AFM et mécanobiologie

Vincent Dupres

Institut Pasteur CNRS – INSERM – Univ. Lille Cellular Microbiology and Physics of Infection http://www.cmpi.cnrs.fr

vincent.dupres@ibl.cnrs.fr

Mechanobiology

How cells could sense and respond to the physical properties of their environment ?

 \rightarrow dependent on dynamic subcellular systems that can generate and transduce mechanical force.

Cellular function modification (biochemical properties) Mechanical properties

indicator of their biological status

Mechanobiology

Alibert et al., Biol. Cell (2017) 109, 167-189

- 1) How can we measure cell mechanics by AFM ?
- 2) Why (cell mechanics in diseases)?
- 3) Perspectives

Atomic Force Microscopy : principle

• Imaging

20 30

0 10 50

40 Distance (nm) 60 70

- resolution : nm
- minimal sample prep
- in buffer
- ~ real time

- pN sensitivity
- single molecule
- Physical properties
- cartography

Different models for different applications

JPK NanoWizard III AFM

AFM scanning head (xyz) and stage (z)

Petri dish heater

Cantilever holder

Choice of the probe

\rightarrow Stiffness of the cantilever (spring constant k)

→ Tip shape tip radius : 2-500 nm tip height : 3-20 µm

Choice of the probe

Long tips enabling imaging of cell surfaces even with large height differences

 \rightarrow PeakForce QNM-Live Cell probe

Schillers et al., J. Mol. Rec., 2016

 \rightarrow short cantilever with a 17- μ m-long tip (minimizes hydrodynamic effects between the cantilever and the sample surface)

Tipless cantilever

Calibration

Force measurements in practice : calibration of force distance curves

Cantilever : Hookean spring

 $F = k \times d$

\rightarrow Sensitivity (of the optical detection system)

 \rightarrow Cantilever spring constant k

Calibration

Deflection sensitivity (nm/V)

- voltage signal detected by the photodiode (V)
- conversion factor : $V \rightarrow nm$

 \rightarrow calculated from the slope in a force-distance curve obtained on a hard substrate (such as glass)

 \Rightarrow InvOLS : nm/V

Calibration

Cantilever stiffness : spring constant (k)

- \rightarrow Nominal stiffness
- \rightarrow Sader method
- \rightarrow Thermal fluctuations method

Equipartition theorem

$$\frac{1}{2}k_{B}T=\frac{1}{2}k\left\langle \Delta x^{2}\right\rangle$$

k : spring constant k_B : Boltzmann constant T : temperature (K) $<\Delta x^2 >$: thermal noise

 \rightarrow power spectrum

To be carried out at each cantilever change and after each laser adjustment

Force spectroscopy

\rightarrow Force-distance curve (approach)

Force spectroscopy

\rightarrow Force-distance curve (retract)

Force spectroscopy

One force-curve : two different parts

Mechanical properties : Young modulus

Mechanical properties : Young modulus

Young's modulus \rightarrow cell elastic properties

Mechanical properties : Hertz Model

H. Hertz, Über die Berührung fester elastischer Körper, Journal für die reine und angewandte Mathematik 92, 156-171 (1881)

 \rightarrow Two elastic, deformable spheres

Assumptions of the Hertz theory :

- Homogeneous and isotropic material
- Linear elastic material properties
- Non-adhesive tip-sample contact
- Infinite sample thickness
- Small stresses (infinitesimal deformations)

Mechanical properties : Hertz Model

But cells are heterogeneous...

Lekka et al., Eur Biophys J (1999)

 \rightarrow The Hertz fit works surprisingly well...

Mechanical properties : Hertz Model

There are variants of the Hertz model for different probe geometries

http://www.iupui.edu/~bbml/

Krieg et al. Nat Rev Physics, 2019

Influence of the substrate

Hertz model : infinite sample thickness (neglectable indentation)

\rightarrow BEC model (Bottom Effect Correction)

(Take into account the mechanical contribution of the stiff substrate)

• Bead (spherical tips)

$$E = \frac{9F}{16} \frac{1}{R^{\frac{1}{2}} \delta^{\frac{3}{2}}} \frac{1}{(1+1.133\chi+1.283\chi^2+0.769\chi^3+0.0975\chi^4)}$$

• Cone shaped tips

$$F = \frac{8E\tan\theta\delta^2}{3\pi} x \left\{ 1 + 1.7795 \frac{2\tan\theta}{\pi^2} \frac{\delta}{h} + 16(1.7795)^2 \tan^2\theta \frac{\delta^2}{h^2} + O\left(\frac{\delta^3}{h^3}\right) \right\}$$

Gavara & Chadwick, Nature Nanotech, 2012

Dimitriadis et al., Biophys J, 2002

Mechanical properties : elasticity maps

Mechanical properties : elasticity maps

After injection of latrunculin A ($0.2\mu M$)

Analysis

manual vs auto \rightarrow home-built software

pyAF

Histograms (stats)

Sharp tips or colloidal probes

Colloidal probes :

