
Introduction to Machine Learning

Journées Calcul et Apprentissage

Aurélien Garivier

24-25 avril 2019

Table of contents

1. What is Machine Learning?

Data and Learning Algorithms

Classification Framework

2. First Algorithms: fitting versus generalizing

3. Nearest-Neighbor Classification

4. Empirical Risk Minimization

5. Support Vector Machines

6. Neural Networks

1

What is Machine Learning?

Why Machine Learning?

2

Where to learn more?

3

What do I need to practice ML? R

4

What do I need to practice ML? python

4

What do I need to practice ML? scikit-learn

4

Outline

What is Machine Learning?

Data and Learning Algorithms

Classification Framework

First Algorithms: fitting versus generalizing

Nearest-Neighbor Classification

Empirical Risk Minimization

Support Vector Machines

Neural Networks

5

What is Machine Learning?

• Algorithms operate by building a model from example inputs in

order to make data-driven predictions or decisions...

• ...rather than following strictly static program instructions: useful

when designing and programming explicit algorithms is unfeasible or

poorly efficient.

Within Artificial Intelligence

• evolved from the study of pattern recognition and computational

learning theory in artificial intelligence.

• AI: emulate cognitive capabilities of humans

(big data: humans learn from abundant and diverse sources of data).

• a machine mimics ”cognitive” functions that humans associate with

other human minds, such as ”learning” and ”problem solving”.

6

Example: MNIST dataset

7

Definition

Arthur Samuel (1959)

Field of study that gives computers the ability to learn without being

explicitly programmed

Tom M. Mitchell (1997)

A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P if its performance at

tasks in T, as measured by P, improves with experience E.

8

Machine Learning: Typical Problems

• spam filtering, text classification

• optical character recognition (OCR)

• search engines

• recommendation platforms

• speach recognition software

• computer vision

• bio-informatics, DNA analysis, medicine

• ...

For each of this task, it is possible but very inefficient to write an explicit

program reaching the prescribed goal.

It proves much more succesful to have a machine infer what the good

decision rules are.

9

What is Statistical Learning?

= Machine Learning using statistics-inspired tools and guarantees

• Importance of probability- and statistics-based methods

→ Data Science (Michael Jordan)

• Computational Statistics: focuses in prediction-making through

the use of computers together with statistical models (ex: Bayesian

methods).

• Data Mining (unsupervised learning) focuses more on exploratory

data analysis: discovery of (previously) unknown properties in the

data. This is the analysis step of Knowledge Discovery in Databases.

• Machine Learning has more operational goals

Ex: consistency → oracle inequalities

Models (if any) are instrumental.

ML more focused on correlation, less on causality (now changing).

• Strong ties to Mathematical Optimization, which furnishes

methods, theory and application domains to the field

10

What is ML composed of?

Machine Learning Unsupervised
Learning

Representation
learning

Clustering

Anomaly
detection

Bayesian
networks

Latent
variables

Density
estimation

Dimension
reduction

Supervised
Learning:

classification,
regression

Decition
Trees

SVM

Ensemble
Methods

Boosting

BaggingRandom
Forest

Neural
Networks

Sparse
dictionary
learning

Model
based

Similarity
/ metric
learning

Recommender
systems

Rule Learning

Inductive
logic pro-
gramming

Association
rule

learning

Reinforcement
Learning

Bandits MDP

• semi-supervised learning

11

Outline

What is Machine Learning?

Data and Learning Algorithms

Classification Framework

First Algorithms: fitting versus generalizing

Nearest-Neighbor Classification

Empirical Risk Minimization

Support Vector Machines

Neural Networks

12

What is a classifier?

x1

x2

xn

y1

yn

y2

Fe
at

ur
e

1
Fe

at
ur

e
2

Fe
at

ur
e

p

Y ∈ YnX ∈Mn,p(R)

hn : X → Y
6

Classifier An

Data: n-by-p matrix X

• n examples = points

of observations

• p features =

characteristics

measured for each

example

13

Data repositories

• Inside R: package datasets

• Inside python/scikitlearn: package sklearn.datasets

• UCI Machine Learning Repository

• Challenges: Kaggle, etc.

