Introduction to Machine Learning

Journées Calcul et Apprentissage

Aurélien Garivier 24-25 avril 2019

Table of contents

- What is Machine Learning?
 Data and Learning Algorithms
 Classification Framework
- 2. First Algorithms: fitting versus generalizing
- 3. Nearest-Neighbor Classification
- 4. Empirical Risk Minimization
- 5. Support Vector Machines
- 6. Neural Networks

What is Machine Learning?

Why Machine Learning?

Actualité

Yann LeCun, Geoffrey Hinton et Yoshua Bengio reçoivent le prix Turing

Par Stephane Nachez - 27 mars 2019

LE MACHINE LEARNING PROVOQUE UNE CRISE DANS LE DOMAINE DE LA SCIENCE

🛔 Bastien L 🛛 🔿 19 février 2019 👘 Analytics, Data Analytics, Intelligence artificielle 🖷 🗮 Lcommentaire

Le Machine Learning est en train de provoquer une grave crise de reproductibilité dans le domaine de la science. C'est ce qu'affirme la statisticienne Genevera Allen de la Rice University dans le cadre de la conférence AAAS Annual Meeting.

De plus en plus de chercheurs utilisent le Machine Learning pour analyser des données et y détecter des tendances. Cependant, dans le cadre de la conférence scientifique AAAS Annual Meeting, la statisticience Genevera Allen de la Rite University a tenu à tirer la sonnette d'alarme. Selon elle, le Machine Learning est en passe de provoque une criste de reproductibilité dans le domaine el la science.

SHARE SPECIAL VIEWPOINTS

a

n

Machine Learning for Science: State of the Art and Future Prospects

See all authors Science: 14 Sep	end efficiens			
Vol. 273, Issue 5 DOI: 10.1126/isc	637, pp. 2051 2055 wroe 290 5507 2051			
Article	Figures & Data	Info & Metrics	eLetters	🔁 P

Abstract

Recent advances in machine learning methods, along with successful applications across a wide variety of fields such as planetary science and bioinformatics, promise powerful new tools for practicing scientists. This viewproint highlights some useful characteristics of modern machine learning methods and their relevance to scientific applications. We conclude with some speculations on near-term progress and promising directions.

PUBLIC RELEASE: 15-FEB-2019

Can we trust scientific discoveries made using machine learning?

Rice U. expert: Key is creating ML systems that question their own predictions

RICE UNIVERSITY

Where to learn more?

2 Springer

What do I need to practice ML?

