Introduction to Machine Learning

Journées Calcul et Apprentissage

Aurélien Garivier
24-25 avril 2019
"

Table of contents

1. What is Machine Learning?

Data and Learning Algorithms

Classification Framework

2. First Algorithms: fitting versus generalizing
3. Nearest-Neighbor Classification
4. Empirical Risk Minimization
5. Support Vector Machines
6. Neural Networks

What is Machine Learning?

Why Machine Learning?

Yann LeCun, Geoffrey Hinton et Yoshua
Bengio reçoivent le prix Turing

LE MACHINE LEARNING PROVOQUE UNE CRISE DANS LE DOMAINE DE LA SCIENCE

[^0]SHARE SPEGAL VIEWPOINTS
(f) Machine Learning for Science: State of the Art and Future Prospects
Erie Mjolsnesss', Dennis DeCoste

- Soe all authoce and affiliot

Article Figures \& Data Info \& Metrics eletters R PDF

Abstract

Recent advances in machine learning methods, along with successful applications across a wide variety of fields such as planetary science and bioinformatics, promise powerful new tools for practicing scientists. This viewpoint highlights some useful characteristics of modern machine learning methods and their relevance to scientific applications. We conclude with some speculations on near-term progress and promising directions.

PUBLIC RELEASE: 15 FEB- 2019
Can we trust scientific discoveries made using machine learning?
Rice U expert: Key is creating M1L systemis that question their own predictions RICE UNIVERSITY

Where to learn more?

MikiStat

What do I need to practice ML?

Activites restudio
mer. 19:10

What do I need to practice ML?

python

What do I need to practice ML?

scikit-learn

Outline

What is Machine Learning?
Data and Learning Algorithms Classification Framework

First Algorithms: fitting versus generalizing

Nearest-Neighbor Classification

Empirical Risk Minimization

Support Vector Machines
Neural Networks

What is Machine Learning?

- Algorithms operate by building a model from example inputs in order to make data-driven predictions or decisions...
- ...rather than following strictly static program instructions: useful when designing and programming explicit algorithms is unfeasible or poorly efficient.

Within Artificial Intelligence

- evolved from the study of pattern recognition and computational learning theory in artificial intelligence.
- AI: emulate cognitive capabilities of humans (big data: humans learn from abundant and diverse sources of data).
- a machine mimics "cognitive" functions that humans associate with other human minds, such as "learning" and "problem solving".

Example: MNIST dataset

$\cdots+a=0$ bers	+asme	
50479	50419	$504 / 9$
21314	21314	21314
35361	35361	35361

Definition

Arthur Samuel (1959)

Field of study that gives computers the ability to learn without being explicitly programmed

Tom M. Mitchell (1997)

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T , as measured by P , improves with experience E .

Machine Learning: Typical Problems

- spam filtering, text classification
- optical character recognition (OCR)
- search engines
- recommendation platforms
- speach recognition software
- computer vision
- bio-informatics, DNA analysis, medicine

For each of this task, it is possible but very inefficient to write an explicit program reaching the prescribed goal.

It proves much more succesful to have a machine infer what the good decision rules are.

What is Statistical Learning?

$=$ Machine Learning using statistics-inspired tools and guarantees

- Importance of probability- and statistics-based methods
\rightarrow Data Science (Michael Jordan)
- Computational Statistics: focuses in prediction-making through the use of computers together with statistical models (ex: Bayesian methods).
- Data Mining (unsupervised learning) focuses more on exploratory data analysis: discovery of (previously) unknown properties in the data. This is the analysis step of Knowledge Discovery in Databases.
- Machine Learning has more operational goals

Ex: eonsistency \rightarrow oracle inequalities
Models (if any) are instrumental.
ML more focused on correlation, less on causality (now changing).

- Strong ties to Mathematical Optimization, which furnishes methods, theory and application domains to the field

What is ML composed of?

Outline

What is Machine Learning?
Data and Learning Algorithms
Classification Framework

```
First Algorithms: fitting versus generalizing
Nearest-Neighbor Classification
Empirical Risk Minimization
Support Vector Machines
Neural Networks
```


What is a classifier?

Data repositories

- Inside R: package datasets
- Inside python/scikitlearn: package sklearn.datasets
- UCI Machine Learning Repository

- Challenges: Kaggle, etc.

Outline

What is Machine Learning?
Data and Learning Algorithms
Classification Framework
First Algorithms: fitting versus generalizing
Nearest-Neighbor Classification
Empirical Risk Minimization
Support Vector Machines
Neural Networks

Statistical Learning Hypothesis

Assumption

- The examples $\left(X_{i}, Y_{i}\right)_{1 \leq i \leq n}$ are iid samples of an unknown joint distribution \mathcal{D};
- The points to classify later are also independent draws of the same distribution \mathcal{D}.