14

Outline

What is Machine Learning?

Data and Learning Algorithms

Classification Framework

First Algorithms: fitting versus generalizing

Nearest-Neighbor Classification

Empirical Risk Minimization

Support Vector Machines

Neural Networks

15

Statistical Learning Hypothesis

Assumption

• The examples (Xi ,Yi)1≤i≤n are iid samples of an unknown joint

distribution D;

• The points to classify later are also independent draws of the same

distribution D.

Hence, for every decision rule h : X → Y we can define the risk

LD(h) = P(X ,Y)∼D
(
h(X) 6= Y) = D

({
(x , y) : h(x) 6= y

})
.

The goal of the learning algorithm is to minimize the expected risk:

Rn(An) = ED⊗n

[
LD
(
An

(
(X1,Y1), . . . , (Xn,Yn)

)︸ ︷︷ ︸
ĥn

)]

for every distribution D, using only the examples.

16

Signal and Noise

17

Example: Character Recognition

Domain set X 28× 28 images

Label set Y {0, 1, . . . , 9}
Joint distribution D ?

Prediction function h ∈ H ⊂ YX
Risk R(h) = PD

(
h(X) 6= Y

)
Sample Sn =

{
(Xi ,Yi)

}n
i=1

MNIST dataset

Empirical risk

LS(h) = 1
n

∑n
i=1 1{h(Xi) 6= Yi}

Learning algorithm

A = (An)n, An : (X × Y)n → H neural nets, boosting...

Expected risk Rn(A) = En

[
LD
(
An(Sn))

)]

18

Two visions of D

As a pair (Dx , k), where

• for A ⊂ X , Dx(A) = D
(
A× Y

)
is the

marginal distribution of X ,

• and for x ∈ X and B ⊂ Y,

k(B|x) = D
(
Y ∈ B|X = x) is (a version of)

the conditional distribution of Y given X .

As a pair
(
Dy ,

(
D(·|y)

)
y

)
, where

• for y ∈ Y, DY (y) = D
(
X × y

)
is the

marginal distribution of Y ,

• and for A ⊂ X and y ∈ Y,

D(A|y) = D
(
X ∈ A|Y = y) is the conditional

distribution of X given Y = y .

19

Two visions of D

As a pair (Dx , k), where

• for A ⊂ X , Dx(A) = D
(
A× Y

)
is the

marginal distribution of X ,

• and for x ∈ X and B ⊂ Y,

k(B|x) = D
(
Y ∈ B|X = x) is (a version of)

the conditional distribution of Y given X .

As a pair
(
Dy ,

(
D(·|y)

)
y

)
, where

• for y ∈ Y, DY (y) = D
(
X × y

)
is the

marginal distribution of Y ,

• and for A ⊂ X and y ∈ Y,

D(A|y) = D
(
X ∈ A|Y = y) is the conditional

distribution of X given Y = y .

19

Performance Limit: Bayes Classifier

Consider binary classification Y = {0, 1}, η(x) := D(Y = 1|X = x).

Theorem

The Bayes classifier is defined by

h∗(x) = 1
{
η(x) ≥ 1/2

}
= 1

{
η(x) ≥ 1− η(x)

}
= 1

{
2η(x)− 1 ≥ 0

}
.

For every classifier h : X → Y = {0, 1},

LD(h) ≥ LD(h∗) = E
[

min
(
η(X), 1− η(X)

)]
.

The Bayes risk L∗D = LD(h∗) is called the noise of the problem.

More precisely,

LD(h)− LD(h∗) = E
[∣∣2η(X)− 1

∣∣ 1{h(X) 6= h∗(X)
}]

.

Extends to |Y| > 2.