	mer. 19:10		rr = 40 🖸
	RStudio		
ile Edit Cade View Plate Service Build Dahue Tarle Hole			
			Emiert (Non
			TOPL OW
(x Q) expe.R x Q) simu_computeBALR x Q) fixedBudget.R x Q) abtesting.R x Q) testing_not_teo_small.R	× @ simu_el.R × >> Environmen	History	-
Secret on Save Q Z -	-+Run 🐜 -Storce - 😅 🚍 📑	import Dataset - 🛛 🥑 🛞	i Us
<pre>264 plot(TT, RR[1,], type="l", lwd=4, lty=ltys[1], log="x", xlim=c(min(TT), max(TT</pre>	T)), ylim - c(O, max(RR[Global En	ironmert.	(Q,
<pre>265 #arrows(1), R8[1,]-2*S0[1,]/Sqrt(NHC), 11, R8[1,]+2*S0[1,]/Sqrt(NHC), length+L 266* for (1 in 1:nbStrategies)(</pre>	0.1. Iw0+4, code+3, log- Values		
<pre>267 lines(TT, RR[j,], hwd-4, lty=ltys[j])</pre>	O duce	List of 9	
<pre>269 lines(TT[TT>500], ricoefficients[1] + ricoefficients[2]*log(TT[TT>500]), co3</pre>	1="red", lty=ltys[j]) OetcK6	List of 9	
<pre>270 slopes[j] <- r[coefficients[2]*d</pre>	<pre>0 etcUS</pre>	List of 8	
<pre>2/1 #arrows(11, RK[],]-2*SU[],]/sqrt(RMC), 11, RK[],]+2*SU[],]/sqrt(RMC), lengtr 272 }</pre>	h+0.1, 1x0+4, code=3, 10 0 fb	List of 6	
273 #for (h in c(0.5, 1, 2, 4)){ lines(TT, h*log(TT*d^2/4)/d, col="red", lwd+2))) Onydata	Large list (17 elements, 324.3 Mb)	
274 275 #elet(TT_d*BR(11/leg(TT)_type="1"_lede4_lty=ltys(11_lege";"_vlime(mini	(TT) mar(TT)) vlin = (0008	List of 7	
276 #arrows(TT, RR[1,]-2*SD[1,]/sqrt(Nnc), TT, RR[1,]+2*SD[1,]/sqrt(Nnc), length=0	0.1, lwd=4, code=3, log= Punctions	function (17 Mac)	
<pre>#for (j in 2:nbStrategies)(# lines(TT_dMERIi 1/log(TT)_logi=4_lty=ltys(i))</pre>	getData	function ()	
#arrows(TT, RR[j,]-2*SD[j,]/sqrt(Nmc), TT, RR[j,]+2*SD[j,]/sqrt(Nmc), length	h=0.1, lwd=4, code=3, lo loadData	function ()	
280 °) 281	mergeRes	alts function (data1, data2, data3)	1
282 names <- c("FB-ETC", "SPRT-ETC", "BAI-ETC", "D-UCB", "UCB") #"??-UCB", "UCB")	nytzero	function (r. i. u)	
283 order <- c(1,3,5,2,4) lagend/50 80 samly(order function(k) nasternamas(k) ":" round(s)mes(k)	1 2111 Ity = Itystords Files Plat	Packages Help Viewer	_
<pre>285)</pre>	(, 2))), ity - ityatoto	Zoom 🛥 Exporty 🗢 🥑 🎯	5 P.W
289 # T <- c(10, 20)/d*2; Hec <- 1000; createData(T, Hec); 280 # T <- c(400, B00, 1500)/d*2; Hec <- 10000; createData(T, Hec); 281 303 304 305 305 305 305 305 305 305 305 305 305	R Script 1		
200 # T ← c(10, 20)//#21 HBC ← 10001 createDota(T, HBC): 200 # T ← c(40, 800, 1300)/#22 HBC ← 100001 createDota(T, HBC): 201 # T ← c(400, 800, 1300)/#/22 HBC ← 100001 createDota(T, HBC): 201 # T ← c(400, 800, 1300)/#/22 HBC ← 100001 createDota(T, HBC): 201 # T ← c(400, 800, 1300)/#22 HBC ← 100001 createDota(T, HBC): 201 # T ← c(400, 800, 1300)/#22 HBC ← 100001 createDota(T, HBC):	R Soriet 0		
200 # 1 < <(10, 20/24) tree < 1000 createData(1, Hec): 301 # 1 < <(10, 100, 1500/24); Hec < 1000; createData(1, Hec): 301 # 1 < (10, 1500/24); Hec < 1000; createData(1, Hec): 302 # 1 <	R South		
309 r1 c (20, 30)/421, Mic c - (100), creatibility((1, Mic)) 31 r1 c (20, 60, 1500)/421, Mic c - 1000; 32 r0 results results 33 r0 results results 34 r0 results results 35 r0 results results 36 r0 results results 37 r0 results results 38 r0 results results 39 r0 results results 39 r0 results results 30 r0 results results 30 r0 results results 30 r0 results results 30 r0 results results 31 r0 results results	R Sangk 1 00 -	FB-ETC: 3.65	
99 # 1 ← (c10, 20)/42; mic ← 1001; crostbalaz(r, Mic); 91 # 1 ← (c10, 20)/42; mic ← 1002; crostbalaz(r, Mic); 91 # 1 ← (c10, 100; 100)/42; mic ← 1002; crostbalaz(r, Mic); 91 # 1 ← (c10, 100; 100; 100; 100; 100; 100; 100; 1	× 8	FB-ETC:3.05 BA/ETC:2.20	
00 21 - (15, 20)20(2) Mic - (100) (2704084242(1, Mic)) 21 - (210, 20)20(2) Mic - (100) (270408424(1, Mic)) 21 - (100) (2104094) 21 - (100) (2104094) 2	8 5 mpt 1 8 5 mpt 1 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 -	FB-ETC: 3.65 	
00 of 1 < C(10, 20)3(10) (mc < 100) (resultation(1, mc)) 1 < C(10, 20)3(10) (mc < 100) (resultation(1, mc)) 1 	* 00 - R Sout 1 * 00 - * 00 - 00 -		
200 g f - c (210, 201)/4/21 (mc c 1000) crvatsbalar(f, Mc)1 (1 - c (210, 201)/4/21 (mc c 1000) crvatsbalar(f, Mc)1 (2 - mc) (2	- 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00		
200 of 1 - (10, 20)/21 (No. (100) CreateMat(1, No)) 1 - (200, 20)/21 (No. (100) CreateMat(1, No)) 2 - (100, 20)/21 (No. (100) CreateMat(1, No)) 3 - (100) CreateMat(1, No) 6 - (110) CreateMat(1, No) 7 - (110) CreateMat(1,	- 90 		
### - C(10, 20)/24/1 (Mcc. 1000) (rrestablish(r, Mc)) ### - C(10, 20)/24/1 (Mcc. 1000) (rrestablish(r, Mc)) *** C(10, 20)/24/1 (Mcc. 1000) (rrestablish(R, Mc))	× 5 cm x 1		
Bit of the column state in the column state	8 - 9	FB-ETC: 3.65 	
Big of the colls. 2010/01 (mic to 1000) createdback(t, Mic)) ************************************	8 - 9 - 9 - 9 - 9 - 9 - 8 - 8 - 9 - 8 - 8 - 8 - 9	- F2 ETC - 3.6 BAETC 2.0 UGB 1.5 0.1025 0.07 0.1025 0.77	
000 #1 - (10) 200/04/21 Mice - (100) (100) <t< td=""><td>- 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00</td><td></td><td></td></t<>	- 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00		
000 F1 C(10) 201/04/21 Mode Mode 1 C(10) 201/04/21 Mode Mode Mode 1 C(10) 201/04/21 Mode Mode Mode 1 C(10) 201/04/21 Mode Mode Mode Mode 1 C(10) C(10) C(10) C(10) C(10) Mode <		- FB-ETC 3-84 - BA-ETC 2-28 - UGS 1-9 - SPRTETC 1-00 - D-UGB 1-07	
<pre>0 - C(10, 20)/24) Hoc C(100) CressBold(r) Hoc) - C(10, 20)/24 Hoc C(10, 20)/24 Hoc) - C(10, 20)/24 Hoc C(10, 20)/24 Hoc) - C(10, 20)/24 Hoc C(10, 20)/24 Hoc) - C(10, 20)</pre>	- 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9		
000 F1 C(10, 20)(1/2) No	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	- FB-ETC 3-05 - FB-ETC 3-05 - U-GB 1-55 - U-GB 1-55 - D-U-GB 1-07 - D-U-GB 1	
Big of the colls. 2010/01 mic of 1000 for exceeded aff(f, Mc)] ************************************	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		

R

What do I need to practice ML?