Hence, for every decision rule $h: \mathcal{X} \rightarrow \mathcal{Y}$ we can define the risk

$$
L_{\mathcal{D}}(h)=\mathbb{P}_{(X, Y) \sim \mathcal{D}}(h(X) \neq Y)=\mathcal{D}(\{(x, y): h(x) \neq y\})
$$

The goal of the learning algorithm is to minimize the expected risk:

$$
R_{n}\left(\mathcal{A}_{n}\right)=\mathbb{E}_{\mathcal{D} \otimes n}[L_{\mathcal{D}}(\underbrace{\mathcal{A}_{n}\left(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right)}_{\hat{h}_{n}})]
$$

for every distribution \mathcal{D}, using only the examples.

Signal and Noise

new york times bestseller
noise and the noi the signal and th and the noise anc the noise and thi why so many predictions failbut some don't
and the noise ant nate silver the nc
"Could turn out to be one of the more mamentous books of the decade." -The New York Times Book Review

Example: Character Recognition

Domain set \mathcal{X}	28×28 images
Label set \mathcal{Y}	$\{0,1, \ldots, 9\}$
Joint distribution \mathcal{D}	$?$
Prediction function $h \in \mathcal{H} \subset \mathcal{Y}^{\mathcal{X}}$	
Risk $R(h)=P_{\mathcal{D}}(h(X) \neq Y)$	MNIST dataset
Sample $S_{n}=\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}$	
Empirical risk	
$\quad L_{s}(h)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{h\left(X_{i}\right) \neq Y_{i}\right\}$	
Learning algorithm	
$\quad \mathcal{A}=\left(\mathcal{A}_{n}\right)_{n}, \mathcal{A}_{n}:(\mathcal{X} \times \mathcal{Y})^{n} \rightarrow \mathcal{H}$	
Expected risk $\left.R_{n}(\mathcal{A})=\mathbb{E}_{n}\left[L_{\mathcal{D}}\left(\mathcal{A}_{n}\left(S_{n}\right)\right)\right)\right]$	

Two visions of \mathcal{D}

As a pair $\left(\mathcal{D}_{x}, k\right)$, where

- for $A \subset \mathcal{X}, \mathcal{D}_{x}(A)=\mathcal{D}(A \times \mathcal{Y})$ is the marginal distribution of X,
- and for $x \in \mathcal{X}$ and $B \subset \mathcal{Y}$,
$k(B \mid x)=\mathcal{D}(Y \in B \mid X=x)$ is (a version of)
 the conditional distribution of Y given X.

As a pair $\left(\mathcal{D}_{y},(\mathcal{D}(\cdot \mid y))_{y}\right)$, where

- for $y \in \mathcal{Y}, \mathcal{D}_{Y}(y)=\mathcal{D}(\mathcal{X} \times y)$ is the marginal distribution of Y,
- and for $A \subset \mathcal{X}$ and $y \in \mathcal{Y}$,

Two visions of \mathcal{D}

As a pair $\left(\mathcal{D}_{x}, k\right)$, where

- for $A \subset \mathcal{X}, \mathcal{D}_{x}(A)=\mathcal{D}(A \times \mathcal{Y})$ is the marginal distribution of X,
- and for $x \in \mathcal{X}$ and $B \subset \mathcal{Y}$, $k(B \mid x)=\mathcal{D}(Y \in B \mid X=x)$ is (a version of) the conditional distribution of Y given X.
As a pair $\left(\mathcal{D}_{y},(\mathcal{D}(\cdot \mid y))_{y}\right)$, where
- for $y \in \mathcal{Y}, \mathcal{D}_{Y}(y)=\mathcal{D}(\mathcal{X} \times y)$ is the marginal distribution of Y,
- and for $A \subset \mathcal{X}$ and $y \in \mathcal{Y}$,
$\mathcal{D}(A \mid y)=\mathcal{D}(X \in A \mid Y=y)$ is the conditional distribution of X given $Y=y$.

Performance Limit: Bayes Classifier

Consider binary classification $\mathcal{Y}=\{0,1\}, \eta(x):=\mathcal{D}(Y=1 \mid X=x)$.

Theorem

The Bayes classifier is defined by
$h^{*}(x)=\mathbb{1}\{\eta(x) \geq 1 / 2\}=\mathbb{1}\{\eta(x) \geq 1-\eta(x)\}=\mathbb{1}\{2 \eta(x)-1 \geq 0\}$.
For every classifier $h: \mathcal{X} \rightarrow \mathcal{Y}=\{0,1\}$,

$$
L_{\mathcal{D}}(h) \geq L_{\mathcal{D}}\left(h^{*}\right)=\mathbb{E}[\min (\eta(X), 1-\eta(X))] .
$$

The Bayes risk $L_{\mathcal{D}}^{*}=L_{\mathcal{D}}\left(h^{*}\right)$ is called the noise of the problem.
More precisely,

$$
L_{\mathcal{D}}(h)-L_{\mathcal{D}}\left(h^{*}\right)=\mathbb{E}\left[|2 \eta(X)-1| \mathbb{1}\left\{h(X) \neq h^{*}(X)\right\}\right] .
$$

Extends to $|\mathcal{Y}|>2$.

