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What is Machine Learning?



Why Machine Learning?
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Where to learn more?
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What do I need to practice ML? R
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What do I need to practice ML? python
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What do I need to practice ML? scikit-learn
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What is Machine Learning?

• Algorithms operate by building a model from example inputs in

order to make data-driven predictions or decisions...

• ...rather than following strictly static program instructions: useful

when designing and programming explicit algorithms is unfeasible or

poorly efficient.

Within Artificial Intelligence

• evolved from the study of pattern recognition and computational

learning theory in artificial intelligence.

• AI: emulate cognitive capabilities of humans

(big data: humans learn from abundant and diverse sources of data).

• a machine mimics ”cognitive” functions that humans associate with

other human minds, such as ”learning” and ”problem solving”.

6



Example: MNIST dataset
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Definition

Arthur Samuel (1959)

Field of study that gives computers the ability to learn without being

explicitly programmed

Tom M. Mitchell (1997)

A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P if its performance at

tasks in T, as measured by P, improves with experience E.
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Machine Learning: Typical Problems

• spam filtering, text classification

• optical character recognition (OCR)

• search engines

• recommendation platforms

• speach recognition software

• computer vision

• bio-informatics, DNA analysis, medicine

• ...

For each of this task, it is possible but very inefficient to write an explicit

program reaching the prescribed goal.

It proves much more succesful to have a machine infer what the good

decision rules are.
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What is Statistical Learning?

= Machine Learning using statistics-inspired tools and guarantees

• Importance of probability- and statistics-based methods

→ Data Science (Michael Jordan)

• Computational Statistics: focuses in prediction-making through

the use of computers together with statistical models (ex: Bayesian

methods).

• Data Mining (unsupervised learning) focuses more on exploratory

data analysis: discovery of (previously) unknown properties in the

data. This is the analysis step of Knowledge Discovery in Databases.

• Machine Learning has more operational goals

Ex: consistency → oracle inequalities

Models (if any) are instrumental.

ML more focused on correlation, less on causality (now changing).

• Strong ties to Mathematical Optimization, which furnishes

methods, theory and application domains to the field
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What is ML composed of?

Machine Learning Unsupervised
Learning

Representation
learning

Clustering

Anomaly
detection

Bayesian
networks

Latent
variables

Density
estimation

Dimension
reduction

Supervised
Learning:

classification,
regression

Decition
Trees

SVM

Ensemble
Methods

Boosting

BaggingRandom
Forest

Neural
Networks

Sparse
dictionary
learning

Model
based

Similarity
/ metric
learning

Recommender
systems

Rule Learning

Inductive
logic pro-
gramming

Association
rule

learning

Reinforcement
Learning

Bandits MDP

• semi-supervised learning
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What is a classifier?
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hn : X → Y
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Classifier An

Data: n-by-p matrix X

• n examples = points

of observations

• p features =

characteristics

measured for each

example
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Data repositories

• Inside R: package datasets

• Inside python/scikitlearn: package sklearn.datasets

• UCI Machine Learning Repository

• Challenges: Kaggle, etc.

14



Outline

What is Machine Learning?

Data and Learning Algorithms

Classification Framework

First Algorithms: fitting versus generalizing

Nearest-Neighbor Classification

Empirical Risk Minimization

Support Vector Machines

Neural Networks

15



Statistical Learning Hypothesis

Assumption

• The examples (Xi ,Yi )1≤i≤n are iid samples of an unknown joint

distribution D;

• The points to classify later are also independent draws of the same

distribution D.

Hence, for every decision rule h : X → Y we can define the risk

LD(h) = P(X ,Y )∼D
(
h(X ) 6= Y ) = D

({
(x , y) : h(x) 6= y

})
.

The goal of the learning algorithm is to minimize the expected risk:

Rn(An) = ED⊗n

[
LD
(
An

(
(X1,Y1), . . . , (Xn,Yn)

)︸ ︷︷ ︸
ĥn

)]

for every distribution D, using only the examples.

16



Signal and Noise
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Example: Character Recognition

Domain set X 28× 28 images

Label set Y {0, 1, . . . , 9}
Joint distribution D ?