python

Activitás 11/1.	mer. 19	:17		fr -	- 44 (R -
	Spyder (Pyth	hon 2.7)				×
Fichier Édition Recherche Source Exécution Déboguer Consoles Outils	Affichage Aide					
🖸 👍 🖶 🕨 🗭 🚴 🎋 🚧 🗭 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.					8	+
Éditeur - /home/agarivie/ownCloud/prog/python/HC/deprecated/kaplan_meier.py		3 8	Console IPython			
🗆 🧑 payment_renewal_study_mysmoothehazard.py 🐰 🤌 survival.py 🐰 🌛	kaplan_meler.py X	E.v.	🗇 🖾 Console 1/A 🕱		1.1	E۲
1 s .*. coding. atf-8 .*.		1	Python 2.7.10 Anaconda 2.	3.0 (64-bit) (default, Sep 15 2015, 14:50:01)		1
3 Created on Tue Aug 16 03:05:03 2016			IPython 4.0.0 ·· An enhance	ed Interactiva Python.		- 1
5 deuthor: agarivie			<pre>? -> Introduction %quickref -> Quick referen</pre>	and overview of IPython's features.		- 1
seport numpy as no			<pre>help -> Pythen's own object? -> Details about</pre>	help system. : 'object', use 'object??' far extra details.		- 1
s from remote import remote 10 demport metalotlib as mpl 11 demote metalotlib explot on alt			To Discontine (continue)	whice about the graphical user interface.	home or	
12 13			wdir-'/home/agarivie/ownCl Traceback (most recent cal	sud/grog/pythan/HC"] 1 last1:		÷ 1
14 def Kaplan meter(lx, Delta, censorDate): 15 N = lon(Delta):1			File * <ipython-input-1-5< th=""><th>#63c842d932>". line l. in ≪ecdule></th><th></th><th>- 1</th></ipython-input-1-5<>	#63c842d932>". line l. in ≪ecdule>		- 1
<pre>service = np.zeros(N) # allow arear Delta[1] serviced = np.zeros(N) # died between Delta[1] and Delta[1+1]</pre>			wdir='/home/agarivie/ownCl	e/ownclose/prog/python/HC/payment_renewal_stopy_mysecotheraza aud/prog/python/HC')	-a.py ,	- 1
<pre>1 = 0 1 = 0 20 4 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +</pre>	(11)		File '/home/agarivie/ana packages/spyderlib/vidgets execfile(filename, nam	rconda/lib/pythen2.7/site- s/externalshell/sitecustomize.py*. lime 605. in runfile respace)		- 1
22 if x101 + DeltaIt+11 < x111: 23 survived[i] += 1	Figure 2	×	x File "/home/agarivie/ana	conda/lib/pythen2.7/site-		- 1
<pre>25 S = np.comprod(survived/atrisk))) 25 S = np.comprod(survived/atrisk)))</pre>			builtins.execfile(file	(reneralishell/Sitecustomize.py", Line /s, in exectice mane, *where)		- 1
27.# arbitrary: index shift of 17 see kaplen_meier_2 which conforms to packap			File "/home/agarivie/own	Cloud/prog/python/HC/payment_renewal_study_mysmoothehazard.py	*. line 66	9.
29 30 splt.close("all")			<pre>(t, S) = km(T, E)</pre>			- 1
31.4plt.clf() 32	14	- NA estimate	smeError: name 'km' is no	it defined		- 1
34 x = Inp.cussum((random(), random())) for k in range(m)]	12		121: runfile('/home/aga	rivie/ownCloud/prog/python/HC/deprecated/kaplan_weier.py'.		- 1
36 x = [[z]0], z[1]+(z[1]+nuv)*(2-z[1])] for z in x]			eleaded modules: survival	0.94992533 0.92985538 0.90733859 0.82973225		
38 N = 40 30 Delta = np.array([float(i)/N for i in range(N+1)])	1.0		0.8536345 0.82995767 0.70855317 0.68626844	0.90665596 0.78406796 0.7572255 0.73216366 0.66511911 0.64060397 0.61364787 0.59106173		
40 41 S = kaplan_meier(x, Delta, now)			0.56540255 0.54094156 0.41368282 0.39905767	0.51335682 0.48716514 0.46422552 0.43659054 0.36949784 0.34339292 0.33458709 nan		
42 print(S) 43 44 a all adapted at a Si	0.8		nan nan	nan nan nan nan nan nan		
45.8 plt. hold("on") 46.8 plt. hold("an")			9 (31)			
47 # plt.bold("off") 48	0.6	· 1				
49.8 plt.axis((-0.05,1,0,1)) 50	0.4					
S2 def km_ma(T, E):						
54 t = [T[k] fer k in [] 55 e = [E[k] fer k in []	0.2					
55 n = lan(t) 57 S = np.ones(n)						
50 H = np.zeros(n) 59 for k in range(n-1); 59 for k in range(n-1);	0.00 0.1 0.2 0.3 0.4	0.5 0.6				
$\begin{array}{c} \sigma_{V} & \sigma_{1}(\mathbf{x}+\mathbf{x}) = \sigma_{1}(\mathbf{x}) + (\mathbf{n} - \mathbf{x} - \mathbf{x})(\mathbf{x}) / (\mathbf{n} - \mathbf{x}) \\ \sigma_{1} & H(\mathbf{x}+\mathbf{x}) = H(\mathbf{x}) + \sigma(\mathbf{x}) / (\mathbf{n} - \mathbf{x}+\mathbf{x}) \\ \end{array}$	timeline		Ionsole Historique Con	sole IPython		
			Inc. de linne : LE Encod	nos : IITE-8 Linne : 1 Colonne : 1 M	America : 7	AL 8

What do I need to practice ML?

scikit-learn

Applications: Spam detection, Image recognition. Algorithms: SVM, nearest neighbors, random forest, - Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization. Increased efficiency

Algorithms: PCA, feature selection, nonnegative matrix factorization. - Examples associated with an object.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, - Examples Lasso,

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tunina

Modules: grid search, cross validation, metrics. - Examples sets.

Applications: Customer segmentation, Grouping experiment outcomes Algorithms: k-Means, spectral clustering, mean-shift,

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. Modules: preprocessing, feature extraction.

- Examples

News

On-going development: What's new (Changelog)

About us See authors and contributing More Machine Learning Find related

Who uses scikit-learn?

Outline

What is Machine Learning?

Data and Learning Algorithms

Classification Framework

First Algorithms: fitting versus generalizing

Nearest-Neighbor Classification

Empirical Risk Minimization

Support Vector Machines

Neural Networks

What is Machine Learning?

- Algorithms operate by building a model from **example** inputs in order to make data-driven **predictions or decisions**...
- ...rather than following strictly static program instructions: useful when designing and programming explicit algorithms is unfeasible or poorly efficient.

Within Artificial Intelligence

- evolved from the study of pattern recognition and computational learning theory in artificial intelligence.
- Al: emulate cognitive capabilities of humans (big data: humans learn from abundant and diverse sources of data).
- a machine mimics "cognitive" functions that humans associate with other human minds, such as "learning" and "problem solving".

Example: MNIST dataset

Arthur Samuel (1959)

Field of study that gives computers the ability to learn without being explicitly programmed

Tom M. Mitchell (1997)

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.

Machine Learning: Typical Problems

- spam filtering, text classification
- optical character recognition (OCR)
- search engines
- recommendation platforms
- speach recognition software
- computer vision
- bio-informatics, DNA analysis, medicine
- ...