First Algorithms: fitting versus generalizing

Nearest-Neighbor Classification

The Nearest-Neighbor Classifier

We assume that \mathcal{X} is a metric space with distance d.
The nearest-neighbor classifier $\hat{h}_{n}^{N N}: \mathcal{X} \rightarrow \mathcal{Y}$ is defined as

$$
\hat{h}_{n}^{N N}(x)=Y_{l} \text { where } I \in \underset{1 \leq i \leq n}{\arg \min } d\left(x-X_{i}\right)
$$

Typical distance: L^{2} norm on $\mathbb{R}^{d}:\left\|x-x^{\prime}\right\|=\sqrt{\sum_{j=1}^{d}\left(x_{i}-x_{i}^{\prime}\right)^{2}}$.
Buts many other possibilities: Hamming distance on $\{0,1\}^{d}$, etc.

Numerically

Numerically

The most simple analysis of the most simple algorithm

A1. $\mathcal{Y}=\{0,1\}$.
A2. $\mathcal{X}=\left[0,1\left[^{d}\right.\right.$.
A3. η is c-Lipschitz continuous:

$$
\forall x, x^{\prime} \in \mathcal{X},\left|\eta(x)-\eta\left(x^{\prime}\right)\right| \leq c\left\|x-x^{\prime}\right\|
$$

Theorem

Under the previous assumptions, for all distributions \mathcal{D} and all $m \geq 1$

$$
L_{\mathcal{D}}\left(\hat{h}_{n}^{N N}\right) \leq 2 L_{\mathcal{D}}^{*}+\frac{3 c \sqrt{d}}{n^{1 /(d+1)}} .
$$

Proof Outline

- Conditioning: as $I(x)=\arg \min _{1 \leq i \leq n}\left\|x-X_{i}\right\|$,

$$
L_{D}\left(\hat{h}_{n}^{N N}\right)=\mathbb{E}\left[\mathbb{E}\left[\mathbb{1}\left\{Y \neq Y_{I(X)}\right\} \mid X, X_{1}, \ldots, X_{n}\right]\right] .
$$

- $Y \sim \mathcal{B}(p), Y^{\prime} \sim \mathcal{B}(q) \Longrightarrow \mathbb{P}\left(Y \neq Y^{\prime}\right) \leq 2 \min (p, 1-p)+|p-q|$,

$$
\mathbb{E}\left[\mathbb{1}\left\{Y \neq Y_{I(X)}\right\} \mid X, X_{1}, \ldots, X_{n}\right] \leq 2 \min (\eta(X), 1-\eta(X))+c\left\|X-X_{I(X)}\right\|
$$

- Partition \mathcal{X} into $|\mathcal{C}|=T^{d}$ cells of diameter \sqrt{d} / T :

$$
\mathcal{C}=\left\{\left[\frac{j_{1}-1}{T}, \frac{j_{1}}{T}\left[\times \cdots \times\left[\frac{j_{d}-1}{T}, \frac{j_{d}}{T}\left[, \quad 1 \leq j_{1}, \ldots, j_{d} \leq T\right\} .\right.\right.\right.\right.
$$

- 2 cases: either the cell of X is occupied by a sample point, or not:

$$
\left\|X-X_{I(X)}\right\| \leq \sum_{c \in \mathcal{C}} \mathbb{1}\{X \in c\}\left(\frac{\sqrt{d}}{T} \mathbb{1} \bigcup_{i=1}^{n}\left\{X_{i} \in c\right\}+\sqrt{d} \mathbb{1} \bigcap_{i=1}^{n}\left\{X_{i} \notin c\right\}\right) .
$$

- $\Longrightarrow \mathbb{E}\left[\left\|X-X_{I(X)}\right\|\right] \leq \frac{\sqrt{d}}{T}+\frac{\sqrt{d} T^{d}}{e n}$ and choose $T=\left\lfloor n^{\frac{1}{d+1}}\right\rfloor$.

What does the analysis say?

