

@ ceph

CERN

Ceph@CERN

Julien COLLET | CERN IT | JTech Ceph Paris | 28 November 2018

CERN

ATLAS

LHCb

26.7 km particle accelerator

300 petabytes storage | 230 000 CPU cores

Background: Ceph at CERN

History

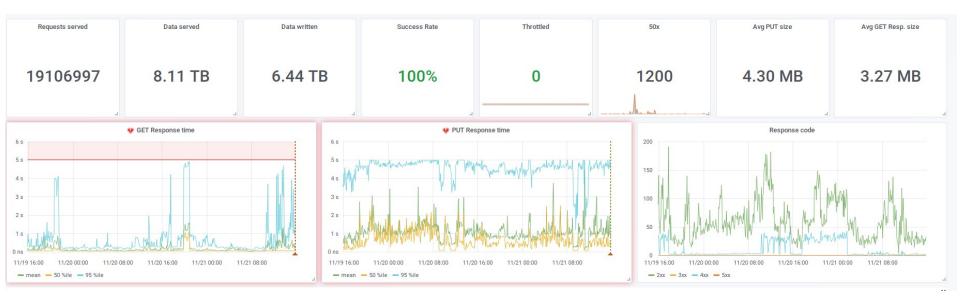
- March 2013: 300TB proof of concept
- Dec 2013: 3PB in prod for RBD
- 2014-15: EC, radosstriper
- 2016: 3PB to 6PB, no downtime
- 2017-18: 8 prod clusters

Ceph Clusters in CERN IT

CERN Ceph Clusters	Size	Version	
OpenStack Cinder/Glance	Production	6.2PB	luminous
Satellite data cent	tre (1000km away)	1.6PB	luminous
Hyperconv	verged KVM+Ceph	16TB	luminous
CephFS (HPC+Manila)	Production	0.8PB	luminous
C	lient Scale Testing	0.4PB	luminous
Hyperconv	verged HPC+Ceph	0.4PB	luminous
CASTOR/XRootD	Production	4.9PB	luminous
C	ERN Tape Archive	0.8TB	luminous
S3+SWIFT	Production	2.3PB	luminous

Ceph Clusters in CERN IT

- Standard Ceph node architecture
 - 16-core Xeon / 64-128GB RAM
 - 24x 6TB HDDs
 - 4x 240GB SSDs (journal/rocksdb)



RGW

S3 @ CERN

S3 @ CERN

- Running as a production service since 2018
 - Use-cases: IT applications, http accessible object storage, backups, ...
 - ATLAS + LHC@home using it for physics data already since 2016
- Basic architecture
 - s3.cern.ch is load-balanced across 10 VMs running Traefik/RGW
 - 4+2 erasure coding for data, 3x replication on HDDs for bucket indexes
 - Local authentication for most users, recently enabled OpenStack Keystone
- Current issues:
 - Bucket index performance is critical: moving to a 3x SSD pool
 - Automatic index re-sharding is still scary. By default, we use 32 shards per bucket
 - Multi-region: experimenting with rgw-mirror and cloudsync



CephFS

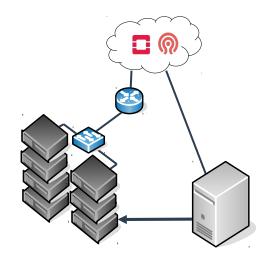
CephFS

CephFS

- HPC scratch area in production for more than 2 years
 - Extensive benchmarking w/IO-500 (see next slides)
- OpenStack Manila in production during 2018
 - Users create NFS-like shares for their general NAS use-cases
 - Authenticated using cephx to small number of clients
- Mostly using ceph-fuse for compatibility and needed features
 - Now in CentOS 7.6 the ceph kernel driver is working

HPC on CephFS?