- Whole cell elasticity
- Well defined geometry
- Large contact area

Sharp tip :

- Force mapping
- Precise tip geometry unclear
- Strain stiffening
- Damage a cell at high LR

Limitations : Elasticity measurements

- Models in function of the tip geometry (Force, contact area ...)
- Determination of the shear modulus
- Determination of the viscous drag
- Determination of the hydrodynamic drag on the cantilever
- Quality of the probe

Sources of errors

Determination of deflection sensitivity is a critical step in cantilever calibration

⇒ a small variation of the deflection sensitivity value causes a significant change in spring constant k (and then the calculated force F)

Calibration limits

\rightarrow SNAP protocol (2017)

SCIENTIFIC **Reports**

Received: 10 January 2017 Accepted: 26 May 2017 Published online: 11 July 2017

OPEN Standardized Nanomechanical Atomic Force Microscopy Procedure (SNAP) for Measuring Soft and Biological Samples

Hermann Schillers¹, Carmela Rianna², Jens Schäpe², Tomas Lugue³, Holger Doschke², Mike Wälte¹, Juan José Uriarte³, Noelia Campillo³, Georgios P. A. Michanetzis⁴, Justyna Bobrowska⁵, Andra Dumitru⁶, Elena T. Herruzo⁶, Simone Bovio⁷, Pierre Parot^{8,9}, Massimiliano Galluzzi^{10,11,12}, Alessandro Podestà¹⁰, Luca Puricelli¹⁰, Simon Scheuring^{13,14,15}, Yannis Missirlis⁴, Ricardo Garcia⁶, Michael Odorico^{9,16}, Jean-Marie Teulon^{9,17}, Frank Lafont¹⁰, Malgorzata Lekka⁵, Felix Rico¹³, Annafrancesca Rigato¹³, Jean-Luc Pellequer^{9,17}, Hans Oberleithner¹, Daniel Navajas³ & Manfred Radmacher²

SNAP procedure

- Calibrated cantilever (known k \leftrightarrow interferometer)
- Thermal
- Deflection sensitivity

 \Rightarrow the errors present in gel measurements decreased from 30% down to 1% while in cell measurements the consistency increased by a factor of 2.

Statistics

	Colloidal probe	Sharp tip (mapping)
Cells per condition (sample)	~ 50-100	~ 10-20
Force curves recorded per single cell	~ 1-10	~ 100-10000

 \Rightarrow Several thousand of force curves to be analyzed

\rightarrow Fully automated multi-sample analysis using AFM

Dujardin et al., PloS One (2019)

Cell Hesion (JPK)

Summary

Working conditions for a cell mechanics experiment :

- \rightarrow stiffness of the cantilever (k)
- \rightarrow shape of the indenting tip (\Rightarrow model)
- \rightarrow location on the cellular surface (whole cell, nucleus, ...)
- \rightarrow fix all the parameters :
 - ✓ setpoint (indenting force / depth)
 - ✓ tip velocity (ramp, frequency, ...)

For best results in mechanical measurements :

- \rightarrow use colloidal probes
- \rightarrow spring constant calibrated by an interferometer
- \rightarrow set the deflection sensitivity according to the SNAP procedure

 \rightarrow if possible, use the same cantilever...

 \Rightarrow Absolute values of the Young's modulus are difficult to be obtained

- 1) How can we measure cell mechanics by AFM ?
- 2) Why (cell mechanics in diseases)?
- 3) Perspectives

Relevance in Medicine and Physiology

\rightarrow Cell stiffness changes during cancer

Lekka et al., Eur Biophys J (1999) 28, 312-316

Micron 43 (2012) 1259-1266

Contents lists available at SciVerse ScienceDirect

Micron

journal homepage: www.elsevier.com/locate/micron

Cancer cell recognition – Mechanical phenotype

Małgorzata Lekka^{a,*}, Katarzyna Pogoda^a, Justyna Gostek^{a,b}, Olesya Klymenko^a, Szymon Prauzner-Bechcicki^a, Joanna Wiltowska-Zuber^a, Justyna Jaczewska^{a,c}, Janusz Lekki^a, Zbigniew Stachura^a

^a The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland

^b The Marian Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-342 Kraków, Poland

^c Florida Atlantic University, Charles E. Schmidt College of Medicine, 777 Glades Rd., Boca Raton, FL 33431, United States

Relevance in Medicine and Physiology

\rightarrow Cell stiffness changes during cancer (tissue)

nature nanotechnology

PUBLISHED ONLINE: 21 OCTOBER 2012 | DOI: 10.1038/NNANO.2012.167

The nanomechanical signature of breast cancer

Marija Plodinec^{1,2}, Marko Loparic^{1,2†}, Christophe A. Monnier^{1†}, Ellen C. Obermann^{3†}, Rosanna Zanetti-Dallenbach^{4†}, Philipp Oertle¹, Janne T. Hyotyla¹, Ueli Aebi², Mohamed Bentires-Alj⁵, Roderick Y. H. Lim^{1*} and Cora-Ann Schoenenberger²

Are cancer cells really softer than normal cells?