- Is it loose? (sanity check: uniform \mathcal{D}_{X})
- Non-asympototic (finite sample bound)
- The second term $\frac{3 c \sqrt{d}}{n^{1}(d+1)}$ is distribution independent
- Does not give the trajectorial decrease of risk
- Exponential bound d (cannot be avoided...)
\Longrightarrow curse of dimensionality
- How to improve the classifier?

k-nearest neighbors

Let \mathcal{X} be a (pre-compact) metric space with distance d.

k-NN classifier

$h^{k N N}: x \mapsto \mathbb{1}\{\hat{\eta}(x) \geq 1 / 2\}=$ plugin for Bayes classifier with estimator

$$
\hat{\eta}(x)=\frac{1}{k} \sum_{j=1}^{k} Y_{(j)}(X)
$$

where

$$
d\left(X_{(1)}(X), X\right) \leq d\left(X_{(2)}(X), X\right) \leq \cdots \leq d\left(X_{(n)}(X), X\right)
$$

More neighbors are better?

Bias-Variance tradeoff

Risque de k-NN en fonction du nombre de voisins

Risk bound

Let \mathcal{C}_{ϵ} be an ϵ-covering of \mathcal{X} :

$$
\forall x \in X, \exists x^{\prime} \in \mathcal{C}_{\epsilon}: d\left(x, x^{\prime}\right) \leq \epsilon
$$

Excess risk for \mathbf{k}-nearest-neighbours

If η is c-Lipschitz continuous: $\forall x, x^{\prime} \in \mathcal{X},\left|\eta(x)-\eta\left(x^{\prime}\right)\right| \leq c d\left(x, x^{\prime}\right)$, then for all $k \geq 2$ and all $n \geq 1$:

$$
\begin{aligned}
L\left(\hat{h}_{n}^{k N N}\right)-L\left(h^{*}\right) & \leq \frac{1}{\sqrt{k e}}+\frac{2 k\left|\mathcal{C}_{\epsilon}\right|}{n}+4 c \epsilon \\
& \leq \frac{1}{\sqrt{k e}}+(2+4 c)\left(\frac{\alpha k}{n}\right)^{\frac{1}{d+1}} \quad\left\{\begin{array}{l}
\text { for } \epsilon=\left(\frac{\alpha k}{n}\right)^{\frac{1}{d+1}} \\
\text { if }\left|\mathcal{C}_{\epsilon}\right| \leq \alpha \epsilon^{-d}
\end{array}\right. \\
& \leq(3+4 c)\left(\frac{\alpha}{n}\right)^{\frac{1}{d+3}} \quad \text { for } k=\left(\frac{n}{\alpha}\right)^{\frac{2}{d+3}} .
\end{aligned}
$$

Room for improvement

- Lower bound? in $n^{-\frac{1}{d}}$.
- Margin conditions
\Longrightarrow fast rates
- More regularity?
\Longrightarrow weighted nearest neighbors
- Is regularity required everywhere?
\Longrightarrow What matters are the balls of mass $\approx k / n$ near the decision boundary.
- 2 "parameters":
- obvious: the number of neighbors k (bias-variance tradeoff)
- hidden: the distance d (real problem)

Curse of dimensionality: No free lunch theorem

Theorem

Let $c>1$ be a Lipschitz constant. Let A be any learning algorithm for binary classification over a domain $\mathcal{X}=[0,1]^{d}$. If the training set size is $n \leq(c+1)^{d} / 2$, then there exists a distribution \mathcal{D} over $[0,1]^{d} \times\{0,1\}$ such that:

- $\eta(x)$ is c-Lipschitz;
- the Bayes error of the distribution is 0 ;
- with probability at least $1 / 7$ over the choice of $S_{n} \sim \mathcal{D}^{\otimes n}$,

$$
L_{\mathcal{D}}\left(A\left(S_{n}\right)\right) \geq \frac{1}{8}
$$

Empirical Risk Minimization

Going empirical

Idea for every candidate rule h in an hypothesis class \mathcal{H}, replace the unknown risk

$$
L_{\mathcal{D}}(h)=\mathbb{P}_{(X, Y) \sim \mathcal{D}}(h(X) \neq Y)
$$

by the computable empirical risk

$$
L_{S_{n}}(h)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{h\left(X_{i}\right) \neq Y_{i}\right\}
$$

and use some uniform law of large numbers:

$$
\mathbb{P}_{D}\left(\sup _{h \in \mathcal{H}}\left|L_{S_{n}}(h)-L_{\mathcal{D}}(h)\right|>c \sqrt{\frac{D_{\mathcal{H}} \log (n)+\log \frac{1}{\delta}}{n}}\right) \leq \delta
$$

where $D_{\mathcal{H}}$ is the Vapnik-Chervonenkis dimension of \mathcal{H}.