For each of this task, it is possible but very inefficient to write an explicit program reaching the prescribed goal.

It proves much more succesful to have a machine infer what the good decision rules are.

- = Machine Learning using statistics-inspired tools and guarantees
 - Importance of **probability** and **statistics**-based methods \rightarrow **Data Science** (Michael Jordan)
 - **Computational Statistics**: focuses in prediction-making through the use of computers together with statistical models (ex: Bayesian methods).
 - Data Mining (unsupervised learning) focuses more on exploratory data analysis: discovery of (previously) unknown properties in the data. This is the analysis step of Knowledge Discovery in Databases.
 - Machine Learning has more operational goals
 Ex: consistency → oracle inequalities
 Models (if any) are *instrumental*.

 ML more focused on *correlation*, less on *causality* (now changing).
 - Strong ties to **Mathematical Optimization**, which furnishes methods, theory and application domains to the field

What is ML composed of?

Outline

What is Machine Learning?

Data and Learning Algorithms

Classification Framework

First Algorithms: fitting versus generalizing

Nearest-Neighbor Classification

Empirical Risk Minimization

Support Vector Machines

Neural Networks

What is a classifier?

$$X \in \mathcal{M}_{n,p}(\mathbb{R}) \qquad Y \in \mathcal{Y}^n$$
Classifier \mathcal{A}_n

1 100

$$h_n: \mathcal{X} \to \mathcal{Y}$$

Data: n-by-p matrix X

- *n* examples = points of observations
- p features = characteristics measured for each example

- Inside R: package datasets
- Inside python/scikitlearn: package sklearn.datasets
- UCI Machine Learning Repository

• Challenges: Kaggle, etc.

Outline

What is Machine Learning?

Data and Learning Algorithms Classification Framework

First Algorithms: fitting versus generalizing

Nearest-Neighbor Classification

Empirical Risk Minimization

Support Vector Machines

Neural Networks

Statistical Learning Hypothesis

Assumption

- The examples (X_i, Y_i)_{1≤i≤n} are iid samples of an unknown joint distribution D;
- The points to classify later are also independent draws of the same distribution $\mathcal{D}.$

Hence, for every decision rule $h:\mathcal{X} \rightarrow \mathcal{Y}$ we can define the risk

$$L_{\mathcal{D}}(h) = \mathbb{P}_{(X,Y)\sim\mathcal{D}}(h(X)\neq Y) = \mathcal{D}(\{(x,y):h(x)\neq y\}).$$

The goal of the learning algorithm is to *minimize the expected risk*:

$$R_n(\mathcal{A}_n) = \mathbb{E}_{\mathcal{D}^{\otimes n}}\left[L_{\mathcal{D}}\left(\underbrace{\mathcal{A}_n((X_1, Y_1), \dots, (X_n, Y_n))}_{\hat{h}_n}\right)\right]$$

for every distribution $\mathcal{D},$ using only the examples.

Signal and Noise

new york times bestseller noise and the noi the signal and th and the noise and the noise and thu why so many noi: predictions fail—i but some don't th and the noise and nate silver the no

"Could turn out to be one of the more momentaus books of the decade." -The New York Times Book Review

Domain set \mathcal{X}	28×28 images	
Label set ${\mathcal Y}$	$\{0,1,\ldots,9\}$	
Joint distribution ${\cal D}$?	
Prediction function $h \in \mathcal{H} \subset \mathcal{Y}^{\mathcal{X}}$		
$Risk R(h) = P_{\mathcal{D}}\big(h(X) \neq Y\big)$		
Sample $S_n = \left\{ (X_i, Y_i) \right\}_{i=1}^n$	MNIST dataset	
Empirical risk		
$L_{\mathcal{S}}(h) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{h(X_i) \neq Y_i\}$		
Learning algorithm		
$\mathcal{A}=(\mathcal{A}_n)_n,~\mathcal{A}_n:(\mathcal{X} imes\mathcal{Y})^n ightarrow\mathcal{H}$	neural nets, boosting	
Expected risk $R_n(\mathcal{A}) = \mathbb{E}_n \Big[L_\mathcal{D} \big(\mathcal{A}_n(\mathcal{S}_n)) \big) \Big]$		

Two visions of ${\cal D}$

As a pair (\mathcal{D}_x, k) , where

- for A ⊂ X, D_x(A) = D(A × Y) is the marginal distribution of X,
- and for x ∈ X and B ⊂ Y,
 k(B|x) = D(Y ∈ B|X = x) is (a version of)
 the conditional distribution of Y given X.

As a pair
$$\left(\mathcal{D}_{y},\left(\mathcal{D}(\cdot|y)\right)_{y}\right)$$
, where

- for y ∈ 𝔅, 𝔅_Y(y) = 𝔅(𝔅 × y) is the marginal distribution of Y,
- and for A ⊂ X and y ∈ Y,
 D(A|y) = D(X ∈ A|Y = y) is the conditional distribution of X given Y = y.

Two visions of ${\cal D}$

As a pair (\mathcal{D}_x, k) , where

- for A ⊂ X, D_x(A) = D(A × Y) is the marginal distribution of X,
- and for x ∈ X and B ⊂ Y,
 k(B|x) = D(Y ∈ B|X = x) is (a version of)
 the conditional distribution of Y given X.

As a pair
$$\left(\mathcal{D}_{y},\left(\mathcal{D}(\cdot|y)\right)_{y}
ight)$$
, where

- for y ∈ 𝒴, 𝒴_Y(y) = 𝒴(𝒴 × y) is the marginal distribution of Y,
- and for $A \subset \mathcal{X}$ and $y \in \mathcal{Y}$, $\mathcal{D}(A|y) = \mathcal{D}(X \in A|Y = y)$ is the conditional distribution of X given Y = y.

Consider binary classification $\mathcal{Y} = \{0, 1\}$, $\eta(x) := \mathcal{D}(Y = 1 | X = x)$.

