reference angular velocity Quality factor	$= 0 \qquad z(t) = z_0 e^{j\omega t}$ $\omega_0 = \sqrt{\frac{k}{m}}$ $Q = \frac{\sqrt{k m}}{\Gamma}$	$\Rightarrow \text{Transfert function}$ $H = \frac{z}{F} = \frac{1}{k} \frac{1}{-\left(\frac{\omega}{\omega_{o}}\right)^{2} + \frac{j}{Q}\left(\frac{\omega}{\omega_{o}}\right) + 1}$
	Olivier FRUCHART Les mesures en microscopie à force magnétique	15 Nov 2018 ReMiSoL network – CNRS

MFM / Solutions for a harmonic oscillator

NÉEL Spintec

MFM / Detecting forces on the phase shift

Tip-sample interaction treated as perturbation

$$m\ddot{z} + \Gamma\dot{z} + kz = F(z)$$
 with $F(z) = F(z_{o}) + (z - z_{o})\partial_{z}F$
 \Rightarrow Mere renormalization : $\omega_{o,eff} = \omega_{o} \left(1 - \frac{1}{2k}\partial_{z}F\right)$

Olivier FRUCHART Les mesures en microscopie à force magnétique 15 Nov 2018 ReMiSoL network – CNRS

JÉFI (

MFM / Standard tips

MFM tips : AFM tip + magnetic coating

Figure 11-20: The electron amplitude (left) and phase (right) near an MFM tip visible as a dark shadow on the upper left corner of the left image.

R. Proksch et al., Modern techniques for characterizing magnetic materials, Springer, p.411 (2005)

Olivier FRUCHART Les mesures en microscopie à force magnétique 15 Nov 2018 ReMiSoL network – CNRS

FFL Spintec

MFM / Two-pass technique

Review : R. Proksch et al., Modern techniques for characterizing magnetic materials, Springer, p.411 (2005)

Olivier FRUCHART Les mesures en microscopie à force magnétique 15 Nov 2018 ReMiSoL network – CNRS

FFI

spintec

TABLE OF CONTENTS

Motivation and criteria

Working principle

Choice of tips

Image analysis

Panorama of other microscopies

EEL Spintec

PRACTICE / MFM – tip/sample interaction VEEL spintec

In practice, a combination of both models is best suited (dipole is more important)
 MFM is sensitive to some derivative(s) of the stray field from the sample
 MFM may be sensitive to in-plane field, depending on the tip magnetic moment

Olivier FRUCHART Les mesures en microscopie à force magnétique

PRACTICE / Single-domain (perpendicular)

Structure (SEM)

MFM, partly reversed

T. Wang et al., APL 92, 192504 (2008)

Single-domain out-of-plane magnetized dots appear as monopoles

Olivier FRUCHART Les mesures en microscopie à force magnétique

PRACTICE / Single-domain (mutual interaction) / EEL spintec

Permalloy (15nm), 3x8 microns

Principle :

- 1. Stray field magnetizes sample
- 2. Sample is non -uniform \rightarrow stray field
- 3. Tip measures sample's stray field

It is a DOMAIN contrast
 Interaction is ALWAYS attractive : red shift
 Contrast is proportionnal to the square of the tip moment

PRACTICE / Domains with perp. anisotropy

FePt (4nm)

cea

spintec

🏷 It is a DOMAIN contrast \Rightarrow The direction of magnetization is deduced

Sample : A. Marty (CEA-Grenoble) Imaging : M. Darques (Institut Néel) Contrast : ±0.4°, LM tip

Quantitative analysis : L. Belliard et al., J. Appl. Phys. 81, 3849 (1997)

Olivier FRUCHART Les mesures en microscopie à force magnétique

PRACTICE / Imaging domain walls (Bloch)

Fe dot (25nm), 2.5x1 microns

spintec

PRACTICE / Imaging domain walls (Néel)

Permalloy dot (16nm) 2x2 microns

Permalloy film (20nm) 10x10 microns

NÉEL

Spintec

J. M. Garcia et al., APL 79, 656 (2001)

♥ Néel wall give rise to DIPOLAR contrast ♥ Informs about the <u>chirality</u> of the wall core

Olivier FRUCHART Les mesures en microscopie à force magnétique

R. McMichael and M. Donahue, IEEE Trans. Magn. 33, 4167 (1997)

♥ Walls in in-plane magnetized stripes → MONOPOLAR
 ♥ Contrast informs about head-to-head ot tail-to-tail

Grenoble Grenoble

Olivier FRUCHART Les mesures en microscopie à force magnétique

PRACTICE / Effect of tilted cantilever and tip // EEL spintec

Tilted cantilever, across wire

@NEEL/SPINTEC : S. Da Col et al., APL109, 062406 (2016)