- CERN is mostly a high *throughput* computing lab:
 - Embarrassingly parallel workloads, tolerant to relaxed consistency
- Several HPC corners exist within our lab:
 - Beam simulations, accelerator physics, plasma simulations, computation fluid dynamics, QCD, ASIC design ...
 - Require full POSIX, read-after-write consistency, and parallel IO


HPC Storage with CephFS

- CERN's approach is to build HPC clusters with commodity parts:
 - Software-defined HPC rather than an expensive integrated system
 - Compute side is solved with HTCondor/SLURM
 - Typical HPC storage is not very attractive (missing expertise + budget)

HPC Worker nodes

- Intel Xeon E5 2630 v3
- 128GB Memory 1600Mhz
- RAID 10 SATA HDDs
- Low-latency Chelsio T520-LL-CR
- Communication iWARP/RDMA CM

Operated since mid-2016: ~500 client nodes ~1PB CephFS (RAW)

CephFS on BlueStore

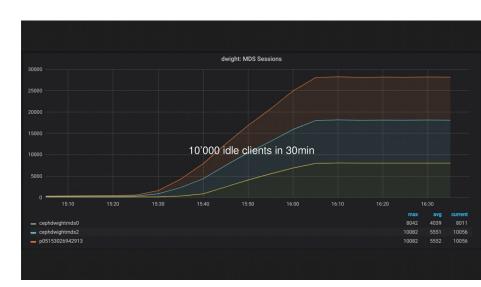
- 3x replication
- Per-host replication
- MDS as near as possible
- Hyperconvergence...

IO-500

- "The goal of the IO-500 is simple: to improve parallel file systems by ensuring that sites publish results of both "hero" and "antihero" runs and by sharing the tuning and configuration they applied to achieve those results."
- Latest results:
 - Bandwidth: **2.83** GB/s (1.94x)
 - IOPS: **20.16** kIOPS (15.23x)
 - Score total: **7.56** (3.9x)

Pablo Llopis: HPC and CephFS at CERN, *SuperComputing'18*

19	Queen Mary; University Of London	Apocrita	E8	GPFS	10	240	zip	9.79	4.32	22.21
20	Clemson University	Palmetto	Dell	BeeGFS	48	48	zip	8.46	2.93	24.41
21	CERN	Bytecollider		CephFS	64	64	zip	7.56	2.83	20.16
22	SNL	Serrano	IBM	Spectrum	16	160		4.25*	0.65	27.98*



CephFS scale-test

- Client scale testing with k8s (10,000 cephfs clients...!)
- 2 benchmarks: idle + busy clients
- 3-node test Ceph cluster

ceph

- Goals:
 - Verify CSI CephFS implementation
 - Verify the Manila Provisioner implementation
 - Verify the Ceph MDS with 10k clients
- See Ricardo Rocha's Talk @ OpenStack Summit 2018

CephFS performance tips


- Run several active MDSs: since v12.2.10 the md balancing is working well
- Use flash-only OSDs for the cephfs_metadata pool
- Locate the MDSs as nearby to the OSDs as possible (to reduce latency)
- Give as much RAM as possible to the MDSs caching inodes and caps is crucial

RBD

RBD @ CERN

RBD @ CERN

- OpenStack RBD remains the biggest use-case of Ceph at CERN
- Steady growth of ~1PB per year (raw space)
- Expanding the cluster to >6PB
- Ongoing work:
 - Just finished an expanded rbd trash feature: Delete a 50TB image in 1s
 - Working on understanding/improving librbd performance
 - Thanks to CERN Openlab/Rackspace

Benchmarking ceph/rbd

Benchmarking a Ceph cluster¹:

- Raw disk baseline performance: fio
- Ceph storage level performance: rados bench
- Block device performance: fio (librbd) and rbd bench
- Metrics: IOPS, Disk IO and CPU utilizations, latency
- Single-node cluster to avoid network latency impacts on performance

¹https://github.com/colletj/rbdperfscripts

Benchmarking a Ceph cluster:

Starting point: raw fio results give 85.1 kIOPS (SSD) and 232 IOPS (HDD), what is RADOS performance ? (4k random sync writes)

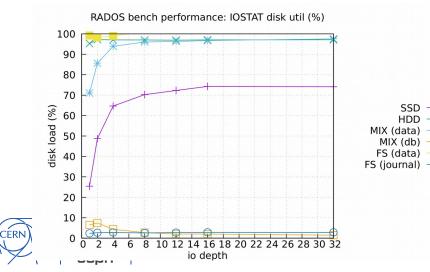
SSD: bluestore ssd

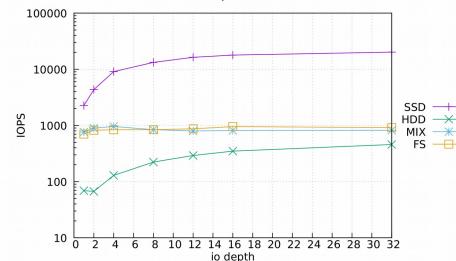
HDD: bluestore ssd

MIX: bluestore data:hdd db:ssd

FS: filestore data:hdd journal:ssd

Benchmarking a Ceph cluster:

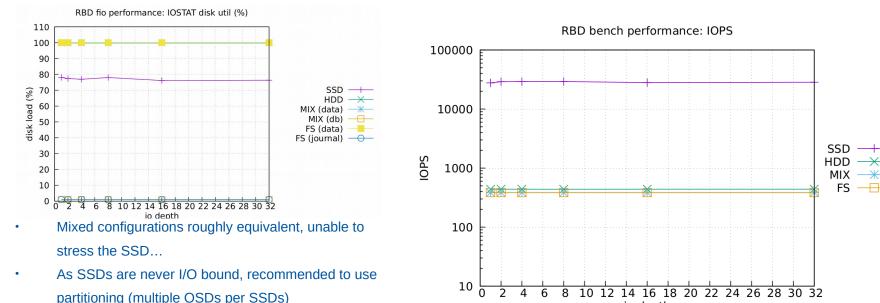

Starting point: raw fio results give 85.1 kIOPS (SSD) and 232 IOPS (HDD), what is RADOS performance ? (4k random sync writes)


SSD: bluestore ssd

HDD: bluestore ssd

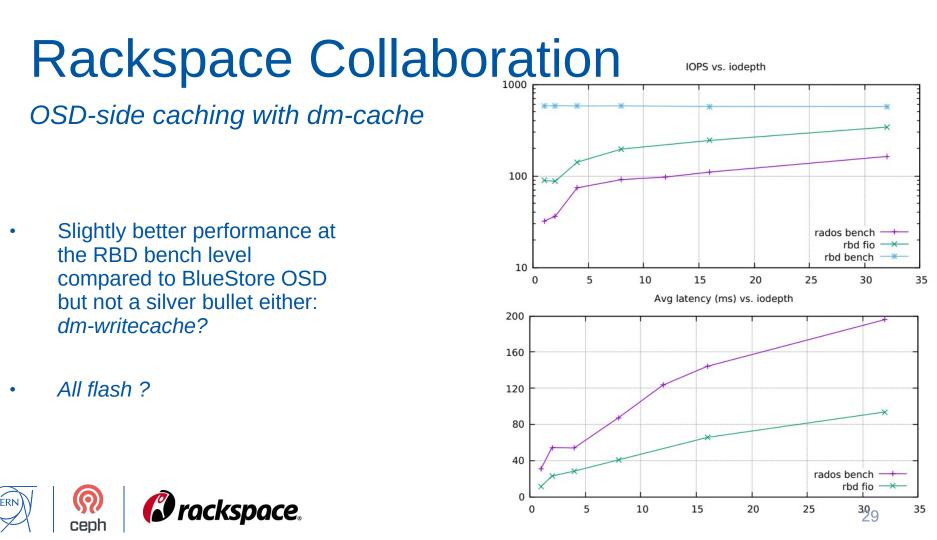
- MIX: bluestore data:hdd db:ssd
- FS: filestore data:hdd journal:ssd