20

First Algorithms: fitting versus

generalizing

Nearest-Neighbor Classification

The Nearest-Neighbor Classifier

We assume that X is a metric space with distance d .

The nearest-neighbor classifier ĥNNn : X → Y is defined as

ĥNNn (x) = YI where I ∈ arg min
1≤i≤n

d(x − Xi) .

Typical distance: L2 norm on Rd : ‖x − x ′‖ =
√∑d

j=1(xi − x ′i)
2 .

Buts many other possibilities: Hamming distance on {0, 1}d , etc.

21

Numerically

22

Numerically

22

The most simple analysis of the most simple algorithm

A1. Y = {0, 1}.
A2. X = [0, 1[d .

A3. η is c-Lipschitz continuous:

∀x , x ′ ∈ X ,
∣∣η(x)− η(x ′)

∣∣ ≤ c
∥∥x − x ′‖ .

Theorem

Under the previous assumptions, for all distributions D and all m ≥ 1

LD
(
ĥNNn

)
≤ 2L∗D +

3c
√
d

n1/(d+1)
.

23

Proof Outline

• Conditioning: as I (x) = arg min1≤i≤n ‖x − Xi‖,

LD(ĥNNn) = E
[
E
[
1{Y 6= YI (X)}

∣∣X ,X1, . . . ,Xn

]]
.

• Y ∼ B(p), Y ′ ∼ B(q) =⇒ P(Y 6= Y ′) ≤ 2 min(p, 1− p) + |p − q|,

E
[
1{Y 6= YI (X)}|X ,X1, . . . ,Xn

]
≤ 2 min

(
η(X), 1−η(X)

)
+c
∥∥X−XI (X)

∥∥ .
• Partition X into |C| = T d cells of diameter

√
d/T :

C =

{[
j1 − 1

T
,
j1
T

[
× · · · ×

[
jd − 1

T
,
jd
T

[
, 1 ≤ j1, . . . , jd ≤ T

}
.

• 2 cases: either the cell of X is occupied by a sample point, or not:∥∥X−XI (X)

∥∥ ≤∑
c∈C

1{X ∈ c}
(√

d

T
1

n⋃
i=1

{Xi ∈ c}+
√
d1

n⋂
i=1

{Xi /∈ c}
)
.

• =⇒ E
[
‖X − XI (X)‖

]
≤
√
d

T +
√
dT d

e n and choose T =
⌊
n

1
d+1

⌋
.

24

What does the analysis say?

• Is it loose? (sanity check: uniform DX)

• Non-asympototic (finite sample bound)

• The second term 3c
√
d

n1/(d+1) is distribution independent

• Does not give the trajectorial decrease of risk

• Exponential bound d (cannot be avoided...)

=⇒ curse of dimensionality

• How to improve the classifier?

25

k-nearest neighbors

Let X be a (pre-compact) metric space with distance d .

k-NN classifier

hkNN : x 7→ 1
{
η̂(x) ≥ 1/2

}
= plugin for Bayes classifier with estimator

η̂(x) =
1

k

k∑
j=1

Y(j)(X)

where

d
(
X(1)(X),X

)
≤ d

(
X(2)(X),X

)
≤ · · · ≤ d

(
X(n)(X),X

)
.

26

More neighbors are better?

k = 1

27

More neighbors are better?

k = 3

27

More neighbors are better?

k = 5

27

More neighbors are better?

k = 7

27

More neighbors are better?

k = 75

27

Bias-Variance tradeoff

28

Risk bound

Let Cε be an ε-covering of X :

∀x ∈ X ,∃x ′ ∈ Cε : d(x , x ′) ≤ ε .