Prediction function h ∈ H ⊂ YX
Risk R(h) = PD

(
h(X ) 6= Y

)
Sample Sn =

{
(Xi ,Yi )

}n
i=1

MNIST dataset

Empirical risk

LS(h) = 1
n

∑n
i=1 1{h(Xi ) 6= Yi}

Learning algorithm

A = (An)n, An : (X × Y)n → H neural nets, boosting...

Expected risk Rn(A) = En

[
LD
(
An(Sn))

)]
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Two visions of D

As a pair (Dx , k), where

• for A ⊂ X , Dx(A) = D
(
A× Y

)
is the

marginal distribution of X ,

• and for x ∈ X and B ⊂ Y,

k(B|x) = D
(
Y ∈ B|X = x) is (a version of)

the conditional distribution of Y given X .

As a pair
(
Dy ,

(
D(·|y)

)
y

)
, where

• for y ∈ Y, DY (y) = D
(
X × y

)
is the

marginal distribution of Y ,

• and for A ⊂ X and y ∈ Y,

D(A|y) = D
(
X ∈ A|Y = y) is the conditional

distribution of X given Y = y .
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Performance Limit: Bayes Classifier

Consider binary classification Y = {0, 1}, η(x) := D(Y = 1|X = x).

Theorem

The Bayes classifier is defined by

h∗(x) = 1
{
η(x) ≥ 1/2

}
= 1

{
η(x) ≥ 1− η(x)

}
= 1

{
2η(x)− 1 ≥ 0

}
.

For every classifier h : X → Y = {0, 1},

LD(h) ≥ LD(h∗) = E
[

min
(
η(X ), 1− η(X )

)]
.

The Bayes risk L∗D = LD(h∗) is called the noise of the problem.

More precisely,

LD(h)− LD(h∗) = E
[∣∣2η(X )− 1

∣∣ 1{h(X ) 6= h∗(X )
}]

.

Extends to |Y| > 2.
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First Algorithms: fitting versus

generalizing



Nearest-Neighbor Classification



The Nearest-Neighbor Classifier

We assume that X is a metric space with distance d .

The nearest-neighbor classifier ĥNNn : X → Y is defined as

ĥNNn (x) = YI where I ∈ arg min
1≤i≤n

d(x − Xi ) .

Typical distance: L2 norm on Rd : ‖x − x ′‖ =
√∑d

j=1(xi − x ′i )
2 .

Buts many other possibilities: Hamming distance on {0, 1}d , etc.
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Numerically
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Numerically
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The most simple analysis of the most simple algorithm

A1. Y = {0, 1}.
A2. X = [0, 1[d .

A3. η is c-Lipschitz continuous:

∀x , x ′ ∈ X ,
∣∣η(x)− η(x ′)

∣∣ ≤ c
∥∥x − x ′‖ .

Theorem

Under the previous assumptions, for all distributions D and all m ≥ 1

LD
(
ĥNNn

)
≤ 2L∗D +

3c
√
d

n1/(d+1)
.
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Proof Outline

• Conditioning: as I (x) = arg min1≤i≤n ‖x − Xi‖,

LD(ĥNNn ) = E
[
E
[
1{Y 6= YI (X )}

∣∣X ,X1, . . . ,Xn

]]
.

• Y ∼ B(p), Y ′ ∼ B(q) =⇒ P(Y 6= Y ′) ≤ 2 min(p, 1− p) + |p − q|,

E
[
1{Y 6= YI (X )}|X ,X1, . . . ,Xn

]
≤ 2 min

(
η(X ), 1−η(X )

)
+c
∥∥X−XI (X )

∥∥ .
• Partition X into |C| = T d cells of diameter

√
d/T :

C =

{[
j1 − 1

T
,
j1
T

[
× · · · ×

[
jd − 1

T
,
jd
T

[
, 1 ≤ j1, . . . , jd ≤ T

}
.

• 2 cases: either the cell of X is occupied by a sample point, or not:∥∥X−XI (X )

∥∥ ≤∑
c∈C

1{X ∈ c}
(√

d

T
1

n⋃
i=1

{Xi ∈ c}+
√
d1

n⋂
i=1

{Xi /∈ c}
)
.

