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Outline

1. General context and examples.

2. What makes optimization hard?

In the context of supervised machine learning:

3. Minimizing Empirical Risk.

4. Minimizing Generalization Risk.

5. Markov chain point of view.
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General context

What is optimization about?

min
θ∈Θ

f (θ)

With θ a parameter, and f a cost function.

Why?
We formulate our problem as an optimization problem.
3 examples:

I Supervised machine learning

I Signal Processing

I Optimal transport
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Some Examples

Example 1: Supervised Machine Learning

Goal: predict a phenomenon from “explanatory variables”, given a
set of observations.

Bio-informatics

Input: DNA/RNA sequence,
Output: Drug responsiveness

Image classification

Input: Images,
Output: Digit
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Supervised Machine Learning

Example 1: Supervised Machine Learning

Consider an input/output pair (X ,Y ) ∈ X × Y, (X ,Y ) ∼ ρ.

Goal: function θ : X → R, s.t. θ(X ) good prediction for Y .

Here, as a linear function 〈θ,Φ(X )〉 of features Φ(X ) ∈ Rd .

Consider a loss function ` : Y × R→ R+

Define the Generalization risk :

R(θ) := Eρ [`(Y , 〈θ,Φ(X )〉)] .
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Empirical Risk minimization (I)

Data: n observations (xi , yi ) ∈ X × Y, i = 1, . . . , n, i.i.d.

Empirical risk (or training error):

R̂(θ) =
1

n

n∑
i=1

`(yi , 〈θ,Φ(xi )〉).

Empirical risk minimization (ERM) : find θ̂ solution of

min
θ∈Rd

1

n

n∑
i=1

`
(
yi , 〈θ,Φ(xi )〉

)
+ µΩ(θ).

convex data fitting term + regularizer
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Empirical Risk minimization (II)

For example, least-squares regression:

min
θ∈Rd

1

2n

n∑
i=1

(
yi − 〈θ,Φ(xi )〉

)2
+ µΩ(θ),

and logistic regression:

min
θ∈Rd

1

n

n∑
i=1

log
(
1 + exp(−yi 〈θ,Φ(xi )〉)

)
+ µΩ(θ).

Two fundamental questions: (1) computing (2) analyzing θ̂.
Problem is formalized as a (convex) optimization problem.
In the large scale setting, high dimensional problem and

many examples.
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Some Examples

Example 2: Signal processing
Observe a signal Y ∈ Rn×q , try to recover the source
B ∈ Rp×q , knowing the “forward matrix” X ∈ Rn×p.
(multi-task regression)

min
β
‖Xβ − Y ‖2

F + λΩ(β)

Ω sparsity inducing regularization.

How to choose λ?
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Some Examples

Example 3: Optimal transport

min
π∈Π

∫
c(x, y)dπ(x, y)

Π set of probability distributions c(x, y) “distance” from x
to y .

+ regularization

Kantorovic formulation of OT.
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Is it a (hard) problem?

for convex optimization, in 99 % of the cases, no.

In other words:

Use cvxpy

�
Interesting (or hard) problems
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What makes it hard: 1. Convexity

Why?

Typical non-convex problems:

Empirical risk minimization with 0-1 loss.

R̂(θ) = 1
n
∑n

i=1 1yi 6=sign〈θ,Φ(xi )〉.

Neural networks: parametric non-convex functions.
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What makes it hard: 2. Regularity of the function

a. Smoothness

I A function g : Rd → R is L-smooth if and only if it is
twice differentiable and

∀θ ∈ Rd , eigenvalues
[
g ′′(θ)

]
6 L

For all θ ∈ Rd :

g(θ) ≤ g(θ′) + 〈g(θ′), θ − θ′〉+ L
∥∥θ − θ′∥∥2
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What makes it hard: 2. Regularity of the function

b. Strong Convexity

I A twice differentiable function g : Rd → R is µ-strongly
convex if and only if

∀θ ∈ Rd , eigenvalues
[
g ′′(θ)

]
> µ

For all θ ∈ Rd :

g(θ) ≥ g(θ′) + 〈g(θ′), θ − θ′〉+ µ
∥∥θ − θ′∥∥2
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What makes it hard: 2. Regularity of the function

Why?
Rates typically depend on the condition number κ = L

µ
:

Large κ Small κ
harder to optimize easier to optimize
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Smoothness and strong convexity in ML

We consider an a.s. convex loss in θ. Thus R̂ and R are convex.