Olivier FRUCHART Les mesures en microscopie à force magnétique

TABLE OF CONTENTS

Motivation and criteria

Working principle

Choice of tips

Image analysis

cea Conrs

Panorama of other microscopies

EEL Spintec

- **Olivier FRUCHART** Les mesures en microscopie à force magnétique

TIPS. Calibration | here : commercial

R. Belkhou (Soleil)

Olivier FRUCHART Les mesures en microscopie à force magnétique

TIPS. Influencing samples

Repeat measurement and/or change scanning direction Low-coercive samples require low-moment tips Commercial 'low-moment' may not be low enough

> UNIVERSITÉ Grenoble Grenoble

Scanning

cea

Olivier FRUCHART Les mesures en microscopie à force magnétique

TIPS. Custom tips (basics)

Improve resolution

Asylum 240TS Radius of curvature : 10 nm

Engineer magnetic coating

Nanosensors PPP-SSS

Radius of curvature : 2-5 nm

Olivier FRUCHART Les mesures en microscopie à force magnétique

EEL Spintec **TIPS. High-resolution MFM tips** Antiwear Initial Si apex Magnetic coating coating 50 nm rim 5. Transmission Electron Microscopy (A. Masseboeuf) 15 Nov 2018 **Olivier FRUCHART** cea Les mesures en microscopie à force magnétique **ReMiSoL network – CNRS**

TIPS. Reduce tip-sample interaction

Sample : S. Pizzini Imaging : Z. Ishaque

Domain-wall motion under field or current
Optimized tips for all topics

Olivier FRUCHART Les mesures en microscopie à force magnétique 15 Nov 2018 ReMiSoL network – CNRS

IÉEL (

Dspintec

TIPS. Improved spatial resolution

Spatial resolution 15nm

Test sample : FePt[4nm]. Perpendicular magnetization, narrow domain walls

Tip: Nanosensors SSS \ 5nm CoCr Fly height 0nm, amplitude 10nm

Commercial 'low moment' tip

VÉEL Spintec

Spatial resolution : 20nm

Les mesures en microscopie à force magnétique

TIPS. Skyrmions and bubbles in <1nm films

Specific aspects

- Require low stray field tips
- Low stray fields and low film thickness -> Sensitivity?

Sample: R. Juge

Imaging: G. Rana

 $3x2.5\,\mu m$

Dspintec

1.2x1.2 μm

Conclusion

- Remains measurable
- Mutual contrast nearly absent

Olivier FRUCHART Crenoble Alpes Les mesures en microscopie à force magnétique

TIPS. Towards quantitative imaging

TIPS. Define spatial resolution

D. Diény et al., IEEE Trans. Mag., in print (2018)

Grenoble Grenoble

cea

Olivier FRUCHART Les mesures en microscopie à force magnétique

TIPS. Define spatial resolution

Quantitative analysis, see e.g.: H. Hug, J. Appl. Phys. 83, 5609 (1998) and followers

Olivier FRUCHART Les mesures en microscopie à force magnétique 15 Nov 2018 ReMiSoL network – CNRS

ÉEL

Dspintec

TIPS. Hard magnetic materials

Alpes

Les mesures en microscopie à force magnétique

ReMiSoL network – CNRS

ÉEL

Spintec

TABLE OF CONTENTS

Motivation and criteria

Working principle

Choice of tips

- Operando imaging
 - Operando imaging

 Panorama of other microscopies

EEL Spintec

Image analysis

OPERANDO. In-plane field

Protrusions and constrictions

➡ Pinning field ~30mT

Grenoble Grenoble

cea Chrs

Domain wall motion

ÉEL Spintec

Solution processes

Olivier FRUCHART Les mesures en microscopie à force magnétique

OPERANDO. Out-of-plane field

Field >1T (custom-made) **Optimized cooling**

Olivier FRUCHART Les mesures en microscopie à force magnétique

Motorized approach leg

ÉEL Spintec

Microscope approach by tilting the head thanks to the motorized leg (coil coupled configuration)

Approach by head (motorized leg)

OPERANDO. Out-of-plane field

Pd/Co/W multilayers, 2x2µm

Sample: Chloé Bouard

Olivier FRUCHART Les mesures en microscopie à force magnétique

15 Nov 2018 ReMiSoL network – CNRS

ÉEL (

Spintec

OPERANDO. Out-of-plane field

Magnetic shape-memory alloy G. Crouigneau et al.