Excess risk for k-nearest-neighbours

If η is c-Lipschitz continuous: ∀x , x ′ ∈ X ,
∣∣η(x)− η(x ′)

∣∣ ≤ c d
(
x , x ′

)
,

then for all k ≥ 2 and all n ≥ 1:

L
(
ĥkNNn

)
− L
(
h∗
)
≤ 1√

k e
+

2k |Cε|
n

+ 4cε

≤ 1√
k e

+ (2 + 4c)

(
αk

n

) 1
d+1

for ε =
(
αk
n

) 1
d+1 ,

if |Cε| ≤ αε−d

≤ (3 + 4c)
(α
n

) 1
d+3

for k =
(n
α

) 2
d+3

.

29

Room for improvement

• Lower bound? in n−
1
d .

• Margin conditions

=⇒ fast rates

• More regularity?

=⇒ weighted nearest neighbors

• Is regularity required everywhere?

=⇒ What matters are the balls of mass ≈ k/n near the

decision boundary.

• 2 ”parameters”:

• obvious: the number of neighbors k (bias-variance tradeoff)

• hidden: the distance d (real problem)

30

Curse of dimensionality: No free lunch theorem

Theorem

Let c > 1 be a Lipschitz constant. Let A be any learning algorithm for

binary classification over a domain X = [0, 1]d . If the training set size is

n ≤ (c + 1)d/2, then there exists a distribution D over [0, 1]d × {0, 1}
such that:

• η(x) is c-Lipschitz;

• the Bayes error of the distribution is 0;

• with probability at least 1/7 over the choice of Sn ∼ D⊗n,

LD
(
A(Sn)

)
≥ 1

8
.

31

Empirical Risk Minimization

Going empirical

Idea for every candidate rule h in an hypothesis class H, replace the

unknown risk

LD(h) = P(X ,Y)∼D
(
h(X) 6= Y)

by the computable empirical risk

LSn(h) =
1

n

n∑
i=1

1{h(Xi) 6= Yi}

and use some uniform law of large numbers:

PD

sup
h∈H

∣∣LSn(h)− LD(h)
∣∣ > c

√
DH log(n) + log 1

δ

n

 ≤ δ
where DH is the Vapnik-Chervonenkis dimension of H.

32

Empirical Risk minimization

Uniform law of large numbers:

PD

sup
h∈H

∣∣LSn(h)− LD(h)
∣∣ > c

√
DH log(n) + log 1

δ

n

 ≤ δ .
→ Empirical Risk Minimizer:

ĥn = arg min
h∈H

LSn(h) .

Good if

• the class H is not too large

• the number n of examples is large enough

so as to ensure that c

√
DH log(n)+log 1

δ

n ≤ ε.
→ Sample complexity = number of examples required to have an

ε-optimal rule in the hypothesis class H = O
(
DH
ε2

)
.

33

The class of halfspaces

Definition

The class of linear (affine) functions on X = Rd is defined as

Ld =
{
hw ,b : w ∈ Rd , b ∈ R} , where hw ,b(x) = 〈w , x〉+ b .

The hypothesis class of halfspaces for binary classification is defined as

HSd = sign ◦Ld =
{
x 7→ sign

(
hw ,b(x)

)
: hw ,b ∈ Ld

}
where sign(u) = 1{u ≥ 0} − 1{u < 0}. Depth 1 neural networks.

By taking X ′ = X × {1} and d ′ = d + 1, we may omit the bias b and

focus on functions hw (x) = 〈w , x〉.
Property

The VC-dimension of HSd is equal to d + 1.

Corollary: the class of halfspaces is learnable with sample complexity

O
(d+1+log(1/δ)

ε2

)
. 34

Realizable case: Learning halfspaces with a linear program

solver

Realizable case: there exists w∗ such that ∀i ∈ {1, . . . , n}, yi 〈w∗, xi 〉 > 0.

Then there exists w̄ ∈ Rd such that ∀i ∈ {1, . . . , n}, yi 〈w̄ , xi 〉 ≥ 1: if we

can find one, we have an ERM.