Hessian of R̂ ≈ covariance matrix 1
n
∑n

i=1 Φ(xi )Φ(xi )
>

If ` is smooth, and E[‖Φ(X )‖2] ≤ r2 , R is smooth.

If ` is µ-strongly convex, and data has an invertible covariance
matrix (low correlation/dimension), R is strongly convex.

Importance of regularization: provides strong convexity, and avoids
overfitting.

Note: when considering dual formulation of the problem:

I L-smoothness ↔ 1/L-strong convexity.

I µ-strong convexity ↔ 1/µ-smoothness
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What makes it hard: 3. Set Θ, complexity of f

a. Set Θ: (if Θ is a convex set.)

I May be described implicitly (via equations):
Θ = {θ ∈ Rd s.t. ‖θ‖2 ≤ R and 〈θ, 1〉 = r}.
# Use dual formulation of the problem.

I Projection might be difficult or impossible.

I Even when Θ = Rd , d might be very large (typically
millions)
# use only first order methods

b. Structure of f . If f = R̂(θ) = 1
n
∑n

i=1 `(yi , 〈θ,Φ(xi )〉),
computing a gradient has a cost proportional to n.
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Optimization

Take home

I We express problems as minimizing a function over a
set

I Most convex problems are solved

I Difficulties come from non-convexity, lack of
regularity, complexity of the set Θ (or high
dimension), complexity of computing gradients

What happens for supervised machine learning? Goals:
I present algorithms (convex, large dimension, high

number of observations)
I show how rates depend on smoothness and strong

convexity
I show how we can use the structure
I not forgetting the initial problem...!
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Stochastic algorithms for ERM

min
θ∈Rd

{
R̂(θ) =

1

n

n∑
i=1

`(yi , 〈θ,Φ(xi )〉)
}
.

Two fundamental questions: (a) computing (b) analyzing θ̂.

“Large scale” framework: number of examples n and the
number of explanatory variables d are both large.

1. High dimension d =⇒ First order algorithms

Gradient Descent (GD) :

θk = θk−1 − γk R̂′(θk−1)

Problem: computing the gradient costs O(dn) per iteration.

2. Large n =⇒ Stochastic algorithms

Stochastic Gradient Descent (SGD)
18



Stochastic Gradient descent

I Goal:
min
θ∈Rd

f (θ)

given unbiased gradient
estimates f ′n

I θ∗ := argminRd f (θ).

θ∗

θ∗

θ0

θn

θ1

I Key algorithm: Stochastic Gradient Descent (SGD) (Robbins
and Monro, 1951):

θk = θk−1 − γk f ′k (θk−1)

I E[f ′k (θk−1)|Fk−1] = f ′(θk−1) for a filtration (Fk)k≥0, θk is Fk
measurable.
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SGD for ERM: f = R̂
Loss for a single pair of observations, for any j ≤ n:

fj (θ) := `(yj , 〈θ,Φ(xj )〉).

One observation at each step =⇒ complexity O(d) per iteration.

For the empirical risk R̂(θ) = 1
n

n∑
k=1

`(yk , 〈θ,Φ(xk)〉).

I At each step k ∈ N∗, sample Ik ∼ U{1, . . . n}:

f ′Ik (θk−1) = `′(yIk , 〈θk−1,Φ(xIk )〉)

E[f ′Ik (θk−1)|Fk−1] =
1

n

n∑
k=1

`′(yk , 〈θ,Φ(xk)〉) = R̂′(θk−1).

with Fk = σ((xi , yi )1≤i≤n, (Ii )1≤i≤k).
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Analysis: behaviour of (θn)n≥0

θk = θk−1 − γk f ′k (θk−1)

Importance of the learning rate (γk)k≥0.

For smooth and strongly convex problem, θk → θ∗ a.s. if

∞∑
k=1

γk =∞
∞∑

k=1

γ2
k <∞.

And asymptotic normality
√

k(θk − θ∗)
d→ N (0,V ), for

γk = γ0

k , γ0 ≥ 1
µ

.

I Limit variance scales as 1/µ2

I Very sensitive to ill-conditioned problems.

I µ generally unknown...
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Polyak Ruppert averaging

Introduced by Polyak and Juditsky
(1992) and Ruppert (1988):

θ̄k =
1

k + 1

k∑
i=0

θi .

θ∗

θ0
θ1

θn

θn

θ1

θ2

I off line averaging reduces the noise effect.

