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What is Machine Learning?



Why Machine Learning?
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Where to learn more?
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What do | need to practice ML?
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What do | need to practice ML?
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What do | need to practice ML? scikit-learn
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scikit-learn

Classification

Identifying to which category an object
belongs to.

Applications: Spam detection, Image
recognition.
Algorithms: SVM, nearest neighbors,

random forest, ... Examples

mensionality reduction

Reducing the number of random variables
to consider.

Applications: Visualization, Increased
efficiency
Algorithms: PCA, feature selection, non

negative matrix factorization. — Examples

On-going development: What's new
(Changelog)

Machine Learning in Python

Regression

Predicting a continuous-valued attribute.
assoclated with an object.

Applications: Drug response, Stock
prices,
Algorithms: SVR, ridge regression,

Lasso, Examples

Model selection

Comparing, validating and choosing
parameters and models.

Goal: Improved accuracy via parameter

tuning
Modules: grid search, cross validation,
metrics Examples

About us See authors and contributing
More Machine Learning Find related

Clustering

Automatic groupi
sets.

of similar objects into

Applications: Customer segmentation,
Grouping experiment outcomes
Algorithms: k Means, spectral clustering,

mean-shif, ... Examples

Preprocessing

Feature extraction and normalization.
Application: Transforming input data.
such as text for use with machine learning
algorithms.
Modules: preprocessing, feature
extraction.

Examplos

(@AWeber



What is Machine Learning?

Data and Learning Algorithms



What is Machine Learning?

e Algorithms operate by building a model from example inputs in
order to make data-driven predictions or decisions...

e ...rather than following strictly static program instructions: useful
when designing and programming explicit algorithms is unfeasible or

poorly efficient.

Within Artificial Intelligence
e evolved from the study of pattern recognition and computational
learning theory in artificial intelligence.

e Al: emulate cognitive capabilities of humans
(big data: humans learn from abundant and diverse sources of data).

e a machine mimics " cognitive” functions that humans associate with
other human minds, such as "learning” and " problem solving”.



Example: MNIST dataset
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Arthur Samuel (1959)
Field of study that gives computers the ability to learn without being
explicitly programmed

Tom M. Mitchell (1997)

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P if its performance at
tasks in T, as measured by P, improves with experience E.



Machine Learning: Typical Problems

e spam filtering, text classification

e optical character recognition (OCR)
e search engines

e recommendation platforms

e speach recognition software

e computer vision

e bio-informatics, DNA analysis, medicine

For each of this task, it is possible but very inefficient to write an explicit
program reaching the prescribed goal.

It proves much more succesful to have a machine infer what the good
decision rules are.



What is Statistical Learning?

= Machine Learning using statistics-inspired tools and guarantees

Importance of probability- and statistics-based methods

— Data Science (Michael Jordan)

Computational Statistics: focuses in prediction-making through
the use of computers together with statistical models (ex: Bayesian
methods).

Data Mining (unsupervised learning) focuses more on exploratory
data analysis: discovery of (previously) unknown properties in the
data. This is the analysis step of Knowledge Discovery in Databases.
Machine Learning has more operational goals

Ex: eensisteney — oracle inequalities

Models (if any) are instrumental.

ML more focused on correlation, less on causality (now changing).
Strong ties to Mathematical Optimization, which furnishes
methods, theory and application domains to the field

10



What is ML composed of?

Association
Fule

Tearning,

Rule Learning Machine Lea:




What is Machine Learning?

Classification Framework

12



What is a classifier?

~ 2
L& & L
FoF 5
SRS v
X1 n

2 2

X Yo
X € Myy(R) Y ey

Data: n-by-p matrix X

e n examples = points Classncier A T
n

of observations

e p features = h,, X — y
characteristics
[6]- 6
measured for each
example

13



Data repositories

Inside R: package datasets

Inside python/scikitlearn: package sklearn.datasets

e UCI Machine Learning Repository

UCI cZx

Machine Learning Repository

Challenges: Kaggle, etc.