• =⇒ E
[
‖X − XI (X )‖

]
≤
√
d

T +
√
dT d

e n and choose T =
⌊
n

1
d+1

⌋
.
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What does the analysis say?

• Is it loose? (sanity check: uniform DX )

• Non-asympototic (finite sample bound)

• The second term 3c
√
d

n1/(d+1) is distribution independent

• Does not give the trajectorial decrease of risk

• Exponential bound d (cannot be avoided...)

=⇒ curse of dimensionality

• How to improve the classifier?
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k-nearest neighbors

Let X be a (pre-compact) metric space with distance d .

k-NN classifier

hkNN : x 7→ 1
{
η̂(x) ≥ 1/2

}
= plugin for Bayes classifier with estimator

η̂(x) =
1

k

k∑
j=1

Y(j)(X )

where

d
(
X(1)(X ),X

)
≤ d

(
X(2)(X ),X

)
≤ · · · ≤ d

(
X(n)(X ),X

)
.
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More neighbors are better?

k = 1
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More neighbors are better?

k = 3
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More neighbors are better?

k = 5
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More neighbors are better?

k = 7
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More neighbors are better?

k = 75
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Bias-Variance tradeoff
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Risk bound

Let Cε be an ε-covering of X :

∀x ∈ X ,∃x ′ ∈ Cε : d(x , x ′) ≤ ε .

Excess risk for k-nearest-neighbours

If η is c-Lipschitz continuous: ∀x , x ′ ∈ X ,
∣∣η(x)− η(x ′)

∣∣ ≤ c d
(
x , x ′

)
,

then for all k ≥ 2 and all n ≥ 1:

L
(
ĥkNNn

)
− L
(
h∗
)
≤ 1√

k e
+

2k |Cε|
n

+ 4cε

≤ 1√
k e

+ (2 + 4c)

(
αk

n

) 1
d+1

for ε =
(
αk
n

) 1
d+1 ,

if |Cε| ≤ αε−d

≤ (3 + 4c)
(α
n

) 1
d+3

for k =
( n
α

) 2
d+3

.
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Room for improvement

• Lower bound? in n−
1
d .

• Margin conditions

=⇒ fast rates

• More regularity?

=⇒ weighted nearest neighbors

• Is regularity required everywhere?

=⇒ What matters are the balls of mass ≈ k/n near the

decision boundary.

• 2 ”parameters”:

• obvious: the number of neighbors k (bias-variance tradeoff)

• hidden: the distance d (real problem)
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Curse of dimensionality: No free lunch theorem

Theorem

Let c > 1 be a Lipschitz constant. Let A be any learning algorithm for

binary classification over a domain X = [0, 1]d . If the training set size is

n ≤ (c + 1)d/2, then there exists a distribution D over [0, 1]d × {0, 1}
such that:

• η(x) is c-Lipschitz;

• the Bayes error of the distribution is 0;

• with probability at least 1/7 over the choice of Sn ∼ D⊗n,

LD
(
A(Sn)

)
≥ 1

8
.

31



Empirical Risk Minimization



Going empirical

Idea for every candidate rule h in an hypothesis class H, replace the

unknown risk

LD(h) = P(X ,Y )∼D
(
h(X ) 6= Y )

by the computable empirical risk

LSn(h) =
1

n

n∑
i=1

1{h(Xi ) 6= Yi}

and use some uniform law of large numbers:

PD

sup
h∈H

∣∣LSn(h)− LD(h)
∣∣ > c

√
DH log(n) + log 1

δ

n

 ≤ δ
where DH is the Vapnik-Chervonenkis dimension of H.
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Empirical Risk minimization

Uniform law of large numbers:

PD

sup
h∈H

∣∣LSn(h)− LD(h)
∣∣ > c

√
DH log(n) + log 1

δ

n

 ≤ δ .
→ Empirical Risk Minimizer:

ĥn = arg min
h∈H

LSn(h) .

Good if

• the class H is not too large

• the number n of examples is large enough

so as to ensure that c

√
DH log(n)+log 1

δ

n ≤ ε.
→ Sample complexity = number of examples required to have an

ε-optimal rule in the hypothesis class H = O
(
DH
ε2

)
.
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The class of halfspaces

Definition

The class of linear (affine) functions on X = Rd is defined as

Ld =
{
hw ,b : w ∈ Rd , b ∈ R} , where hw ,b(x) = 〈w , x〉+ b .