I on line computing: θ̄k+1 = 1
k+1θk+1 + k

k+1 θ̄k .
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Convex stochastic approximation: convergence

Known global minimax rates for non-smooth problems

I Strongly convex: O((µk)−1)
Attained by averaged stochastic gradient descent with
γk ∝ (µk)−1

I Non-strongly convex: O(k−1/2)
Attained by averaged stochastic gradient descent with
γk ∝ k−1/2

For smooth problems

I Strongly convex: O(µk)−1

for γk ∝ k−1/2: adapts to strong convexity.

23



Convergence rate for f (θ̃k)− f (θ∗), smooth f .

min R̂ minR
SGD GD SAG SGD

Convex O
(

1√
k

)
O
(

1
k

)
O
(

1√
k

)
Stgly-Cvx O

(
1
µk

)
O(e−µk) O

(
1− (µ ∧ 1

n )
)k

O
(

1
µk

)
	 Gradient descent update costs n times as much as SGD
update.

Can we get best of both worlds?
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Convergence rate for f (θ̃k)− f (θ∗), smooth f .

min R̂ minR
SGD GD SAG SGD

Convex O
(

1√
k

)
O
(

1
k

)
O
(

1√
k

)
Stgly-Cvx O

(
1
µk

)
O(e−µk) O

(
1− (µ ∧ 1

n )
)k

O
(

1
µk

)
	 Gradient descent update costs n times as much as SGD
update.

Can we get best of both worlds?
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Methods for finite sum minimization
I GD: at step k, use 1

n
∑n

i=0 f ′i (θk)

I SGD: at step k, sample ik ∼ U[1; n], use f ′ik (θk)

I SAG: at step k,
I keep a “full gradient” 1

n

∑n
i=0 f ′

i (θki ), with θki ∈ {θ1, . . . θk}
I sample ik ∼ U[1; n], use

1

n

(
n∑

i=0

f ′
i (θki )− f ′

ik (θkik
) + f ′

ik (θk)

)
,

# ⊕ update costs the same as SGD
# 	 needs to store all gradients f ′i (θki ) at “points in the past”

Some references:

I SAG Schmidt et al. (2013), SAGA Defazio et al. (2014a)

I SVRG Johnson and Zhang (2013) (reduces memory cost but 2 epochs...)

I FINITO Defazio et al. (2014b)

I S2GD Konečnỳ and Richtárik (2013)...

And many others... See for example Niao He’s lecture notes for a nice overview. 25
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Convergence rate for f (θ̃k)− f (θ∗), smooth
objective f .

min R̂ minR
SGD GD SAG SGD

Convex O
(

1√
k

)
O
(

1
k

)
O
(

1√
k

)
Stgly-Cvx O

(
1
µk

)
O(e−µk) O

(
1− (µ ∧ 1

n )
)k

O
(

1
µk

)

GD, SGD, SAG (Fig. from Schmidt et al. (2013))
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Take home
Stochastic algorithms for Empirical Risk Minimization.

I Rates depend on the regularity of the function.

I Several algorithms to optimize empirical risk, most
efficient ones are stochastic and rely on finite sum
structure

I Stochastic algorithms to optimize a deterministic
function.

27



What about generalization risk

Initial problem: Generalization guarantees.

I Uniform upper bound supθ

∣∣∣ R̂(θ)−R(θ)
∣∣∣. (empirical

process theory)

I More precise: localized complexities (Bartlett et al.,
2002), stability (Bousquet and Elisseeff, 2002).

Problems for ERM:

I Choose regularization (overfitting risk)

I How many iterations (i.e., passes on the data)?

I Generalization guarantees generally of order O(1/
√

n),
no need to be precise

2 important insights:

1. No need to optimize below statistical error,

2. Generalization risk is more important than empirical risk.

SGD can be used to minimize the generalization risk.
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SGD for the generalization risk: f = R
SGD: key assumption E[f ′n(θn−1)|Fn−1] = f ′(θn−1).

For the risk

R(θ) = Eρ [ `(Y , 〈θ,Φ(X )〉)]

I At step 0 < k ≤ n, use a new point independent of
θk−1:

f ′k (θk−1) = `′(yk , 〈θk−1,Φ(xk)〉)

I For 0 ≤ k ≤ n, Fk = σ((xi , yi )1≤i≤k).