Theorem

The Bayes classifier is defined by $h^*(x) = \mathbb{1}\{\eta(x) \ge 1/2\} = \mathbb{1}\{\eta(x) \ge 1 - \eta(x)\} = \mathbb{1}\{2\eta(x) - 1 \ge 0\}.$ For every classifier $h : \mathcal{X} \to \mathcal{Y} = \{0, 1\}$,

$$L_{\mathcal{D}}(h) \geq L_{\mathcal{D}}(h^*) = \mathbb{E}\Big[\minig(\eta(X), 1 - \eta(X)ig)\Big]\,.$$

The Bayes risk $L_{\mathcal{D}}^* = L_{\mathcal{D}}(h^*)$ is called the **noise** of the problem.

More precisely,

$$L_{\mathcal{D}}(h) - L_{\mathcal{D}}(h^*) = \mathbb{E}\Big[\big| 2\eta(X) - 1 \big| \ \mathbb{1}\big\{h(X) \neq h^*(X)\big\} \Big] \; .$$

Extends to $|\mathcal{Y}| > 2$.

First Algorithms: fitting versus generalizing

Nearest-Neighbor Classification

We assume that \mathcal{X} is a metric space with distance d.

The nearest-neighbor classifier $\hat{h}_n^{NN}: \mathcal{X} \rightarrow \mathcal{Y}$ is defined as

$$\hat{h}_n^{NN}(x) = Y_I$$
 where $I \in \operatorname*{arg\,min}_{1 \leq i \leq n} d(x - X_i)$.

Typical distance: L^2 norm on \mathbb{R}^d : $||x - x'|| = \sqrt{\sum_{j=1}^d (x_i - x'_i)^2}$.

Buts many other possibilities: Hamming distance on $\{0,1\}^d$, etc.

Numerically

Numerically

A1. $\mathcal{Y} = \{0, 1\}.$ **A2.** $\mathcal{X} = [0, 1]^{d}.$ **A3.** η is *c*-Lipschitz continuous:

$$orall x, x' \in \mathcal{X}, ig| \eta(x) - \eta(x') ig| \leq c ig\| x - x' \|$$
 .

Theorem

Under the previous assumptions, for all distributions $\mathcal D$ and all $m\geq 1$

$$L_{\mathcal{D}}(\hat{h}_n^{NN}) \leq 2L_{\mathcal{D}}^* + rac{3c\sqrt{d}}{n^{1/(d+1)}}$$
.

Proof Outline

• Conditioning: as $I(x) = \arg \min_{1 \le i \le n} ||x - X_i||$,

$$L_D(\hat{h}_n^{NN}) = \mathbb{E}\Big[\mathbb{E}\big[\mathbbm{1}\{Y \neq Y_{I(X)}\} | X, X_1, \dots, X_n\big]\Big].$$

- $Y \sim \mathcal{B}(p), Y' \sim \mathcal{B}(q) \implies \mathbb{P}(Y \neq Y') \leq 2\min(p, 1-p) + |p-q|,$ $\mathbb{E}\Big[\mathbb{1}\{Y \neq Y_{I(X)}\}|X, X_1, \dots, X_n\Big] \leq 2\min(\eta(X), 1-\eta(X)) + c \|X - X_{I(X)}\|.$
- Partition $\mathcal X$ into $|\mathcal C| = T^d$ cells of diameter \sqrt{d}/T :

$$\mathcal{C} = \left\{ \left[\frac{j_1 - 1}{T}, \frac{j_1}{T} \right[\times \cdots \times \left[\frac{j_d - 1}{T}, \frac{j_d}{T} \right], \quad 1 \leq j_1, \dots, j_d \leq T \right\}$$

• 2 cases: either the cell of X is occupied by a sample point, or not:

$$\|X - X_{I(X)}\| \le \sum_{c \in \mathcal{C}} \mathbb{1}\{X \in c\} \left(\frac{\sqrt{d}}{T} \mathbb{1} \bigcup_{i=1}^{n} \{X_i \in c\} + \sqrt{d} \mathbb{1} \bigcap_{i=1}^{n} \{X_i \notin c\}\right)$$

$$\Rightarrow \mathbb{E}[\|X - X_{I(X)}\|] \le \frac{\sqrt{d}}{T} + \frac{\sqrt{d}T^d}{en} \text{ and choose } T = \left\lfloor n^{\frac{1}{d+1}} \right\rfloor.$$

- Is it loose? (sanity check: uniform \mathcal{D}_X)
- Non-asympototic (finite sample bound)
- The second term $\frac{3c\sqrt{d}}{n^{1/(d+1)}}$ is distribution independent
- Does not give the trajectorial decrease of risk
- Exponential bound d (cannot be avoided...)
 ⇒ curse of dimensionality
- How to improve the classifier?

Let \mathcal{X} be a (pre-compact) metric space with distance d.

k-NN classifier

 $h^{kNN}: x\mapsto \mathbb{1}ig\{\hat{\eta}(x)\geq 1/2ig\}=$ plugin for Bayes classifier with estimator

$$\hat{\eta}(x) = rac{1}{k}\sum_{j=1}^k Y_{(j)}(X)$$

where

$$d(X_{(1)}(X),X) \leq d(X_{(2)}(X),X) \leq \cdots \leq d(X_{(n)}(X),X)$$
.

27

k = 5

27

27

knn.est.risk

Risque de k-NN en fonction du nombre de voisins

k

Risk bound

Let C_{ϵ} be an ϵ -covering of \mathcal{X} :

$$\forall x \in X, \exists x' \in \mathcal{C}_{\epsilon} : d(x, x') \leq \epsilon$$
.

Excess risk for k-nearest-neighbours

If η is *c*-Lipschitz continuous: $\forall x, x' \in \mathcal{X}, |\eta(x) - \eta(x')| \leq c d(x, x')$, then for all $k \geq 2$ and all $n \geq 1$:

$$\begin{split} L(\hat{h}_{n}^{kNN}) - L(h^{*}) &\leq \frac{1}{\sqrt{k e}} + \frac{2k|\mathcal{C}_{\epsilon}|}{n} + 4c\epsilon \\ &\leq \frac{1}{\sqrt{k e}} + (2+4c) \left(\frac{\alpha k}{n}\right)^{\frac{1}{d+1}} \quad \begin{cases} \text{for } \epsilon = \left(\frac{\alpha k}{n}\right)^{\frac{1}{d+1}} \\ \text{if } |\mathcal{C}_{\epsilon}| \leq \alpha \epsilon^{-d} \end{cases}, \\ &\leq (3+4c) \left(\frac{\alpha}{n}\right)^{\frac{1}{d+3}} \quad \text{for } k = \left(\frac{n}{\alpha}\right)^{\frac{2}{d+3}}. \end{split}$$

Room for improvement

- Lower bound? in $n^{-\frac{1}{d}}$.
- Margin conditions
 - \implies fast rates
- More regularity?