Let A ∈Mn,d(R) be defined by Ai,j = yi xi,j , and let

v = (1, . . . , 1) ∈ Rm. Then any solution of the linear program

max
w∈Rd

〈0,w〉 subject to Aw ≥ v

is an ERM. It can thus be computed in polynomial time.

35

Rosenblatt’s Perceptron algorithm

Algorithm: Batch Perceptron

Data: training set (x1, y1), . . . , (xn, yn)

1 w0 ← (0, . . . , 0)

2 t ≥ 0

3 while ∃it : yit 〈wt , xit 〉 ≤ 0 do

4 wt+1 ← wt + yit
xit
‖xit ‖

5 t ← t + 1

6 return wt

Each updates helps reaching the solution, since

yit 〈wt+1, xit 〉 = yit

〈
wt + yit

xit
‖xit‖

, xit

〉
= yit 〈wt , xit 〉+ ‖xit‖ .

Relates to a coordinate descent (stepsize does not matter).

36

Convergence of the Perceptron algorithm

Theorem

Assume that the dataset Sn =
{

(x1, y1), . . . , (xn, yn)
}

is linearly

separable and let the separation margin γ be defined as:

γ = max
w∈Rd :‖w‖=1

min
1≤i≤n

yi 〈w , xi 〉
‖xi‖

.

Then the perceptron algorithm stops after at most 1/γ2 iterations.

Proof: Let w∗ be such that ∀1 ≤ i ≤ n,
yi 〈w∗, xi 〉
‖xi‖

≥ γ . γ

• If iteration t is necessary, then

〈w∗,wt+1 − wt〉 = yit

〈
w∗,

xit
‖xit ‖

〉
≥ γ and hence 〈w∗,wt〉 ≥ γt .

• If iteration t is necessary, then

‖wt+1‖2 =

∥∥∥∥wt + yit
xit
‖xit ‖

∥∥∥∥2

= ‖wt‖2 +
2yit 〈wt , xit 〉
‖xit ‖︸ ︷︷ ︸
≤0

+y2
it
≤ ‖wt‖2 + 1

and hence ‖wt‖2 ≤ t, or ‖wt‖ ≤
√
t.

• As a consequence, the algorithm iterates at least t times if

γt ≤ 〈w∗,wt〉 ≤ ‖wt‖ ≤
√
t =⇒ t ≤

1

γ2
.

In the worst case, the number of iterations can be exponentially large in the dimension d . Usually,

it converges quite fast. If ∀i, ‖xi‖ = 1, γ = d(S,D) where D =
{
x : 〈w∗, x〉 = 0

}
.

37

Computational difficulty of agnostic learning, and surrogates

NP-hardness of computing the ERM for halfspaces

Computing an ERM in the agnostic case is NP-hard.

See On the difficulty of approximately maximizing agreements, by Ben-David, Eiron and Long.

Since the 0-1 loss

LSn(hw) =
1

n

n∑
i=1

1
{
yi 〈w , xi 〉 < 0

}
is intractable to minimize in the

agnostic case, one may consider

surrogate loss functions

LSn(hw) =
1

n

n∑
i=1

`
(
yi 〈w , xi 〉

)
,

where the loss function ` : R→ R+

• dominates the function 1
{
u < 0

}
,

• and leads to a ”simple” optimization problem (e.g. convex). 38

Logistic Regression

39

Logistic loss Y = {−1, 1}

Statistics: ”logistic regression”:

Pw

(
Y = y |X = x

)
=

1

1 + exp
(
− y 〈w , x〉

)
log with base 2 here so that `(0) = 1

LS(hw) =
1

m

m∑
i=1

log
(
1 + exp(−yi 〈w , xi 〉)

)
,

Convex minimization problem, can be solved by Newton’s algorithm (in

small dimension) or stochastic gradient descent (in higher dimension).

40

Structural Risk minimization

What if H =
∞⋃
d=1

Hd , with Hd ⊂ Hd+1?

→ empirical risk minimization fails

→ structural risk minimization:

ĥn = arg min
d≥1,h∈Hd

LSn(h) + DHd
log(n) .