The hypothesis class of halfspaces for binary classification is defined as

HSd = sign ◦Ld =
{
x 7→ sign

(
hw ,b(x)

)
: hw ,b ∈ Ld

}
where sign(u) = 1{u ≥ 0} − 1{u < 0}. Depth 1 neural networks.

By taking X ′ = X × {1} and d ′ = d + 1, we may omit the bias b and

focus on functions hw (x) = 〈w , x〉.
Property

The VC-dimension of HSd is equal to d + 1.

Corollary: the class of halfspaces is learnable with sample complexity

O
( d+1+log(1/δ)

ε2

)
. 34



Realizable case: Learning halfspaces with a linear program

solver

Realizable case: there exists w∗ such that ∀i ∈ {1, . . . , n}, yi 〈w∗, xi 〉 > 0.

Then there exists w̄ ∈ Rd such that ∀i ∈ {1, . . . , n}, yi 〈w̄ , xi 〉 ≥ 1: if we

can find one, we have an ERM.

Let A ∈Mn,d(R) be defined by Ai,j = yi xi,j , and let

v = (1, . . . , 1) ∈ Rm. Then any solution of the linear program

max
w∈Rd

〈0,w〉 subject to Aw ≥ v

is an ERM. It can thus be computed in polynomial time.
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Rosenblatt’s Perceptron algorithm

Algorithm: Batch Perceptron

Data: training set (x1, y1), . . . , (xn, yn)

1 w0 ← (0, . . . , 0)

2 t ≥ 0

3 while ∃it : yit 〈wt , xit 〉 ≤ 0 do

4 wt+1 ← wt + yit
xit
‖xit ‖

5 t ← t + 1

6 return wt

Each updates helps reaching the solution, since

yit 〈wt+1, xit 〉 = yit

〈
wt + yit

xit
‖xit‖

, xit

〉
= yit 〈wt , xit 〉+ ‖xit‖ .

Relates to a coordinate descent (stepsize does not matter).
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Convergence of the Perceptron algorithm

Theorem

Assume that the dataset Sn =
{

(x1, y1), . . . , (xn, yn)
}

is linearly

separable and let the separation margin γ be defined as:

γ = max
w∈Rd :‖w‖=1

min
1≤i≤n

yi 〈w , xi 〉
‖xi‖

.

Then the perceptron algorithm stops after at most 1/γ2 iterations.

Proof: Let w∗ be such that ∀1 ≤ i ≤ n,
yi 〈w∗, xi 〉
‖xi‖

≥ γ . γ

• If iteration t is necessary, then

〈w∗,wt+1 − wt〉 = yit

〈
w∗,

xit
‖xit ‖

〉
≥ γ and hence 〈w∗,wt〉 ≥ γt .

• If iteration t is necessary, then

‖wt+1‖2 =

∥∥∥∥wt + yit
xit
‖xit ‖

∥∥∥∥2

= ‖wt‖2 +
2yit 〈wt , xit 〉
‖xit ‖︸ ︷︷ ︸
≤0

+y2
it
≤ ‖wt‖2 + 1

and hence ‖wt‖2 ≤ t, or ‖wt‖ ≤
√
t.

• As a consequence, the algorithm iterates at least t times if

γt ≤ 〈w∗,wt〉 ≤ ‖wt‖ ≤
√
t =⇒ t ≤

1

γ2
.

In the worst case, the number of iterations can be exponentially large in the dimension d . Usually,

it converges quite fast. If ∀i, ‖xi‖ = 1, γ = d(S,D) where D =
{
x : 〈w∗, x〉 = 0

}
.
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Computational difficulty of agnostic learning, and surrogates

NP-hardness of computing the ERM for halfspaces

Computing an ERM in the agnostic case is NP-hard.

See On the difficulty of approximately maximizing agreements, by Ben-David, Eiron and Long.