 \implies weighted nearest neighbors

• Is regularity required everywhere?

 \implies What matters are the balls of mass $\approx k/n$ near the decision boundary.

- 2 "parameters":
 - obvious: the number of neighbors k (bias-variance tradeoff)
 - hidden: the distance d (real problem)

Theorem

Let c > 1 be a Lipschitz constant. Let A be any learning algorithm for binary classification over a domain $\mathcal{X} = [0, 1]^d$. If the training set size is $n \leq (c+1)^d/2$, then there exists a distribution \mathcal{D} over $[0, 1]^d \times \{0, 1\}$ such that:

- $\eta(x)$ is *c*-Lipschitz;
- the Bayes error of the distribution is 0;
- with probability at least 1/7 over the choice of $S_n \sim \mathcal{D}^{\otimes n}$,

$$L_{\mathcal{D}}(A(S_n)) \geq \frac{1}{8}$$
.

Empirical Risk Minimization

ldea for every candidate rule h in an *hypothesis class* \mathcal{H} , replace the unknown risk

$$L_{\mathcal{D}}(h) = \mathbb{P}_{(X,Y)\sim\mathcal{D}}(h(X)\neq Y)$$

by the computable empirical risk

$$L_{S_n}(h) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{h(X_i) \neq Y_i\}$$

and use some uniform law of large numbers:

$$\mathbb{P}_{D}\left(\sup_{h\in\mathcal{H}}\left|L_{\mathcal{S}_{n}}(h)-L_{\mathcal{D}}(h)\right|>c\sqrt{\frac{D_{\mathcal{H}}\log(n)+\log\frac{1}{\delta}}{n}}\right)\leq\delta$$

where $D_{\mathcal{H}}$ is the Vapnik-Chervonenkis dimension of \mathcal{H} .

Empirical Risk minimization

Uniform law of large numbers:

$$\mathbb{P}_D\left(\sup_{h\in\mathcal{H}}\left|L_{\mathcal{S}_n}(h)-L_{\mathcal{D}}(h)\right|>c\sqrt{rac{D_{\mathcal{H}}\log(n)+\lograc{1}{\delta}}{n}}
ight)\leq\delta\;.$$

 \rightarrow Empirical Risk Minimizer.

$$\hat{h}_n = \operatorname*{arg\,min}_{h\in\mathcal{H}} L_{\mathcal{S}_n}(h)$$
 .

Good if

- \bullet the class ${\cal H}$ is not too large
- the number *n* of examples is large enough

so as to ensure that $c\sqrt{\frac{D_{\mathcal{H}}\log(n)+\log\frac{1}{\delta}}{n}} \leq \epsilon.$

 \rightarrow Sample complexity = number of examples required to have an ϵ -optimal rule in the hypothesis class $\mathcal{H} = O\left(\frac{D_{\mathcal{H}}}{\epsilon^2}\right)$.

The class of halfspaces

Definition

The class of linear (affine) functions on $\mathcal{X} = \mathbb{R}^d$ is defined as

$$L_d = ig\{h_{w,b}: w \in \mathbb{R}^d, b \in \mathbb{R}ig\}$$
 , where $h_{w,b}(x) = \langle w, x
angle + b$.

The hypothesis class of halfspaces for binary classification is defined as

$$\mathcal{H}S_d = \operatorname{sign} \circ L_d = \left\{ x \mapsto \operatorname{sign} \left(h_{w,b}(x) \right) : h_{w,b} \in L_d \right\}$$

where sign $(u) = \mathbb{1}\{u \ge 0\} - \mathbb{1}\{u < 0\}$. Depth 1 neural networks.

By taking $\mathcal{X}' = \mathcal{X} \times \{1\}$ and d' = d + 1, we may omit the bias *b* and focus on functions $h_w(x) = \langle w, x \rangle$.

Property

The VC-dimension of $\mathcal{H}S_d$ is equal to d + 1.

Corollary: the class of halfspaces is learnable with sample complexity $O(\frac{d+1+\log(1/\delta)}{\epsilon^2})$.

Realizable case: Learning halfspaces with a linear program solver

Realizable case: there exists w^* such that $\forall i \in \{1, \ldots, n\}$, $y_i \langle w^*, x_i \rangle > 0$.

Then there exists $\bar{w} \in \mathbb{R}^d$ such that $\forall i \in \{1, \ldots, n\}$, $y_i \langle \bar{w}, x_i \rangle \ge 1$: if we can find one, we have an ERM.

Let $A \in \mathcal{M}_{n,d}(\mathbb{R})$ be defined by $A_{i,j} = y_i x_{i,j}$, and let $v = (1, \dots, 1) \in \mathbb{R}^m$. Then any solution of the linear program

$$\max_{w\in \mathbb{R}^d} \langle 0,w
angle$$
 subject to $Aw\geq v$

is an ERM. It can thus be computed in polynomial time.

Rosenblatt's Perceptron algorithm

Algorithm: Batch PerceptronData: training set $(x_1, y_1), \dots, (x_n, y_n)$ 1 $w_0 \leftarrow (0, \dots, 0)$ 2 $t \ge 0$ 3while $\exists i_t : y_{i_t} \langle w_t, x_{i_t} \rangle \le 0$ do4 $w_{t+1} \leftarrow w_t + y_{i_t} \frac{x_{i_t}}{\|x_{i_t}\|}$ 5 $t \leftarrow t+1$ 6return w_t

Each updates helps reaching the solution, since

$$y_{i_t} \langle w_{t+1}, x_{i_t} \rangle = y_{i_t} \left\langle w_t + y_{i_t} \frac{x_{i_t}}{\|x_{i_t}\|}, x_{i_t} \right\rangle = y_{i_t} \langle w_t, x_{i_t} \rangle + \|x_{i_t}\| .$$

Relates to a coordinate descent (stepsize does not matter).