14



What is Machine Learning?

15



Statistical Learning Hypothesis

Assumption

e The examples (X, Yi)i1<i<n are iid samples of an unknown joint
distribution D;

e The points to classify later are also independent draws of the same
distribution D.

Hence, for every decision rule h : X — ) we can define the risk
Lp(h) = Pocyyn (H(X) # Y) = D({(x,y) : h(x) # }) -

The goal of the learning algorithm is to minimize the expected risk:

Ro(Ay) = Epen [LD(A,,((Xl, Ya), ooy (X Vo) )1
for every distribution D, using only the examples.

16



Signal and Noise

new york times bestseller (" h
Signal

the signal | |
and the noise \ Signal + Noise

why so many
predictions fail- /7
but some don’t Noise

Height

17
Weight Weight



Example: Character Recognition

Domain set X 28 x 28 images
Label set Y {0,1,...,9}
Joint distribution D ?

Prediction function h € H c ¥
Risk R(h) = Pp (h(X) #Y)
Sample S, = {(Xi, Y;)}Ll MNIST dataset
Empirical risk

Ls(h) = £ Y1, L{h(X)) # Yi}
Learning algorithm

A=(A)n Ap: (X xV)" > H
Expected risk R,(A) = E, [LD (.A,,(Sn)))w

neural nets, boosting...

18



As a pair (Dy, k), where
e for AC X, Dy(A) = D(A X ))) is the
marginal distribution of X,

e and for x € X and B C ),
k(B|x) = D(Y € B|X = x) is (a version of)
the conditional distribution of Y given X.

As a pair (Dy, (D(|y))y) where
o fory €V, Dy(y) = D(X x y) is the |
marginal distribution of Y/, L

e andfor AC X and y € ),
D(Aly) = D(X € A]Y = y) is the conditional |
distribution of X given Y = y.

19



As a pair (Dy, k), where
o for AC X, Dy(A) = D(A x DY) is the o
marginal distribution of X, | s
e and for x € X and B C ),
k(B|x) = D(Y € B|X = x) is (a version of)
the conditional distribution of Y given X.
As a pair (Dy, (D(|y))y) where
e fory €Y, Dy(y) =D(X x y) is the
marginal distribution of Y/,

e and for AC X and y € ), .
D(Aly) = D(X € A]Y = y) is the conditional -
distribution of X given Y = y. ’

19



Performance Limit: Bayes Classifier

Consider binary classification ) = {0, 1}, n(x) := D(Y = 1|X = x).
Theorem

The Bayes classifier is defined by
h*(x) = 1{n(x) > 1/2} = 1{n(x) > 1 —n(x)} = 1{2n(x) — 1 > 0}.
For every classifier h: X — ) = {0,1},

Lp(h) = Lp(h*) = E[ min (5(X), 1 - n(X))]

The Bayes risk L5, = Lp(h*) is called the noise of the problem.

More precisely,

Lp(h) - Lp(h") = E|[2n(X) = 1| 1{h(X) # h*(X)}] .

Extends to || > 2.

20



First Algorithms: fitting versus
generalizing




Nearest-Neighbor Classification




The Nearest-Neighbor Classifier

We assume that X’ is a metric space with distance d.

The nearest-neighbor classifier ANV : X — ) is defined as

/S,QIN(X) =Y, where | € argmin d(x — X;) .
1<i<n

Typical distance: L2 norm on R?: ||x — x| = Zj‘.!:l(x,- —x)? .

Buts many other possibilities: Hamming distance on {0,1}, etc.

21



Numerically

22






The most simple analysis of the most simple algorithm

Al. Y ={0,1}.
A2. X =[0,1[“.

A3. 7 is c-Lipschitz continuous:
Vx,x" € X, |n(x) — n(x)| < c|x =X .