Mixed configurations: SSD not-stressed, HDD remaining the bottleneck with a 100% I/O util

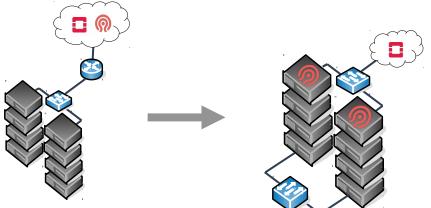


RADOS bench performance: IOPS

Benchmarking a Ceph cluster:


Starting point: raw fio results give 85.1 kIOPS (SSD) and 232 IOPS (HDD), what is RBD performance ? (4k random sync writes)

RNN 🔞 🕜 rockspace.

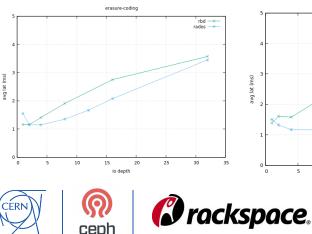

ceph

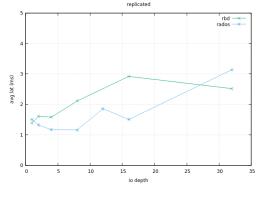
io depth

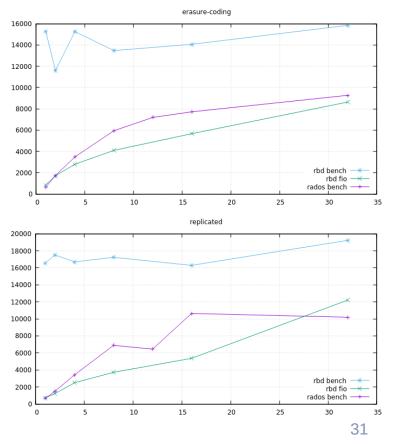
Hyperconverged OpenStack+RBD

- Cluster: 22 nodes
 - 16-core Xeon (SMT disabled)
 - 128GB of memory
 - 16x 960GB SSDs

- Configuration
 - Memory: 64GB for the VMs, 32GB for Ceph, rest for overheads
 - 14 OSDs per node


Plan

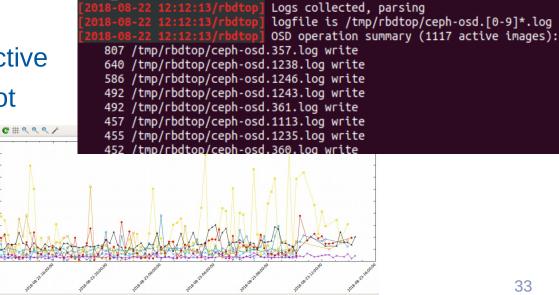

- Build it
- Internal perf tests
- Disaster tests
- Develop ops procedures
- Invite early adopters



Hyperconverged platform performance

- Benchmarking a hyperconverged cluster to bring Ceph/rbd to other CERN use-cases
- Outperforms by far OSD-side caching alternatives

Monitoring ceph/rbd performance


Ceph/rbd top v1

Identifying busiest OSDs/RBD Images

- List all OSDs on the host
- Activate logging for the OSDs for a given time
- Extract read/write
- Sort/Filter by most active

Frackspace

• Generate a report/plot

Ceph/rbd top v2

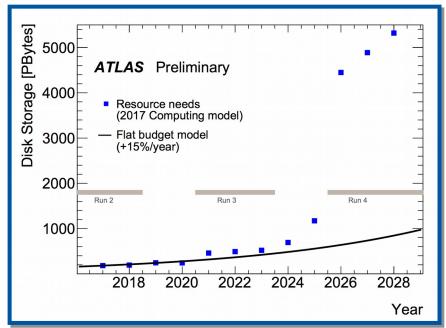
Integrating top as a Ceph feature (work-in-progress)