Convergence of the Perceptron algorithm

Theorem

Assume that the dataset $S_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$ is linearly separable and let the *separation margin* γ be defined as:

$$\gamma = \max_{w \in \mathbb{R}^d: \|w\|=1} \min_{1 \le i \le n} \frac{y_i \langle w, x_i \rangle}{\|x_i\|}$$

Then the perceptron algorithm stops after at most $1/\gamma^2$ iterations. ,

Proof: Let w^* be such that $\forall 1 \leq i \leq n$, $\frac{y_i \langle w^*, x_i \rangle}{\|x_i\|} \geq \gamma$.

If iteration t is necessary, then

$$\langle w^*, w_{t+1} - w_t \rangle = y_{i_t} \left\langle w^*, \frac{x_{i_t}}{\|x_{i_t}\|} \right\rangle \geq \gamma \quad \text{ and hence } \langle w^*, w_t \rangle \geq \gamma t \ .$$

• If iteration t is necessary, then

$$\|w_{t+1}\|^{2} = \left\|w_{t} + y_{i_{t}} \frac{x_{i_{t}}}{\|x_{i_{t}}\|}\right\|^{2} = \|w_{t}\|^{2} + \underbrace{\frac{2y_{i_{t}}\langle w_{t}, x_{i_{t}}\rangle}{\|x_{i_{t}}\|}}_{<0} + y_{i_{t}}^{2} \le \|w_{t}\|^{2} + 1$$

and hence $||w_t||^2 \leq t$, or $||w_t|| \leq \sqrt{t}$.

• As a consequence, the algorithm iterates at least t times if

$$\gamma t \leq \langle w^*, w_t \rangle \leq ||w_t|| \leq \sqrt{t} \implies t \leq \frac{1}{\gamma^2}$$

In the worst case, the number of iterations can be exponentially large in the dimension *d*. Usually, it converges quite fast. If $\forall i, ||x_i|| = 1$, $\gamma = d(S, D)$ where $D = \{x : \langle w^*, x \rangle = 0\}$.

37

Computational difficulty of agnostic learning, and surrogates

Computing an ERM in the agnostic case is NP-hard.

See On the difficulty of approximately maximizing agreements, by Ben-David, Eiron and Long.

Since the 0-1 loss

$$L_{\mathcal{S}_n}(h_w) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\left\{y_i \langle w, x_i \rangle < 0\right\}$$

is intractable to minimize in the agnostic case, one may consider *surrogate* loss functions

$$L_{S_n}(h_w) = \frac{1}{n} \sum_{i=1}^n \ell(y_i \langle w, x_i \rangle) ,$$

-1.0

-0.5

15

0.5

where the loss function $\ell:\mathbb{R}\to\mathbb{R}^+$

- dominates the function $\mathbb{1}\{u < 0\}$,
- and leads to a "simple" optimization problem (e.g. convex).

- 0-1 square

— hinge

— boosting

absolute

Logistic Regression

Logistic loss $\mathcal{Y} = \{-1, 1\}$

Convex minimization problem, can be solved by Newton's algorithm (in small dimension) or stochastic gradient descent (in higher dimension).

Structural Risk minimization

What if
$$\mathcal{H} = igcup_{d=1}^\infty \mathcal{H}_d$$
, with $\mathcal{H}_d \subset \mathcal{H}_{d+1}$?

 \rightarrow *structural* risk minimization:

$$\hat{h}_n = \underset{d \ge 1, h \in \mathcal{H}_d}{\operatorname{arg\,min}} L_{S_n}(h) + D_{\mathcal{H}_d} \log(n) .$$

Support Vector Machines

Margin for linear separation

- Training sample $S_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$, where $x_i \in \mathbb{R}^d$ and $y_i \in \{\pm 1\}$.
- Linearly separable if there exists a halfspace h = (w, b) such that $\forall i, y_i = \text{sign} (\langle w, x_i \rangle + b).$
- What is the best separating hyperplane for generalization?

Distance to hyperplane

If ||w|| = 1, then the distance from x to the hyperplane h = (w, b) is $d(x, \mathcal{H}) = |\langle w, x \rangle + b|.$

Proof: Check that min $\{||x - v||^2 : v \in h\}$ is reached at $v = x - (\langle w, x \rangle + b)w$.

Hard-SVM

Formulation 1:

 $\mathop{\arg\max}_{(w,b): \|w\|=1} \min_{1 \leq i \leq m} \left| \langle w, x_i \rangle + b \right| \quad \text{such that } \forall i, y_i \big(\langle w, x_i \rangle + b \big) > 0 \; .$

Formulation 2:

$$\min_{w,b} \|w\|^2$$
 such that $orall i, y_iig(\langle w, x_i
angle + big) \geq 1$.

Remark: *b* is not penalized.

Proposition

The two formulations are equivalent.

Proof: if (w_0, b_0) is the solution of Formulation 2, then $\hat{w} = \frac{w_0}{||w_0||}$, $\hat{b} = \frac{b_0}{|w|}$ is a solution of Formulation 1: if (w^*, b^*) is another solution, then letting $\gamma^* = \min_{1 \le i \le m} y_i(\langle w, x_i \rangle + b)$ we see that $\left(\frac{w^*}{\gamma^*}, \frac{b^*}{\gamma^*}\right)$ satisfies the constraint of Formulation 2, hence $||w_0|| \le \frac{||w^*||}{\gamma^*} = \frac{1}{\gamma^*}$ and thus $\min_{1 \le i \le m} |\langle \hat{w}, x_i \rangle + \hat{b}| = \frac{1}{||w_0||} \ge \gamma^*$.

Sample Complexity

Definition

A distribution \mathcal{D} over $\mathbb{R}^d \times \{\pm 1\}$ is separable with a (γ, ρ) -margin if there exists (w^*, b^*) such that $||w^*|| = 1$ and with probability 1 on a pair $(X, Y) \sim \mathcal{D}$, it holds that $||X|| \leq \rho$ and $Y(\langle w^*, X \rangle + b) \geq \gamma$.

Remark: by multiplying the x_i by α , the margin is multiplied by α .

Theorem

For any distribution \mathcal{D} over $\mathbb{R}^d \times \{\pm 1\}$ that satisfies the (γ, ρ) -separability with margin assumption using a homogenous halfspace, with probability at least $1 - \delta$ over the training set of size n the 0 - 1 loss of the output of Hard-SVM is at most

$$\sqrt{\frac{4(\rho/\gamma)^2}{n}} + \sqrt{\frac{2\log(2/\delta)]}{n}}$$

Remark: depends on dimension d only thru ρ and γ .