Charlotte Alibert*†, Bruno Goud*† and Jean-Baptiste Manneville*†¹

*Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France and †Sorbonne Universités, UPMC University Paris 06, CNRS, UMR 144, Paris, France

Biol. Cell (2017) 109, 167-189

"The mechanical properties of cancer cells could thus be used as novel diagnostic and/or prognostic markers to complement histological examinations and genetic phenotyping of the tumour"

Cells on different stiffness substrates

C. Rianna, M. Radmacher, Eur. Biophys. J. (2016)

Cells on different stiffness substrates

Lekka M. Bionanoscience (2016)

non-malignant cancer cells HCV29

human bladder cancer cell HT1376

Indentation depth

- small indentation depths <200nm: mechanical response of the actin network
- larger indentation depths: the overall elasticity of the whole cell

Tip velocity

 \Rightarrow Measured Young's modulus depends on approach speed (tip velocity)

 \Rightarrow Cells appear stiffer at higher velocities

Cancer cell recognition

initial cell number 44000 (T24) and 67000 (HCv29) per ml; 24h of growth

Lekka et al., Micron (2012)

Cancer cell recognition

initial cell number 44000 (T24) and 67000 (HCV29) per ml; ratio 1:0.7; 96h

Same results as for separate cell lines

Autophagy and cell mechanics

Cells seeded on glass surfaces adopt different shapes

 \rightarrow not convenient to easily quantify drug effect on cells

 \rightarrow Micropatterning

By growing cells on adhesive micropatterns, a well defined and confined environment is imposed that drives cells to adopt **regular** shapes and cytoskeletal organization.

https://cytoo.com

 \rightarrow Defined cell adhesion geometry (to control cellular processes or to mimic spatial constraints that a cell is exposed inside a tissue)

Autophagy and cell mechanics

Patterning

<u>Micropatterns :</u>

 \rightarrow Strong polarization

 \rightarrow Non-polarized

simulate the shape of a migrating cell with the rounded edge mimicking a lamellipodium at the front of a migrating cell.

 \rightarrow cells of controlled and regular shapes

Autophagy and cell mechanics

 \rightarrow Glass coverslips coated with poly-L-lysine functionalized with polyethylen glycol chains (PLL-g-PEG)

 \rightarrow Coating removed at precise locations with a defined shape (crossbow) by illumination through a photo mask (or PRIMO).

 \rightarrow The resulting « holes » were then filled with fibronectin

fibronectin

 \rightarrow RPE1 cells were then seeded onto the micro-patterns

Influence of autophagy on cell mechanics

→ Micropatterning

→ cells of controlled and regular shapes

Cell mechanics

Elasticity map

Influence of autophagy on cell mechanics

Without rapamycin

With rapamycin

 \rightarrow Cytoskeleton organization : High resolution imaging (STED)

Coupling

Cardiomyocytes

Stiffness tomography

Stiffness tomography

SITE D'ENTREE DE YERSINIA

Infection de cellules HeLa par Y. pseudotuberculosis

Lumière transmise

Corrélation

Fluorescence

Élasticité 0-10 nm

Élasticité 30-40 nm

Élasticité 70-80 nm

Élasticité 130-140 nm

- 1) How can we measure cell mechanics by AFM ?
- 2) Why (cell mechanics in diseases)?
- 3) Perspectives

Perspectives : resolution

Recent AFM developments :

- new probes
- new modes (FV \rightarrow QI, PFT)

BioLever Mini (AC40 – Bruker) 110 kHz Air, 25 kHz Fluid, 0.1 N/m

Mag = 39.46 K X EHT = 2.00 kV Detector = SE2 22 Jul 2015 10:58:34 Foor Space 1 Sugar Pallene - Def Grege ZEINN WD = 12.0 mm

Inlens Duo Mode = SE

PeakForce QNM-LC (Bruker)

Perspectives : resolution

Recent AFM developments :

- new probes
- new modes (FV \rightarrow QI, PFT)

FV 32*32 Acquisition : 30 à 45min

Treatment : ≈ 3-4 heures

QI 64*64 Acquisition : ≈ 5 min Treatment : ≈ qq minutes

QI 256*256 Acquisition : ≈ 10 min Treatment : ≈ qq minutes

Perspectives

\rightarrow automation (middle - high-troughput)

Dujardin et al., PloS One (2019)

Perspectives

\rightarrow viscosity (viscoelastic properties)

Rebelo et al., Nanotechnology (2013)

Force Clamp Force Mapping

Hecht et al., Soft Matter (2015)

Chim et al., Sci. Rep (2018)

Institut Pasteur de Lille http://www.cmpi.cnrs.fr/

🌵 Inserm

Université Lille Nord de France

vincent.dupres@ibl.cnrs.fr

Mardi 19 mars 2019

<u>Atelier 1</u>: Mécano biologie (S. Janel)