Empirical Risk minimization

Uniform law of large numbers:

$$
\mathbb{P}_{D}\left(\sup _{h \in \mathcal{H}}\left|L_{S_{n}}(h)-L_{\mathcal{D}}(h)\right|>c \sqrt{\frac{D_{\mathcal{H}} \log (n)+\log \frac{1}{\delta}}{n}}\right) \leq \delta .
$$

\rightarrow Empirical Risk Minimizer:

$$
\hat{h}_{n}=\underset{h \in \mathcal{H}}{\arg \min } L_{S_{n}}(h) .
$$

Good if

- the class \mathcal{H} is not too large
- the number n of examples is large enough
so as to ensure that $c \sqrt{\frac{D_{\mathcal{H}} \log (n)+\log \frac{1}{\delta}}{n}} \leq \epsilon$.
\rightarrow Sample complexity $=$ number of examples required to have an ϵ-optimal rule in the hypothesis class $\mathcal{H}=O\left(\frac{D_{\mathcal{H}}}{\epsilon^{2}}\right)$.

The class of halfspaces

Definition

The class of linear (affine) functions on $\mathcal{X}=\mathbb{R}^{d}$ is defined as

$$
L_{d}=\left\{h_{w, b}: w \in \mathbb{R}^{d}, b \in \mathbb{R}\right\}, \quad \text { where } h_{w, b}(x)=\langle w, x\rangle+b .
$$

The hypothesis class of halfspaces for binary classification is defined as

$$
\mathcal{H} S_{d}=\operatorname{sign} \circ L_{d}=\left\{x \mapsto \operatorname{sign}\left(h_{w, b}(x)\right): h_{w, b} \in L_{d}\right\}
$$

where $\operatorname{sign}(u)=\mathbb{1}\{u \geq 0\}-\mathbb{1}\{u<0\}$. Depth 1 neural networks.
By taking $\mathcal{X}^{\prime}=\mathcal{X} \times\{1\}$ and $d^{\prime}=d+1$, we may omit the bias b and focus on functions $h_{w}(x)=\langle w, x\rangle$.

Property

The VC-dimension of $\mathcal{H} S_{d}$ is equal to $d+1$.
Corollary: the class of halfspaces is learnable with sample complexity $O\left(\frac{d+1+\log (1 / \delta)}{\epsilon^{2}}\right)$.

Realizable case: Learning halfspaces with a linear program solver

Realizable case: there exists w^{*} such that $\forall i \in\{1, \ldots, n\}, y_{i}\left\langle w^{*}, x_{i}\right\rangle>0$.
Then there exists $\bar{w} \in \mathbb{R}^{d}$ such that $\forall i \in\{1, \ldots, n\}, y_{i}\left\langle\bar{w}, x_{i}\right\rangle \geq 1$: if we can find one, we have an ERM.

Let $A \in \mathcal{M}_{n, d}(\mathbb{R})$ be defined by $A_{i, j}=y_{i} x_{i, j}$, and let
$v=(1, \ldots, 1) \in \mathbb{R}^{m}$. Then any solution of the linear program

$$
\max _{w \in \mathbb{R}^{d}}\langle 0, w\rangle \text { subject to } A w \geq v
$$

is an ERM. It can thus be computed in polynomial time.

Rosenblatt's Perceptron algorithm

```
Algorithm: Batch Perceptron
Data: training set \(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\)
\(1 w_{0} \leftarrow(0, \ldots, 0)\)
\(2 t \geq 0\)
3 while \(\exists i_{t}: y_{i_{t}}\left\langle w_{t}, x_{i_{t}}\right\rangle \leq 0\) do
\(4 \quad w_{t+1} \leftarrow w_{t}+y_{i_{t}} \frac{x_{i t}}{\left\|x_{i t}\right\|}\)
\(5 \quad t \leftarrow t+1\)
6 return \(w_{t}\)
```

Each updates helps reaching the solution, since

$$
y_{i_{t}}\left\langle w_{t+1}, x_{i_{t}}\right\rangle=y_{i_{t}}\left\langle w_{t}+y_{i_{t}} \frac{x_{i_{t}}}{\left\|x_{i_{t}}\right\|}, x_{i_{t}}\right\rangle=y_{i_{t}}\left\langle w_{t}, x_{i_{t}}\right\rangle+\left\|x_{i_{t}}\right\| .
$$

Relates to a coordinate descent (stepsize does not matter).

Convergence of the Perceptron algorithm

Theorem

Assume that the dataset $S_{n}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ is linearly
separable and let the separation margin γ be defined as:

$$
\gamma=\max _{w \in \mathbb{R}^{d}:\|w\|=1} \min _{1 \leq i \leq n} \frac{y_{i}\left\langle w, x_{i}\right\rangle}{\left\|x_{i}\right\|} .
$$

Then the perceptron algorithm stops after at most $1 / \gamma^{2}$ iterations.
Proof: Let w^{*} be such that $\forall 1 \leq i \leq n, \quad \frac{y_{i}\left\langle w^{*}, x_{i}\right\rangle}{\left\|x_{i}\right\|} \geq \gamma$.