Theorem

Under the previous assumptions, for all distributions D and all m > 1

3cv/d

NN *
LD(hn ) <2lp+ nl/(d+1) °

23



Proof Outline

e Conditioning: as /(x) = argmin; ., [[x — X,
Lp(ANN) = E{E[IL{Y £ Yioo X, X, .. 7X,,H .
Y ~B(p), Y ~B(q) = P(Y #Y’')<2min(p,1—p)

E[ﬂ{v ] Y,(X)}\X,Xl,...,X,,} < 2min (n(X), 1=n(X))+< || X=Xix) | -

Partition X into |C| = T cells of diameter v/d/T:

C_{|:J1 ﬂl:X"'X|:Jd 7Jd|:7 1<.j17"'7.jd<T}~

T T T 'T

2 cases: either the cell of X is occupied by a sample point, or not:

[ X—Xi|| < Z]l{XGC}(]lU{X ec}+\ﬁlﬂ{x ) :

ceC i=1

S EMX_XI ||] 4 f and choose T = {n#lJ

24



What does the analysis say?

e Is it loose? (sanity check: uniform Dx)

e Non-asympototic (finite sample bound)

The second term % is distribution independent
n

Does not give the trajectorial decrease of risk

Exponential bound d (cannot be avoided...)
= curse of dimensionality

How to improve the classifier?

25



k-nearest neighbors

Let X be a (pre-compact) metric space with distance d.

R¥NN - x = 1{A(x) > 1/2} = plugin for Bayes classifier with estimator
k
1
=7 Z

where

26



More neighbors are better?

-2 -1 0 1 2 3 4 5
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More neighbors are better?
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More neighbors are better?

-2 -1 0 1 2 3 4 5
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More neighbors are better?

-2 -1 0 1 2 3 4 5
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More neighbors are better?

-2 -1 0 1 2 3 4 5
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Bias-Variance tradeoff

Risque de k-NN en fonction du hombre de voisins

knn.est.risk
0,22 024 0,26

0 50 100 150

28



Risk bound

Let C. be an e-covering of X

Vx € X,3x" €Cc: d(x,x") <e.

If 7 is c-Lipschitz continuous: Vx, x’ € X,
then for all k > 2 and all n > 1:

n(x) —n(x’)| < cd(x,x’),

+

() — () < 4 20 g

5

1 _L
1 ak) 1 for e = (a—k) o
< +(2+4¢) () n
Vke n if |Ce| < ae™?
1 2

@\ 73 n\ as
< = = (=
7(3—1—46)(”) for k (a) .

29



Room for improvement

. 1
e Lower bound? in n= 4.

Margin conditions
— fast rates

More regularity?
—> weighted nearest neighbors

Is regularity required everywhere?
= What matters are the balls of mass ~ k/n near the
decision boundary.

e 2 "parameters”:

e obvious: the number of neighbors k (bias-variance tradeoff)
e hidden: the distance d (real problem)

30



Curse of dimensionality: No free lunch theorem

Theorem
Let ¢ > 1 be a Lipschitz constant. Let A be any learning algorithm for
binary classification over a domain X' = [0, 1]?. If the training set size is
n < (c+1)9/2, then there exists a distribution D over [0,1]¢ x {0, 1}
such that:

e 7)(x) is c-Lipschitz;

e the Bayes error of the distribution is 0;

e with probability at least 1/7 over the choice of S, ~ D®",

LD (A(Sn)> Z

| =

31



Empirical Risk Minimization




Going empirical

Idea for every candidate rule h in an hypothesis class H, replace the

unknown risk
Lp(h) = Px,v)~p (h(X) # Y)

by the computable empirical risk

Ls,() = T D" L{H(X) # Vi)

i=1

and use some uniform law of large numbers:

Pp | sup |Ls,(h) — Lp(h)| > ¢
heH

\/DH log(n) + log 3

n

where Dy is the Vapnik-Chervonenkis dimension of H.