Since the 0-1 loss

LSn(hw ) =
1

n

n∑
i=1

1
{
yi 〈w , xi 〉 < 0

}
is intractable to minimize in the

agnostic case, one may consider

surrogate loss functions

LSn(hw ) =
1

n

n∑
i=1

`
(
yi 〈w , xi 〉

)
,

where the loss function ` : R→ R+

• dominates the function 1
{
u < 0

}
,

• and leads to a ”simple” optimization problem (e.g. convex). 38



Logistic Regression

39



Logistic loss Y = {−1, 1}

Statistics: ”logistic regression”:

Pw

(
Y = y |X = x

)
=

1

1 + exp
(
− y 〈w , x〉

)
log with base 2 here so that `(0) = 1

LS(hw ) =
1

m

m∑
i=1

log
(
1 + exp(−yi 〈w , xi 〉)

)
,

Convex minimization problem, can be solved by Newton’s algorithm (in

small dimension) or stochastic gradient descent (in higher dimension).
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Structural Risk minimization

What if H =
∞⋃
d=1

Hd , with Hd ⊂ Hd+1?

→ empirical risk minimization fails

→ structural risk minimization:

ĥn = arg min
d≥1,h∈Hd

LSn(h) + DHd
log(n) .
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Support Vector Machines



Margin for linear separation

• Training sample Sn =
{

(x1, y1), . . . , (xn, yn)
}

, where xi ∈ Rd and

yi ∈ {±1}.
• Linearly separable if there exists a halfspace h = (w , b) such that

∀i , yi = sign
(
〈w , xi 〉+ b

)
.

• What is the best separating hyperplane for generalization?

Distance to hyperplane

If ‖w‖ = 1, then the distance from x

to the hyperplane h = (w , b) is

d(x ,H) =
∣∣〈w , x〉+ b

∣∣.
Proof: Check that min

{
‖x − v‖2 : v ∈

h
}

is reached at v = x −
(
〈w , x〉+ b

)
w .
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Hard-SVM

Formulation 1:

arg max
(w ,b):‖w‖=1

min
1≤i≤m

∣∣〈w , xi 〉+ b
∣∣ such that ∀i , yi

(
〈w , xi 〉+ b

)
> 0 .

Formulation 2:

min
w ,b
‖w‖2 such that ∀i , yi

(
〈w , xi 〉+ b

)
≥ 1 .

Remark: b is not penalized.

Proposition

The two formulations are equivalent.

Proof: if (w0, b0) is the solution of Formulation 2, then ŵ = w0
‖w0‖

, b̂ = b0
|w| is

a solution of Formulation 1: if (w∗, b∗) is another solution, then letting

γ∗ = min1≤i≤m yi
(
〈w , xi 〉+ b

)
we see that

(
w∗

γ∗ ,
b∗

γ∗

)
satisfies the constraint of

Formulation 2, hence ‖w0‖ ≤ ‖w
∗‖

γ∗ = 1
γ∗ and thus

min1≤i≤m

∣∣〈ŵ , xi 〉+ b̂
∣∣ = 1

‖w0‖
≥ γ∗.
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Sample Complexity

Definition

A distribution D over Rd × {±1} is separable with a (γ, ρ)-margin if

there exists (w∗, b∗) such that ‖w∗‖ = 1 and with probability 1 on a

pair (X ,Y ) ∼ D, it holds that ‖X‖ ≤ ρ and Y
(
〈w∗,X 〉+ b

)
≥ γ.

Remark: by multiplying the xi by α, the margin is mutliplied by α.

Theorem

For any distribution D over Rd × {±1} that satisfies the

(γ, ρ)-separability with margin assumption using a homogenous

halfspace, with probability at least 1− δ over the training set of size n

the 0− 1 loss of the output of Hard-SVM is at most√
4(ρ/γ)2

n
+

√
2 log(2/δ)]

n
.

Remark: depends on dimension d only thru ρ and γ.
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Soft-SVM

When the data is not linearly separable, allow slack variables ξi :

min
w ,b,ξ

λ‖w‖2 +
1

n

n∑
i=1

ξi such that ∀i , yi
(
〈w , xi 〉+ b

)
≥ 1− ξi and ξi ≥ 0

= min
w ,b

λ‖w‖2 + LhingeSn
(w , b) where `hinge(u) = max(0, 1− u) .