Soft-SVM

When the data is not linearly separable, allow *slack variables* ξ_i :

$$\begin{split} & \min_{w,b,\xi} \lambda \|w\|^2 + \frac{1}{n} \sum_{i=1}^n \xi_i \quad \text{such that } \forall i, y_i \big(\langle w, x_i \rangle + b \big) \geq 1 - \xi_i \text{ and } \xi_i \geq 0 \\ & = \min_{w,b} \lambda \|w\|^2 + L_{\mathcal{S}_n}^{\text{hinge}}(w,b) \quad \text{where } \ell^{\text{hinge}}(u) = \max(0, 1-u) \;. \end{split}$$

Theorem

Let *D* be a distribution over $B(0, \rho) \times \{\pm 1\}$. If $\mathcal{A}_n(S_n)$ is the output of the soft-SVM algorithm on the sample *S* of *D* of size *n*,

$$\mathbb{E}\Big[L_D^{0-1}(\mathcal{A}_n(S_n))\Big] \leq \mathbb{E}\Big[L_D^{\text{hinge}}(\mathcal{A}_n(S_n))\Big] \leq \inf_u L_D^{\text{hinge}}(u) + \lambda \|u\|^2 + \frac{2\rho^2}{\lambda n}$$

For every
$$B > 0$$
, setting $\lambda = \sqrt{\frac{2\rho^2}{B^2 n}}$ yields:

$$\mathbb{E} \Big[L_D^{0-1} (\mathcal{A}_n(S_n)) \Big] \leq \mathbb{E} \Big[L_D^{\text{hinge}} (\mathcal{A}_n(S_n)) \Big] \leq \inf_{w: ||w|| \leq B} L_D^{\text{hinge}}(w) + \sqrt{\frac{8\rho^2 B^2}{n}}$$

SVM as a Penalized Empirical Risk Minimizer

convex but non-smooth minimization problem, used with a penalization term $\lambda \|w\|^2.$

Dual Form of the SVM Optimization Problem

To simplify, we consider only the homogeneous case of hard-SVM. Let

$$g(w) = \max_{\alpha \in [0, +\infty)^n} \sum_{i=1}^n \alpha_i (1 - y_i \langle w, x_i \rangle) = \begin{cases} 0 & \text{if } \forall i, y_i \langle w, x_i \rangle \ge 1, \\ +\infty & \text{otherwise }. \end{cases}$$

Then the hard-SVM problem is equivalent to

$$\begin{split} \min_{w:\forall i, y_i \langle w, x_i \rangle \ge 1} \frac{1}{2} \|w\|^2 &= \min_{w} \frac{1}{2} \|w\|^2 + g(w) \\ &= \min_{w} \max_{\alpha \in [0, +\infty)^m} \frac{1}{2} \|w\|^2 + \sum_{i=1}^n \alpha_i \left(1 - y_i \langle w, x_i \rangle\right) \\ & \underset{w \in [0, +\infty)^n}{\min - \max} \min_{w \in [0, +\infty)^n} \min_{w} \frac{1}{2} \|w\|^2 + \sum_{i=1}^n \alpha_i \left(1 - y_i \langle w, x_i \rangle\right) \end{split}$$

The inner min is reached at $w = \sum_{i=1}^{n} \alpha_i y_i x_i$ and can thus be written as

$$\max_{\alpha \in \mathbb{R}^n, \alpha \ge 0} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{1 \le i, j \le n} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle .$$

Still for the homogeneous case of hard-SVM:

Property

Let w_0 be a solution of and let $I = \{i : |\langle w_0, x_i \rangle| = 1\}$. There exist $\alpha_1, \ldots, \alpha_n$ such that

$$w_0 = \sum_{i \in I} \alpha_i x_i \; .$$

The dual problem involves the x_i only thru scalar products $\langle x_i, x_j \rangle$.

It is of size n (independent of the dimension d).

These computations can be extended to the non-homogeneous soft-SVM

 \rightarrow Kernel trick.

Numerically solving Soft-SVM

 $f(w) = \frac{\lambda}{2} ||w||^2 + L_S^{\text{hinge}}(w)$ is λ -strongly convex.

 $\label{eq:stochastic Gradient Descent with learning rate 1/(\lambda t). Stochastic subgradient of $L_{\mathcal{S}}^{\rm hinge}(w): v_t = -y_{l_t} x_{l_t} \mathbbm{1}\left\{y_{l_t} \langle w, x_{l_t} \rangle < 1\right\}. $$

$$w_{t+1}=w_t-rac{1}{\lambda t}(\lambda w_t+v_t)=rac{t-1}{t}w_t-rac{1}{\lambda t}v_t=-rac{1}{\lambda t}\sum_{i=1}^t v_t\;.$$

Algorithm: SGD for Soft-SVM

1 Set
$$\theta_0 = 0$$

2 for $t = 0 \dots T - 1$ do
3 Let $w_t = \frac{1}{\lambda t} \theta_t$
4 Pick $l_t \sim \mathcal{U}(\{1, \dots, n\})$
5 if $y_{l_t} \langle w_t, x_{l_t} \rangle < 1$ then
6 $\theta_{t+1} \leftarrow \theta_t + y_{l_t} x_{l_t}$
7 else
8 $\theta_{t+1} \leftarrow \theta_t$
9 return $\bar{w}_T = \frac{1}{\pi} \sum_{t=0}^{T-1} w_t$

Neural Networks

Src: http://insanedev.co.uk/open-cranium/

Src: [Tufféry, Data Mining et Informatique Dcisionnelle]

One-layer network

Src: http://www.makhfi.com

Src: [Tufféry, Data Mining et Informatique Dcisionnelle]

Profound ideas and tricks

- Convolutional networks
- Max-pooling
- Dropout
- Data augmentation
- GANs
- Representation learning
- Self-learning (ex: classify against rotations)

The three main theoretical challenges of deep learning

- Expressive power of DNN: why are the function we are interested in so well approximated by (deep convolutive) neural networks?
- Success of nave optimisation: why does gradient descent lead to a good local minimum?
- **Generalization miracle** why is there no overfitting with so many parameters?