41

Support Vector Machines

Margin for linear separation

• Training sample Sn =
{

(x1, y1), . . . , (xn, yn)
}

, where xi ∈ Rd and

yi ∈ {±1}.
• Linearly separable if there exists a halfspace h = (w , b) such that

∀i , yi = sign
(
〈w , xi 〉+ b

)
.

• What is the best separating hyperplane for generalization?

Distance to hyperplane

If ‖w‖ = 1, then the distance from x

to the hyperplane h = (w , b) is

d(x ,H) =
∣∣〈w , x〉+ b

∣∣.
Proof: Check that min

{
‖x − v‖2 : v ∈

h
}

is reached at v = x −
(
〈w , x〉+ b

)
w .

42

Hard-SVM

Formulation 1:

arg max
(w ,b):‖w‖=1

min
1≤i≤m

∣∣〈w , xi 〉+ b
∣∣ such that ∀i , yi

(
〈w , xi 〉+ b

)
> 0 .

Formulation 2:

min
w ,b
‖w‖2 such that ∀i , yi

(
〈w , xi 〉+ b

)
≥ 1 .

Remark: b is not penalized.

Proposition

The two formulations are equivalent.

Proof: if (w0, b0) is the solution of Formulation 2, then ŵ = w0
‖w0‖

, b̂ = b0
|w| is

a solution of Formulation 1: if (w∗, b∗) is another solution, then letting

γ∗ = min1≤i≤m yi
(
〈w , xi 〉+ b

)
we see that

(
w∗

γ∗ ,
b∗

γ∗

)
satisfies the constraint of

Formulation 2, hence ‖w0‖ ≤ ‖w
∗‖

γ∗ = 1
γ∗ and thus

min1≤i≤m

∣∣〈ŵ , xi 〉+ b̂
∣∣ = 1

‖w0‖
≥ γ∗.

43

Sample Complexity

Definition

A distribution D over Rd × {±1} is separable with a (γ, ρ)-margin if

there exists (w∗, b∗) such that ‖w∗‖ = 1 and with probability 1 on a

pair (X ,Y) ∼ D, it holds that ‖X‖ ≤ ρ and Y
(
〈w∗,X 〉+ b

)
≥ γ.

Remark: by multiplying the xi by α, the margin is mutliplied by α.

Theorem

For any distribution D over Rd × {±1} that satisfies the

(γ, ρ)-separability with margin assumption using a homogenous

halfspace, with probability at least 1− δ over the training set of size n

the 0− 1 loss of the output of Hard-SVM is at most√
4(ρ/γ)2

n
+

√
2 log(2/δ)]

n
.

Remark: depends on dimension d only thru ρ and γ.
44

Soft-SVM

When the data is not linearly separable, allow slack variables ξi :

min
w ,b,ξ

λ‖w‖2 +
1

n

n∑
i=1

ξi such that ∀i , yi
(
〈w , xi 〉+ b

)
≥ 1− ξi and ξi ≥ 0

= min
w ,b

λ‖w‖2 + LhingeSn
(w , b) where `hinge(u) = max(0, 1− u) .

Theorem

Let D be a distribution over B(0, ρ)× {±1}. If An(Sn) is the output of

the soft-SVM algorithm on the sample S of D of size n,

E
[
L0−1
D

(
An(Sn)

)]
≤ E

[
LhingeD

(
An(Sn)

)]
≤ inf

u
LhingeD (u) + λ‖u‖2 +

2ρ2

λn
.

For every B > 0, setting λ =
√

2ρ2

B2n yields:

E
[
L0−1
D

(
An(Sn)

)]
≤ E

[
LhingeD

(
An(Sn)

)]
≤ inf

w :‖w‖≤B
LhingeD (w)+

√
8ρ2B2

n
.