Theorem

Let D be a distribution over B(0, ρ)× {±1}. If An(Sn) is the output of

the soft-SVM algorithm on the sample S of D of size n,

E
[
L0−1
D

(
An(Sn)

)]
≤ E

[
LhingeD

(
An(Sn)

)]
≤ inf

u
LhingeD (u) + λ‖u‖2 +

2ρ2

λn
.

For every B > 0, setting λ =
√

2ρ2

B2n yields:

E
[
L0−1
D

(
An(Sn)

)]
≤ E

[
LhingeD

(
An(Sn)

)]
≤ inf

w :‖w‖≤B
LhingeD (w)+

√
8ρ2B2

n
.
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SVM as a Penalized Empirical Risk Minimizer

Margin maximization leads to

LhingeSn
(hw ) =

1

n

n∑
i=1

max
{

0, 1− yi 〈w , xi 〉
}
,

convex but non-smooth minimization problem, used with a penalization

term λ‖w‖2.
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Dual Form of the SVM Optimization Problem

To simplify, we consider only the homogeneous case of hard-SVM. Let

g(w) = max
α∈[0,+∞)n

n∑
i=1

αi

(
1− yi 〈w , xi 〉

)
=

{
0 if ∀i , yi 〈w , xi 〉 ≥ 1,

+∞ otherwise .

Then the hard-SVM problem is equivalent to

min
w :∀i,yi 〈w ,xi 〉≥1

1

2
‖w‖2 = min

w

1

2
‖w‖2 + g(w)

= min
w

max
α∈[0,+∞)m

1

2
‖w‖2 +

n∑
i=1

αi

(
1− yi 〈w , xi 〉

)
min−max thm

= max
α∈[0,+∞)n

min
w

1

2
‖w‖2 +

n∑
i=1

αi

(
1− yi 〈w , xi 〉

)
.

The inner min is reached at w =
n∑

i=1

αiyixi and can thus be written as

max
α∈Rn,α≥0

n∑
i=1

αi −
1

2

∑
1≤i,j≤n

αiαjyiyj〈xi , xj〉 .
47



Support vectors

Still for the homogeneous case of hard-SVM:

Property

Let w0 be a solution of and let I = {i :
∣∣〈w0, xi 〉

∣∣ = 1}. There exist

α1, . . . , αn such that

w0 =
∑
i∈I

αixi .

The dual problem involves the xi only thru scalar products 〈xi , xj〉.
It is of size n (independent of the dimension d).

These computations can be extended to the non-homogeneous soft-SVM

→ Kernel trick.
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Numerically solving Soft-SVM

f (w) = λ
2 ‖w‖2 + LhingeS (w) is λ-strongly convex.

→ Stochastic Gradient Descent with learning rate 1/(λt). Stochastic

subgradient of LhingeS (w) : vt = −yItxIt1
{
yIt 〈w , xIt 〉 < 1

}
.

wt+1 = wt −
1

λt
(λwt + vt) =

t − 1

t
wt −

1

λt
vt = − 1

λt

t∑
i=1

vt .

Algorithm: SGD for Soft-SVM

1 Set θ0 = 0

2 for t = 0 . . .T − 1 do

3 Let wt = 1
λt θt

4 Pick It ∼ U
(
{1, . . . , n}

)
5 if yIt 〈wt , xIt 〉 < 1 then

6 θt+1 ← θt + yItxIt
7 else

8 θt+1 ← θt

9 return w̄T = 1
T

∑T−1
t=0 wt 49



Neural Networks



One-layer network

Src: http://insanedev.co.uk/open-cranium/
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One-layer network

Src: [Tufféry, Data Mining et Informatique Dcisionnelle]
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One-layer network

Src: http://www.makhfi.com
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Two-layer network

Src: [Tufféry, Data Mining et Informatique Dcisionnelle]
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Profound ideas and tricks

• Convolutional networks

• Max-pooling

• Dropout

• Data augmentation

• GANs

• Representation learning

• Self-learning (ex: classify against rotations)
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The three main theoretical challenges of deep learning

• Expressive power of DNN: why are the function we are interested

in so well approximated by (deep convolutive) neural networks?

• Success of nave optimisation: why does gradient descent lead to

a good local minimum?

• Generalization miracle why is there no overfitting with so many

parameters?
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