- If iteration t is necessary, then

$$
\left\langle w^{*}, w_{t+1}-w_{t}\right\rangle=y_{i_{t}}\left\langle w^{*}, \frac{x_{i_{t}}}{\left\|x_{i_{t}}\right\|}\right\rangle \geq \gamma \quad \text { and hence }\left\langle w^{*}, w_{t}\right\rangle \geq \gamma t .
$$

- If iteration t is necessary, then

$$
\left\|w_{t+1}\right\|^{2}=\left\|w_{t}+y_{i_{t}} \frac{x_{i_{t}}}{\left\|x_{i_{t}}\right\|}\right\|^{2}=\left\|w_{t}\right\|^{2}+\underbrace{\frac{2 y_{i_{t}}\left\langle w_{t}, x_{i_{t}}\right\rangle}{\left\|x_{i_{t}}\right\|}}_{\leq 0}+y_{i_{t}}^{2} \leq\left\|w_{t}\right\|^{2}+1
$$

and hence $\left\|w_{t}\right\|^{2} \leq t$, or $\left\|w_{t}\right\| \leq \sqrt{t}$.

- As a consequence, the algorithm iterates at least t times if

$$
\gamma t \leq\left\langle w^{*}, w_{t}\right\rangle \leq\left\|w_{t}\right\| \leq \sqrt{t} \quad \Longrightarrow \quad t \leq \frac{1}{\gamma^{2}} .
$$

In the worst case, the number of iterations can be exponentially large in the dimension d. Usually, it converges quite fast. If $\forall i,\left\|x_{i}\right\|=1, \gamma=d(S, D)$ where $D=\left\{x:\left\langle w^{*}, x\right\rangle=0\right\}$.

Computational difficulty of agnostic learning, and surrogates

NP-hardness of computing the ERM for halfspaces

Computing an ERM in the agnostic case is NP-hard.
See On the difficulty of approximately maximizing agreements, by Ben-David, Eiron and Long.
Since the 0-1 loss
$L_{S_{n}}\left(h_{w}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{y_{i}\left\langle w, x_{i}\right\rangle<0\right\}$
is intractable to minimize in the agnostic case, one may consider surrogate loss functions

$$
L_{S_{n}}\left(h_{w}\right)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}\left\langle w, x_{i}\right\rangle\right)
$$

where the loss function $\ell: \mathbb{R} \rightarrow \mathbb{R}^{+}$

- dominates the function $\mathbb{1}\{u<0\}$,
- and leads to a "simple" optimization problem (e.g. convex).

Logistic Regression

Logistic loss $\quad \mathcal{Y}=\{-1,1\}$

Statistics: "logistic regression":

$$
\begin{aligned}
& P_{w}(Y=y \mid X=x) \\
& \quad=\frac{1}{1+\exp (-y\langle w, x\rangle)}
\end{aligned}
$$

$$
L_{S}\left(h_{w}\right)=\frac{1}{m} \sum_{i=1}^{m} \log \left(1+\exp \left(-y_{i}\left\langle w, x_{i}\right\rangle\right)\right),
$$

Convex minimization problem, can be solved by Newton's algorithm (in small dimension) or stochastic gradient descent (in higher dimension).

Structural Risk minimization

What if $\mathcal{H}=\bigcup_{d=1}^{\infty} \mathcal{H}_{d}$, with $\mathcal{H}_{d} \subset \mathcal{H}_{d+1}$?
\rightarrow empirical risk minimization fails

\rightarrow structural risk minimization:

$$
\hat{h}_{n}=\underset{d \geq 1, h \in \mathcal{H}_{d}}{\arg \min } L_{S_{n}}(h)+D_{\mathcal{H}_{d}} \log (n)
$$

Support Vector Machines

Margin for linear separation

- Training sample $S_{n}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$, where $x_{i} \in \mathbb{R}^{d}$ and $y_{i} \in\{ \pm 1\}$.
- Linearly separable if there exists a halfspace $h=(w, b)$ such that $\forall i, y_{i}=\operatorname{sign}\left(\left\langle w, x_{i}\right\rangle+b\right)$.
- What is the best separating hyperplane for generalization?

Distance to hyperplane

If $\|w\|=1$, then the distance from x to the hyperplane $h=(w, b)$ is $d(x, \mathcal{H})=|\langle w, x\rangle+b|$.

Proof: Check that $\min \left\{\|x-v\|^{2}: v \in\right.$ $h\}$ is reached at $v=x-(\langle w, x\rangle+b) w$.

Hard-SVM

Formulation 1:

$$
\underset{(w, b):\|w\|=1}{\arg \max } \min _{1 \leq i \leq m}\left|\left\langle w, x_{i}\right\rangle+b\right| \quad \text { such that } \forall i, y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)>0 \text {. }
$$

Formulation 2:

$$
\min _{w, b}\|w\|^{2} \quad \text { such that } \forall i, y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right) \geq 1
$$

Remark: b is not penalized.