32



Empirical Risk minimization

Uniform law of large numbers:

Dy log %
Pp | sup |Ls,(h) — Lo(h)| > c\/ nlog(n) +logs | _ 5
heH

— Empirical Risk Minimizer.

h, = argmin Ls,(h) .
heH

Good if

e the class H is not too large
e the number n of examples is large enough

Dy, log(n)+log 1
so as to ensure that cy/ w <e.

— Sample complexity = number of examples required to have an
e-optimal rule in the hypothesis class H = O (%}) .

33



The class of halfspaces

Definition

The class of linear (affine) functions on X = R is defined as
Ly={hwp:weR! beR}, whereh,(x)= (w,x)+b.
The hypothesis class of halfspaces for binary classification is defined as
HSy = signoly = {x — sign (hw7b(x)) thwp € Ld}

where sign(u) = 1{u > 0} — 1{u < 0}. Depth 1 neural networks.

By taking X' = X x {1} and d’ = d + 1, we may omit the bias b and
focus on functions h,, (x) = (w, x).

Property

The VC-dimension of HS, is equal to d + 1.

Corollary: the class of halfspaces is learnable with sample complexity
O(d+1+|og(1/5))-

2 34



Realizable case: Learning halfspaces with a linear program

solver

Realizable case: there exists w* such that Vi € {1,...,n}, yi(w*,x;) > 0.

Then there exists w € R? such that Vi € {1,...,n}, y;(w,x;) > 1: if we
can find one, we have an ERM.

Let A€ M, 4(R) be defined by A; j = y; x;j, and let
v=(1,...,1) € R™. Then any solution of the linear program

max (0, w) subjectto Aw >v
weRd

is an ERM. It can thus be computed in polynomial time.

35



Rosenblatt’s Perceptron algorithm

Algorithm: Batch Perceptron

Data: training set (x1,)1),- .-, (Xn, Yn)
1 W0<—(0,...70)

2t>0
Yi ¢
Xi
4 Witl < Wy +)/itm

5 t+—t+1

6 return w;

Each updates helps reaching the solution, since

y/r<Wt+1’X/t>:yit< t+y/r || ||> ’r> .y’t< f7X/r>+||Xft|| .
’t

Relates to a coordinate descent (stepsize does not matter).

36



Convergence of the Perceptron algorithm

Theorem
Assume that the dataset S, = {(xl,yl), .. ,(X,,,y,,)} is linearly
separable and let the separation margin ~y be defined as:

i (w, x)
Y= max min ————
weR?: |w||=11<i<n  ||x;]]

Then the perceptron algorithm stops after at most 1/+? iterations.

o . yi{w”, xi) = .
Proof: Let w* besuchthat V1 <i<n, ———=>~.
e If iteration t is necessary, then [l s ° %o
o o
(W", w1 — we) =y, <W T H> >~ and hence (w", w;) >t .
Xi
e |[f iteration t is necessary, then
2y, (W, X, )
a2 = [l 3 2 = e 4 2R 2 < 42
[EA [EA
2 =0
and hence ||w:||* < t, or ||we|| < V't

e As a consequence, the algorithm iterates at least t times if
1
vt < (whwe) < we| < VE = t< — .

In the worst case, the number of iterations can be exponentially large in the dimension d. Usually,

it converges quite fast. If Vi, [|x|| = 1, v = d(S, D) where D = {x: (w",x) = 0}. i



Computational difficulty of agnostic learning, and surrogates

NP-hardness of computing the ERM for halfspaces
Computing an ERM in the agnostic case is NP-hard.

See On the difficulty of approxii ly imizil by Ben-David, Eiron and Long.
Since the 0-1 loss 28

1 n 20
LSn(hw) = ; E ]l{y; <W,X,'> < 0} s

i=1
is intractable to minimize in the N

0.5

agnostic case, one may consider

surrogate loss functions S0 o5 05

where the loss function ¢: R — Rt

e dominates the function ]l{u < 0},
e and leads to a "simple” optimization problem (e.g.

convex).