Topography (grains)

 Perturbation-free measurements (non-magnetic head)
 High stability (sample and coil decoupled)

cea Chrs

OPERANDO. Fast current pulses

Sample, imaging: Sylvain Martin

Olivier FRUCHART Les mesures en microscopie à force magnétique 15 Nov 2018 ReMiSoL network – CNRS

FEL

Dspintec

Contributors

Measurements

Fadhel Abedi, Ioan Chioar, Geta Ciuta, Guillaume Crouigneau, Sandrine Da Col, Michael Darques, Christophe Dieudonné, Alexander Grimm, Zahid Ishaque, Keita Ito, Simon Le Denmat, Svenja Perl, Gaurav Rana, Kornel Richter, Jérémy Tillier

Tip development

S. Le Denmat, Ph. David, A. Masseboeuf (CEMES Toulouse)

Simulations

S. Jamet, JC Toussaint

Instrumental development and maintenance

S. Le Denmat, C. Thirion, E. Wagner

TABLE OF CONTENTS

Motivation and criteria

Working principle

Choice of tips

Image analysis

Panorama of other microscopies

EEL Spintec

Olivier FRUCHART Les mesures en microscopie à force magnétique

PANORAMA / Practical considerations

Versatility

Access

- Samples made with lithography or ex situ OK ?
- \Rightarrow Need for sample preparation ?

 \Rightarrow Large-scale instrument or in-lab?

 \Rightarrow Expensive or cheap ?

Compatible with various environments ? (temperature, field etc.)

Speed of acquisition

- ⇒ Sample preparation needed ?
- \Rightarrow How much time for one image ?

What is probed

- ⇒ Surface or volume technique ?
- ➡ Sensitivity ?
- ➡ Magnetization, stray field, other ?

Conclusion

No universal technique

Many criteria to be balanced

PANORAMA / Scanning probe

Spin-polarized STM

Fe(1ML)/W(001)

Antiferromagnetic domain M. Bode et al., Nat. Mater. 5, 477-481 (2006)

REVIEW : R. Wiesendanger, Rev. Mod. Phys. 81, 1495 (2009)

cea Ci

Magnetic Force Microscopy

Array of dots

шn

4

Up-and-down 'single-domains'

NEEL, sample courtesy: N. Rougemaille, I. Chioar

REVIEW : R. Proksch et al., Modern techniques for characterizing magnetic materials, Springer, p.411 (2005)

Others : scanning Hall probe, near-field optical etc.

NV center microscopy Square Fe20Ni80 dot

FFI

spintec

51

Signature of fluxclosure L. Rondin et al., Nat. Comm. 4, 2279 (2013)

Grenoble Les mes

Olivier FRUCHART Les mesures en microscopie à force magnétique

PANORAMA / Optical

Principle

- Polarization of light versus magnetic body
- ➡ Kerr : reflection geometry
- ➡ Faraday : transmission geometry

Example

Kerr microscopy of patterned Pt/Co/AlOx film with perpendicular magnetization

ÉEL Spintec

<u>@NEEL</u> : T. A. Moore et al., Appl. Phys. Lett 93, 262504 (2008)

Overview

🖏 Quick (full field)

Scompatible with time resolution

Scimited spatial resolution

Olivier FRUCHART

Les mesures en microscopie à force magnétique

PANORAMA / Electron-based

SPLEEM

Spin-Polarized Low Energy **Electron Microscopy**

Stripes of Fe/W(110) **@NEEL, REVIEW:** N. Rougemaille et al., Eur. Phys. J. Appl. Phys. 50, 20101 (2010)

SEMPA

Scanning Electron Microsc. with Polarization Analysis

Maze of Fe/W(001) 1.5 μm W. Wulfhekel et al., Phys. Rev. B 68, 144416/1-9 (2003)

Requires sample preparation

- verview Sood spatial resolution
- Some information about structure

UNIVERSITÉ Grenoble cea

Les mesures en microscopie à force magnétique

15 Nov 2018 **ReMiSoL network – CNRS**

Lorentz, holography etc.

TEM - based

FFI

spintec

53

Self-assembled Co/W(110) **@NEEL: O.** Fruchart et al., J. Phys. Condens. Matter 25, 496002 (2013)

PANORAMA / Synchrotron-light

XMCD-PEEM

X-ray Magnetic Circular Dichroism Photo-Emission Electron Microsc.

Co\Cu\FeNi trilayer → elemental resolution @NEEL : J. Vogel et al., J. Phys. : Condens. Matter 19, 476204 (2007)

Others : holography, scattering

TXM

FFI

Books | Nanomagnetism

15 Nov 2018 ReMiSoL network – CNRS

VÉEL Spintec

Thank you for your attention !

<u>www.spintec.fr</u> iil: <u>olivier.fruchart@cea.fr</u>

http://fruchart.eu/slides

spintec

ReMiSoL – Microscopie à champ proche magnétique