Proposition

The two formulations are equivalent.
Proof: if $\left(w_{0}, b_{0}\right)$ is the solution of Formulation 2, then $\hat{w}=\frac{w_{0}}{\left\|w_{0}\right\|}, \hat{b}=\frac{b_{0}}{|w|}$ is a solution of Formulation 1: if $\left(w^{*}, b^{*}\right)$ is another solution, then letting $\gamma^{*}=\min _{1 \leq i \leq m} y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)$ we see that $\left(\frac{w^{*}}{\gamma^{*}}, \frac{b^{*}}{\gamma^{*}}\right)$ satisfies the constraint of Formulation 2, hence $\left\|w_{0}\right\| \leq \frac{\left\|w^{*}\right\|}{\gamma^{*}}=\frac{1}{\gamma^{*}}$ and thus $\min _{1 \leq i \leq m}\left|\left\langle\hat{w}, x_{i}\right\rangle+\hat{b}\right|=\frac{1}{\left\|w_{0}\right\|} \geq \gamma^{*}$.

Sample Complexity

Definition

A distribution \mathcal{D} over $\mathbb{R}^{d} \times\{ \pm 1\}$ is separable with a (γ, ρ)-margin if there exists $\left(w^{*}, b^{*}\right)$ such that $\left\|w^{*}\right\|=1$ and with probability 1 on a pair $(X, Y) \sim \mathcal{D}$, it holds that $\|X\| \leq \rho$ and $Y\left(\left\langle w^{*}, X\right\rangle+b\right) \geq \gamma$.

Remark: by multiplying the x_{i} by α, the margin is mutliplied by α.

Theorem

For any distribution \mathcal{D} over $\mathbb{R}^{d} \times\{ \pm 1\}$ that satisfies the (γ, ρ)-separability with margin assumption using a homogenous halfspace, with probability at least $1-\delta$ over the training set of size n the $0-1$ loss of the output of Hard-SVM is at most

$$
\sqrt{\frac{4(\rho / \gamma)^{2}}{n}}+\sqrt{\frac{2 \log (2 / \delta)]}{n}} .
$$

Remark: depends on dimension d only thru ρ and γ.

Soft-SVM

When the data is not linearly separable, allow slack variables ξ_{i} :

$$
\begin{aligned}
& \min _{w, b, \xi} \lambda\|w\|^{2}+\frac{1}{n} \sum_{i=1}^{n} \xi_{i} \quad \text { such that } \forall i, y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right) \geq 1-\xi_{i} \text { and } \xi_{i} \geq 0 \\
= & \min _{w, b} \lambda\|w\|^{2}+L_{S_{n}}^{\text {hinge }}(w, b) \quad \text { where } \ell^{\text {hinge }}(u)=\max (0,1-u) .
\end{aligned}
$$

Theorem

Let D be a distribution over $B(0, \rho) \times\{ \pm 1\}$. If $\mathcal{A}_{n}\left(S_{n}\right)$ is the output of the soft-SVM algorithm on the sample S of D of size n,
$\mathbb{E}\left[L_{D}^{0-1}\left(\mathcal{A}_{n}\left(S_{n}\right)\right)\right] \leq \mathbb{E}\left[L_{D}^{\text {hinge }}\left(\mathcal{A}_{n}\left(S_{n}\right)\right)\right] \leq \inf _{u} L_{D}^{\text {hinge }}(u)+\lambda\|u\|^{2}+\frac{2 \rho^{2}}{\lambda n}$.
For every $B>0$, setting $\lambda=\sqrt{\frac{2 \rho^{2}}{B^{2} n}}$ yields:
$\mathbb{E}\left[L_{D}^{0-1}\left(\mathcal{A}_{n}\left(S_{n}\right)\right)\right] \leq \mathbb{E}\left[L_{D}^{\text {hinge }}\left(\mathcal{A}_{n}\left(S_{n}\right)\right)\right] \leq \inf _{w:\|w\| \leq B} L_{D}^{\text {hinge }}(w)+\sqrt{\frac{8 \rho^{2} B^{2}}{n}}$.

SVM as a Penalized Empirical Risk Minimizer

Margin maximization leads to

$$
L_{S_{n}}^{\text {hinge }}\left(h_{w}\right)=\frac{1}{n} \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left\langle w, x_{i}\right\rangle\right\},
$$

convex but non-smooth minimization problem, used with a penalization term $\lambda\|w\|^{2}$.