20

- 0-1
square
absolute
logistic
hinge
boosting

38



Logistic Regression

1.2
0.8-
Regression model
> = linear
= logistic
04-
0.0-

39



Logistic loss Y = {-1,1}

Statistics: "logistic regression”: = 0-1
s square
absolute
PW(Y :y|X = X) ' s |0gistic
1 hinge
0.5 boosting

1+exp (= y(w,x))
-1.0 -0.5 05 710 15 20
log with base 2 here so that £(0) = 1

Ls(hy) = %ng (1 + exp(—yi(w, x1)))

i=1

Convex minimization problem, can be solved by Newton's algorithm (in
small dimension) or stochastic gradient descent (in higher dimension).

40



Structural Risk minimization

What if H = | J Ha, with Hg C Hyi1?
d=1

— empirical risk minimization fails

underfit

X X

1 1 1
9(to + Oy + Boz) (0 & Oyzy 4 Boxo + az? 4 Bzl Bezza)  9(0o + OiTy + ByTa + Byx 4
0,73 + Bz, 2y + Bpziz,
Goxyxl + Bgrird + Byxi. )

— structural risk minimization:

~

h, = argmin Ls, (h) 4+ Dy, log(n) .
d>1,heHy

41



Support Vector Machines




Margin for linear separation

e Training sample S, = {(xl,yl), R (xn.,y,,)}, where x; € R? and
yi € {:l:].}.

e Linearly separable if there exists a halfspace h = (w, b) such that
Vi, y; = sign ({(w,x;) + b).

e What is the best separating hyperplane for generalization?

Distance to hyperplane

If |[w| =1, then the distance from x
to the hyperplane h = (w, b) is
d(x,H) = [{(w,x) + b|.

Proof: Check that min {[[x — v[? : v €
h} is reached at v = x — ((w,x) + b)w.

42



Hard-SVM

Formulation 1:

argmax _min [(w,x;)+ b| such that Vi, y;((w,x;)+b) >0.
(w,b):||w||=11Si<m

Formulation 2:

mill;\ |w||® such that Vi, y;((w,x;) + b) > 1.

Remark: b is not penalized.
Proposition

The two formulations are equivalent.

Proof: if (wo, by) is the solution of Formulation 2, then w = -0 b= 2 s

[fwoll [wl
a solution of Formulation 1: if (w*, b*) is another solution, then letting

7* = mini<i<m yi ((w, i) + b) we see that (:’—:, :—i) satisfies the constraint of

Formulation 2, hence ||wo| < H:’:H = ﬁ/% and thus
mini<i<m |(W,xi) + B! = 1o >4

llwoll =

43



Sample Complexity

Definition

A distribution D over RY x {1} is separable with a (v, p)-margin if
there exists (w*, b*) such that ||w*|| = 1 and with probability 1 on a
pair (X, Y) ~ D, it holds that || X|| < p and Y ((w*, X) + b) > .

Remark: by multiplying the x; by «, the margin is mutliplied by «.
Theorem

For any distribution D over R? x {+£1} that satisfies the

(7, p)-separability with margin assumption using a homogenous
halfspace, with probability at least 1 — § over the training set of size n
the 0 — 1 loss of the output of Hard-SVM is at most

\/4(p/v)2 N \/2 log(2/9)]

n n

Remark: depends on dimension d only thru p and 7.
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When the data is not linearly separable, allow slack variables &;:
min \|lwl? + lzn:& such that Vi, y; ((w,x;) + b) > 1—¢ and & >0
w,b,& n" ’ ’ - i > =
= witr) M wl? + Lksli"ge(w, b) where (M8(y) = max(0,1 — u) .