- Feature announced at Ceph Day Berlin on 13.11.2018
- Will help operators to identify "hot" clients/images
- Still work-in-progress

Ceph/rbd top v2

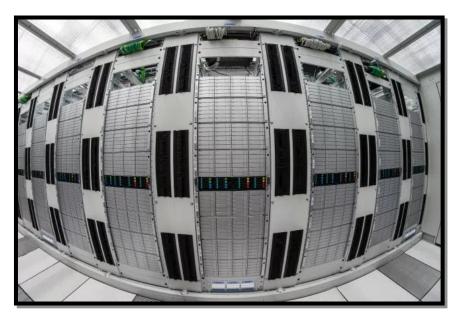
Integrating top as a Ceph feature

- Mgr module issuing requests to OSDs to collect perf metrics
- Python interface to add/remove requests and get query results
- Group by object prefix (rbd image name)


```
maha:~/ceph/ceph/build% ceph mgr module enable osd_perf_query
maha:~/ceph/ceph/build% ceph osd perf query add client id
added query client id with id 0
maha:~/ceph/ceph/build% ceph osd perf query add rbd_image_id
added query rbd_image_id with id 1
maha:~/ceph/ceph/build% for i in 1 2 3; do rbd bench --io-type write --rbd-cache=false --io-s
bench type write io_size 4096 io_threads 16 bytes 409600 pattern random
  SEC
            OPS OPS/SEC
                          BYTES/SEC
                         100 ops/sec: 499.99 bytes/sec: 2047978.70
elapsed:
            0 ops:
bench type write io_size 4096 io_threads 16 bytes 409600 pattern random
  SEC
            OPS OPS/SEC BYTES/SEC
                         100 ops/sec: 543.47 bytes/sec: 2226063.81
elapsed:
            0 ops:
bench type write io_size 4096 io_threads 16 bytes 409600 pattern random
  SEC
            OPS
                 0PS/SEC
                          BYTES/SEC
                         100 ops/sec: 595.23 bytes/sec: 2438069.87
elapsed:
            0 ops:
maha:~/ceph/ceph/build% ceph osd perf counters get 0
counters for query with id 0
    client id | write ops | read ops | write bytes | read bytes | write latency | read lat
 client.164136 |
                    107
                                24
                                         409600/107
                                                        366/24
                                                                   2618503617/107 | 11166778
                                24
  client.164140 |
                    107
                                         409600/107
                                                        366/24
                                                                   2833574010/107 | 14450420
                    107
                                24
                                         409600/107
                                                        366/24
  client.164159 |
                                                                   2357477064/107 | 11717881
maha:~/ceph/ceph/build% ceph osd perf counters get 1
counters for query with id 1
 pool id | rbd image id | write ops | read ops | write bytes | read bytes | write latency
                                                                            2548654136/100
           1e6157e263d9e |
                              100
                                          0
                                                   409600/100
                                                                   0/0
                                                                            2742848291/100
           1e64961688492 |
                              100
                                          0
                                                   409600/100
                                                                   0/0
           1e6526e037e21
                              100
                                                   409600/100
                                                                   0/0
                                                                             2289681719/100
```

Future...

HEP Computing for the 2020s


- Run-2 (2015-18):
 ~50-80PB/year
- Run-3 (2020-23): ~150PB/year
- Run-4: ~600PB/year?!

Scale Testing

- Bigbang scale tests mutually benefitting CERN & Ceph project
- Bigbang I: 30PB, 7200 OSDs, Ceph hammer. Found several osdmap limitations
- *Bigbang II:* Similar size, Ceph jewel. Scalability limited by OSD-MON traffic. Led to dev of *ceph-mgr*.

Bigbang III: 65PB, 10800 OSDs.
 <u>https://ceph.com/community/new-luminous-scalability/</u>

Thanks!

Merci!

home.cern