E[f ′k (θk−1)|Fk−1] = Eρ[ `′(yk , 〈θk−1,Φ(xk)〉)|Fk−1]

= Eρ
[
`′(Y , 〈θk−1,Φ(X )〉)

]
= R′(θk−1)

I Single pass through the data, Running-time = O(nd),

I “Automatic” regularization.
29



SGD for the generalization risk: f = R

ERM minimization Gen. risk minimization
several passes : 0 ≤ k One pass 0 ≤ k ≤ n

xi , yi is Ft-measurable for any t Ft-measurable for t ≥ i .
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Convergence rate for f (θ̃k)− f (θ∗), smooth
objective f .

min R̂ minR
SGD GD SAG SGD

Convex O
(

1√
k

)
O
(

1
k

)
O
(

1√
k

)
Stgly-Cvx O

(
1
µk

)
O(e−µk) O

(
1− (µ ∧ 1

n )
)k

O
(

1
µk

)
0 ≤ k 0 ≤ k ≤ n

Lower Bounds α β γ δ

δ :Information theoretic LB - Statistical theory (Tsybakov, 2003).

Gradient does not even exist
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Convergence rate for f (θ̃k)− f (θ∗), smooth
objective f .

min R̂ minR
SGD GD SAG SGD

Convex O
(

1√
k

)
O
(

1
k

)
O
(

1√
n

)
Stgly-Cvx O

(
1
µk

)
O(e−µk) O

(
1− (µ ∧ 1

n )
)k

O
(

1
µn

)
0 ≤ k 0 ≤ k ≤ n

Gradient is unknown
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Least Mean Squares: rate independent of µ

Least-squares: R(θ) = 1
2E
[
(Y − 〈Φ(X ), θ〉)2

]
Analysis for averaging and constant step-size γ = 1/(4R2)
(Bach and Moulines, 2013)

I Assume ‖Φ(xn)‖ 6 r and |yn − 〈Φ(xn), θ∗〉| 6 σ
I No assumption regarding lowest eigenvalues of the

Hessian

ER(θ̄n)−R(θ∗) 6
4σ2d

n
+
‖θ0 − θ∗‖2

γn

I Matches statistical lower bound (Tsybakov, 2003).

I Optimal rate with “large” step sizes
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Take home

I SGD can be used to minimize the true risk directly

I Stochastic algorithm to minimize unknown function

I No regularization needed, only one pass

I For Least Squares, with constant step, optimal rate .

#Stochastic approximation, beyond Least Squares?
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Beyond least squares. Logistic regression

min
θ∈Rd

E log

(
1 + exp(−Y 〈θ,Φ(X )〉)

)
.

lo
g

1
0

( R(
θ̄

n
)
−
R

(θ
∗)
)

log10(n)

Logistic regression. Final iterate (dashed), and averaged recursion
(plain).
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Motivation 2/ 2. Difference between quadratic and
logistic loss

Logistic Regression Least-Squares Regression

ER(θ̄n)−R(θ∗) = O(γ2) ER(θ̄n)−R(θ∗) = O
(

1

n

)
with γ = 1/(4R2) with γ = 1/(4R2)
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SGD: an homogeneous Markov chain

Consider a L−smooth and µ−strongly convex function R.

SGD with a step-size γ > 0 is an homogeneous Markov chain:

θγk+1 = θγk − γ
[
R′(θγk ) + εk+1(θγk )

]
,

I satisfies Markov property

I is homogeneous, for γ constant, (εk)k∈N i.i.d.

Also assume:

I R′k = R′ + εk+1 is almost surely L-co-coercive.

I Bounded moments

E[‖εk(θ∗)‖4] <∞.
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Stochastic gradient descent as a Markov Chain:
Analysis framework†

I Existence of a limit distribution πγ , and linear convergence to
this distribution:

θγk
d→ πγ.

I Convergence of second order moments of the chain,

θ̄γk
L2

−→
k→∞

θ̄γ := Eπγ [θ] .

I Behavior under the limit distribution (γ → 0): θ̄γ=θ∗ + ?.

# Provable convergence improvement with extrapolation tricks.

†Dieuleveut, Durmus, Bach [2017], published in AOS 19
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Existence of a limit distribution γ → 0

Goal: (θγk )k≥0
d→ πγ .

Theorem
For any γ < L−1, the chain (θγk )k≥0 admits a unique stationary
distribution πγ . In addition for all θ0 ∈ Rd , k ∈ N:

W 2
2 (θγk , πγ) ≤ (1− 2µγ(1− γL))k

∫
Rd
‖θ0 − ϑ‖2 dπγ(ϑ) .