Dual Form of the SVM Optimization Problem

To simplify, we consider only the homogeneous case of hard-SVM. Let

$$
g(w)=\max _{\alpha \in[0,+\infty)^{n}} \sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left\langle w, x_{i}\right\rangle\right)= \begin{cases}0 & \text { if } \forall i, y_{i}\left\langle w, x_{i}\right\rangle \geq 1 \\ +\infty & \text { otherwise }\end{cases}
$$

Then the hard-SVM problem is equivalent to

$$
\begin{aligned}
\min _{w: \forall i, y_{i}\left(w, x_{i}\right\rangle \geq 1} \frac{1}{2}\|w\|^{2} & =\min _{w} \frac{1}{2}\|w\|^{2}+g(w) \\
& =\min _{w} \max _{\alpha \in[0,+\infty)^{m}} \frac{1}{2}\|w\|^{2}+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left(w, x_{i}\right\rangle\right) \\
& \stackrel{\min -\max }{=} \operatorname{thm} \max _{\alpha \in[0,+\infty)^{n}} \min _{w} \frac{1}{2}\|w\|^{2}+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left\langle w, x_{i}\right\rangle\right) .
\end{aligned}
$$

The inner min is reached at $w=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$ and can thus be written as

$$
\max _{\alpha \in \mathbb{R}^{n}, \alpha \geq 0} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{1 \leq i, j \leq n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle
$$

Support vectors

Still for the homogeneous case of hard-SVM:

Property

Let w_{0} be a solution of and let $I=\left\{i:\left|\left\langle w_{0}, x_{i}\right\rangle\right|=1\right\}$. There exist $\alpha_{1}, \ldots, \alpha_{n}$ such that

$$
w_{0}=\sum_{i \in I} \alpha_{i} x_{i}
$$

The dual problem involves the x_{i} only thru scalar products $\left\langle x_{i}, x_{j}\right\rangle$.
It is of size n (independent of the dimension d).
These computations can be extended to the non-homogeneous soft-SVM
\rightarrow Kernel trick.

Numerically solving Soft-SVM

$f(w)=\frac{\lambda}{2}\|w\|^{2}+L_{S}^{\text {hinge }}(w)$ is λ-strongly convex.
\rightarrow Stochastic Gradient Descent with learning rate $1 /(\lambda t)$. Stochastic subgradient of $L_{S}^{\text {hinge }}(w): v_{t}=-y l_{t} x_{I_{t}} \mathbb{1}\left\{y l_{t}\left\langle w, x_{I_{t}}\right\rangle<1\right\}$.

$$
w_{t+1}=w_{t}-\frac{1}{\lambda t}\left(\lambda w_{t}+v_{t}\right)=\frac{t-1}{t} w_{t}-\frac{1}{\lambda t} v_{t}=-\frac{1}{\lambda t} \sum_{i=1}^{t} v_{t}
$$

Algorithm: SGD for Soft-SVM

1 Set $\theta_{0}=0$
2 for $t=0 \ldots T-1$ do
3 Let $w_{t}=\frac{1}{\lambda t} \theta_{t}$
$4 \quad$ Pick $I_{t} \sim \mathcal{U}(\{1, \ldots, n\})$
5 if $y_{l_{t}}\left\langle w_{t}, x_{I_{t}}\right\rangle<1$ then
$6 \quad \mid \quad \theta_{t+1} \leftarrow \theta_{t}+y_{I_{t}} x_{l_{t}}$
7 else
$8 \quad\left\lfloor\quad \theta_{t+1} \leftarrow \theta_{t}\right.$
9 return $\bar{w}_{T}=\frac{1}{T} \sum_{t=0}^{T-1} w_{t}$

Neural Networks

One-layer network

Src: http://insanedev.co.uk/open-cranium/

One-layer network

Figure 8.3 - Réseau de neurones sans couche cachée

Src: [Tufféry, Data Mining et Informatique Dcisionnelle]

One-layer network

Src: http://www.makhfi.com

Two-layer network

Src: [Tufféry, Data Mining et Informatique Dcisionnelle]

Profound ideas and tricks

- Convolutional networks
- Max-pooling
- Dropout
- Data augmentation
- GANs
- Representation learning
- Self-learning (ex: classify against rotations)

The three main theoretical challenges of deep learning

- Expressive power of DNN: why are the function we are interested in so well approximated by (deep convolutive) neural networks?
- Success of nave optimisation: why does gradient descent lead to a good local minimum?
- Generalization miracle why is there no overfitting with so many parameters?

[^0]:
 Le Machine Learning est en train de provoquer une grave crise de reproductibilité dans le domaine de la science. C'est ce qu'affirme la statisticienne Genevera Allen de la Rice University dans le cadre de la conférence AAAS Annual Meeting.

 De plus en plus de chercheurs utilisent le Machine Learning pour analyser des données et y détecter des tendances. Cependant, dans le cadre de la conférence scientifique AAAS Annual Meeting, la statisticienne Genevera Allen de la Rice University a tenu à tirer la sonnette d'alarme. Selon elle, le Machine Learning est en passe de provoquer une crise de reproductibilité dans le domaine de la science.