45

SVM as a Penalized Empirical Risk Minimizer

Margin maximization leads to

LhingeSn
(hw) =

1

n

n∑
i=1

max
{

0, 1− yi 〈w , xi 〉
}
,

convex but non-smooth minimization problem, used with a penalization

term λ‖w‖2.

46

Dual Form of the SVM Optimization Problem

To simplify, we consider only the homogeneous case of hard-SVM. Let

g(w) = max
α∈[0,+∞)n

n∑
i=1

αi

(
1− yi 〈w , xi 〉

)
=

{
0 if ∀i , yi 〈w , xi 〉 ≥ 1,

+∞ otherwise .

Then the hard-SVM problem is equivalent to

min
w :∀i,yi 〈w ,xi 〉≥1

1

2
‖w‖2 = min

w

1

2
‖w‖2 + g(w)

= min
w

max
α∈[0,+∞)m

1

2
‖w‖2 +

n∑
i=1

αi

(
1− yi 〈w , xi 〉

)
min−max thm

= max
α∈[0,+∞)n

min
w

1

2
‖w‖2 +

n∑
i=1

αi

(
1− yi 〈w , xi 〉

)
.

The inner min is reached at w =
n∑

i=1

αiyixi and can thus be written as

max
α∈Rn,α≥0

n∑
i=1

αi −
1

2

∑
1≤i,j≤n

αiαjyiyj〈xi , xj〉 .
47

Support vectors

Still for the homogeneous case of hard-SVM:

Property

Let w0 be a solution of and let I = {i :
∣∣〈w0, xi 〉

∣∣ = 1}. There exist

α1, . . . , αn such that

w0 =
∑
i∈I

αixi .

The dual problem involves the xi only thru scalar products 〈xi , xj〉.
It is of size n (independent of the dimension d).

These computations can be extended to the non-homogeneous soft-SVM

→ Kernel trick.

48

Numerically solving Soft-SVM

f (w) = λ
2 ‖w‖2 + LhingeS (w) is λ-strongly convex.

→ Stochastic Gradient Descent with learning rate 1/(λt). Stochastic

subgradient of LhingeS (w) : vt = −yItxIt1
{
yIt 〈w , xIt 〉 < 1

}
.

wt+1 = wt −
1

λt
(λwt + vt) =

t − 1

t
wt −

1

λt
vt = − 1

λt

t∑
i=1

vt .

Algorithm: SGD for Soft-SVM

1 Set θ0 = 0

2 for t = 0 . . .T − 1 do

3 Let wt = 1
λt θt

4 Pick It ∼ U
(
{1, . . . , n}

)
5 if yIt 〈wt , xIt 〉 < 1 then

6 θt+1 ← θt + yItxIt
7 else

8 θt+1 ← θt

9 return w̄T = 1
T

∑T−1
t=0 wt 49

Neural Networks

One-layer network

Src: http://insanedev.co.uk/open-cranium/

50

http://insanedev.co.uk/open-cranium/

One-layer network

Src: [Tufféry, Data Mining et Informatique Dcisionnelle]

51

One-layer network

Src: http://www.makhfi.com

51

http://www.makhfi.com

Two-layer network

Src: [Tufféry, Data Mining et Informatique Dcisionnelle]

52

Profound ideas and tricks

• Convolutional networks

• Max-pooling

• Dropout

• Data augmentation

• GANs

• Representation learning

• Self-learning (ex: classify against rotations)

53

The three main theoretical challenges of deep learning

• Expressive power of DNN: why are the function we are interested

in so well approximated by (deep convolutive) neural networks?

• Success of nave optimisation: why does gradient descent lead to

a good local minimum?

• Generalization miracle why is there no overfitting with so many

parameters?

54

	What is Machine Learning?
	Data and Learning Algorithms
	Classification Framework
	Statistical Learning

	First Algorithms: fitting versus generalizing
	Nearest-Neighbor Classification
	Empirical Risk Minimization
	Support Vector Machines
	Neural Networks