Wasserstein metric: distance between probability measures.
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Behavior under limit distribution.
Ergodic theorem: θ̄k → Eπγ [θ] =: θ̄γ . Where is θ̄γ?

If θ0 ∼ πγ , then θ1 ∼ πγ .

θγ1 = θγ0 − γ
[
R′(θγ0 ) + ε1(θγ0 )

]
.

Eπγ
[
R′(θ)

]
= 0

In the quadratic case (linear gradients) ΣEπγ [θ − θ∗] = 0: θ̄γ = θ∗!

In the general case, using Eπγ
[
‖θ − θ∗‖4

]
≤ Cγ2, and expand the

Taylor expansion of R: And iterating this reasoning on higher
moments of the chain:

θ̄γ − θ∗ = γR′′(θ∗)−1R′′′(θ∗)
([
R′′(θ∗)⊗ I + I ⊗R′′(θ∗)

]−1Eπγ [ε(θ)⊗2]
)

+ O(γ2)

Overall, θ̄γ − θ∗ = γ∆ + O(γ2).
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Constant learning rate SGD: convergence in the
quadratic case
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Constant learning rate SGD: convergence in the
quadratic case

θ0

θ1

θn
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θ1

θ2

θn
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Constant learning rate SGD: convergence in the
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θn
θ1

θ2

θn
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Behavior under limit distribution.

Ergodic theorem: θ̄n → Eπγ [θ] =: θ̄γ . Where is θ̄γ?

If θ0 ∼ πγ , then θ1 ∼ πγ .

θγ1 = θγ0 − γ
[
R′(θγ0 ) + ε1(θγ0 )

]
.

Eπγ
[
R′(θ)

]
= 0

In the quadratic case (linear gradients) ΣEπγ [θ − θ∗] = 0: θ̄γ = θ∗!

In the general case, Taylor expansion of R, and same reasoning on
higher moments of the chain leads to

θ̄γ − θ∗ ' γR′′(θ∗)−1R′′′(θ∗)
([
R′′(θ∗)⊗ I + I ⊗R′′(θ∗)

]−1Eε[ε(θ∗)
⊗2]

)
Overall, θ̄γ − θ∗ = γ∆ + O(γ2).
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Constant learning rate SGD: convergence in the
non-quadratic case

θ∗

θ0
θ1

θn

θn

θ1

θ2
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Constant learning rate SGD: convergence in the
non-quadratic case

θ∗

θ0
θ1

θn

θ1

θ2
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Constant learning rate SGD: convergence in the
non-quadratic case

θ∗

θ0
θ1

θn

θ1

θ2
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Constant learning rate SGD: convergence in the
non-quadratic case

θ∗

θ0 θ1

θn

θ1

θ2

θγ
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Richardson extrapolation

θ∗

¯θγn −
¯θγ = Op(n

−1=2)
¯θ1

θn θγ

θn

θ0

θγn −
¯θγ = Op(γ

1=2)

θ∗ − ¯θγ = O(γ)

Recovering convergence closer to θ∗ by Richardson
extrapolation 2θ̄γn − θ̄2γ

n
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Experiments: smaller dimension

lo
g

1
0

[R
(θ

)
−
R

(θ
∗)

]

log10(n)

Synthetic data, logistic regression, n = 8.106
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Experiments: Double Richardson

lo
g

1
0

[R
(θ

)
−
R

(θ
∗)

]

log10(n)

Synthetic data, logistic regression, n = 8.106

“Richardson 3γ”: estimator built using Richardson on 3
different sequences: θ̃3

n = 8
3 θ̄
γ
n − 2θ̄2γ

n + 1
3 θ̄

4γ
n 45



Conclusion MC

Take home

I Asymptotic sometimes matter less than first iterations:
consider large step size.

I Constant step size SGD is a homogeneous Markov chain.

I Difference between LS and general smooth loss is intuitive.

For smooth strongly convex loss:

I Convergence in terms of Wasserstein distance.

I Decomposition as three sources of error: variance, initial
conditions, and “drift”

I Detailed analysis of the position of the limit point: the
direction does not depend on γ at first order =⇒
Extrapolation tricks can help.
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Further references

Many stochastic algorithms not covered in this talk
(coordinate descent, online Newton, composite optimization,
non convex learning) ...

I Good introduction: Francis’s lecture notes at Orsay

I Book:
Convex Optimization: Algorithms and Complexity,
Sébastien Bubeck

47
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