Theorem

Let D be a distribution over B(0, p) x {£1}. If A,(S,) is the output of
the soft-SVM algorithm on the sample S of D of size n,

: _ 2
E[Lg—l(An(sn))} < E[Lg“ge(An(sn))] < inf L™ () + AJul? + % .
For every B > 0, setting A = % yields:
_ . 8,282
0—1 hinge . hinge P
E[L5 ™ (An(50)] S E[LE™ (An(S0)] < i Lo W)y
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zed Empirical Risk Minimizer

0-1
square

absolute

Margin maximization leads to o
. logistic

=== hinge
0.5 boosting

-1.0 -05 0.5 1.0 1.5 20

LlslinngO(hW) = %Z max{O, = YI<W7XI>} )
i=1

convex but non-smooth minimization problem, used with a penalization
term \|w/|?.
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Dual Form of the SVM Optimization Problem

To simplify, we consider only the homogeneous case of hard-SVM. Let

gw)= max Y ai(l-yiw,x)) = {0 if Vi, yiw, xi) > 1,

a€[0,+o00)" P +o0o otherwise .

Then the hard-SVM problem is equivalent to

1
Slwl?

min
Wi,y (w,x;)>1 2

1
5wl + g(w)

=min max 7||WH2+ZO‘I — yi(w X,>)
w  a€l0,+o00

min—max thm ) 5

0 max min=[wl2+ S a;(1—yi(w. x)) .
Q€[0,+00)n W 2H I ; ’( vilw, r>)
n

The inner min is reached at w = Zamx’. and can thus be written as
i=1

n
max E oz,-f1 E Q0 y;yi(xi, Xj) -
a€R",a>0 £— 2
im

1<i,j<n X



Support vectors

Still for the homogeneous case of hard-SVM:
Property

Let wp be a solution of and let / = {i : |(wo, ;)| = 1}. There exist

Wwp — E QX .

i€l

Qi,...,ap such that

The dual problem involves the x; only thru scalar products (x;, x;).
It is of size n (independent of the dimension d).
These computations can be extended to the non-homogeneous soft-SVM

— Kernel trick.
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Numerically solving Soft-SVM

f(w) = 3|w|?®+ L3778 (w) is A-strongly convex.
— Stochastic Gradient Descent with learning rate 1/(At). Stochastic
subgradient of Lg"¢(w) : v; = —yixi, 1 yi, (w, x,) < 1}.

1 t—1 1 1
WtJrl:Wt_E()\Wt—'—Vt): ¢ Wt_ﬂ‘/t:_ﬂ;‘/t.

Algorithm: SGD for Soft-SVM

1 Set 90 =0

2 fort=0...T —1do

3 Let w; = %Gt

4 Pick fp ~U({1,...,n})

5 if y,(we, x;,) <1 then

6 ‘ Ory1 < 0 + y1,x,

7 else

8 t Orr1 < 0r

o return wr = =" P, 49




Neural Networks




One-layer network

Src: http://insanedev.co.uk/open-cranium/
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One-layer network

™

N

donnée: > @1 >

/' couche de sortie

couche d'entrée

S(mpw -+ 0Py

Figure 8.3 — Réseau de neurones sans couche cachée

Src: [Tufféry, Data Mining et Informatique Dcisionnelle]
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One-layer network

TEMPERATURE

AMIDITY
HI

@ TRanspiraTION
<0,

° ASSIMILATION
NUTRIENT
@ ruocamon
AGE

PLANT TYPE

XXX XX XN XX

Src: http://www.makhfi.com
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Two-layer network

s[Ms{Znp;)
+0s(Ena))]

B

|
T‘. / couiche cachée couche de sortie

Ko couche d'entrée

Src: [Tufféry, Data Mining et Informatique Dcisionnelle]
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Profound ideas and tricks

e Convolutional networks
e Max-pooling

e Dropout

e Data augmentation

e GANs

e Representation learning

e Self-learning (ex: classify against rotations)

53



The three main theoretical challenges of deep learning

e Expressive power of DNN: why are the function we are interested
in so well approximated by (deep convolutive) neural networks?

e Success of nave optimisation: why does gradient descent lead to
a good local minimum?

e Generalization miracle why is there no overfitting with so many
parameters?
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