

Virtual Imaging Platform : pour une science ouverte et reproductible

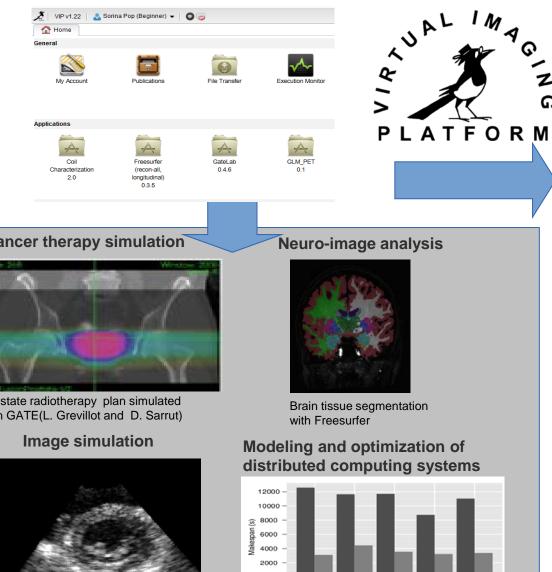
Medical Imaging Research Laboratory

SAINT-ÉTIENNE

🖐 Inserm

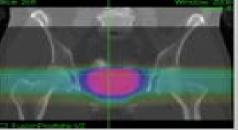
Sorina CAMARASU-POP Frédéric CERVENANSKY CREATIS; CNRS (UMR 5220); INSERM (U1206); INSA Lyon; Université de Lyon, France

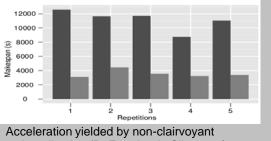
Journée ARAMIS « La reproductibilité en pratique : méthodes et outils » Lyon 23/05/2019



Outline

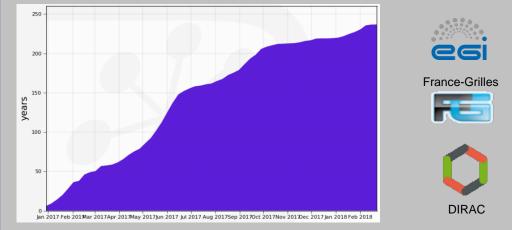
- The Virtual Imaging Platform
- Towards open and reproducible science
 - Boutiques and FAIR data analysis
 - Interoperability and CARMIN
- Organization of conference challenges
- Conclusions


Medical Imaging Research Laboratory CREATIS www.creatis.insa-lyon.fr



Echocardiography simulated with FIELD-II (O. Bernard et al)

Cancer therapy simulation


Prostate radiotherapy plan simulated with GATE(L. Grevillot and D. Sarrut)

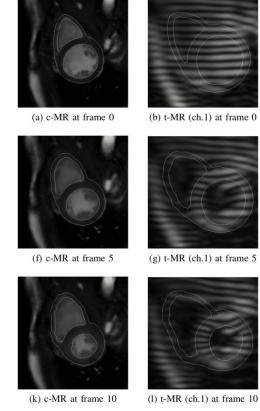
task replication (R. Ferreira da Silva et al)

https://vip.creatis.insa-lyon.fr

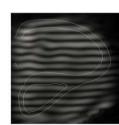
Supported by EGI Infrastructure Uses biomed VO (~65 sites in Europe and beyond) 230 cumulated CPU years utilized by VIP applications in 1 year

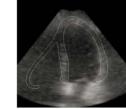
1000+ registered users in May 2019 55 publications identified since 2011

Z

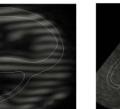


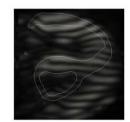
Example of a VIP use-case


- Generate virtual ultrasound and magnetic resonance images using VIP
 - Reference: Bernard et al. 2018. IEEE Transactions on Medical Imaging 0
 - EGI Research story 0
- MRI simulator integrated into VIP
- Catalogue of 18 virtual patients
 - 2700 image volumes 0
 - Benchmarked myocardial motion 0 for validation purposes
- The generation of one full 3D sequence took 6 hours on VIP
 - 280 hours on a personal laptop 0



(c) t-MR (ch.2) at frame 0


(h) t-MR (ch.2) at frame 5



(d) t-MR (ch.3) at frame 0

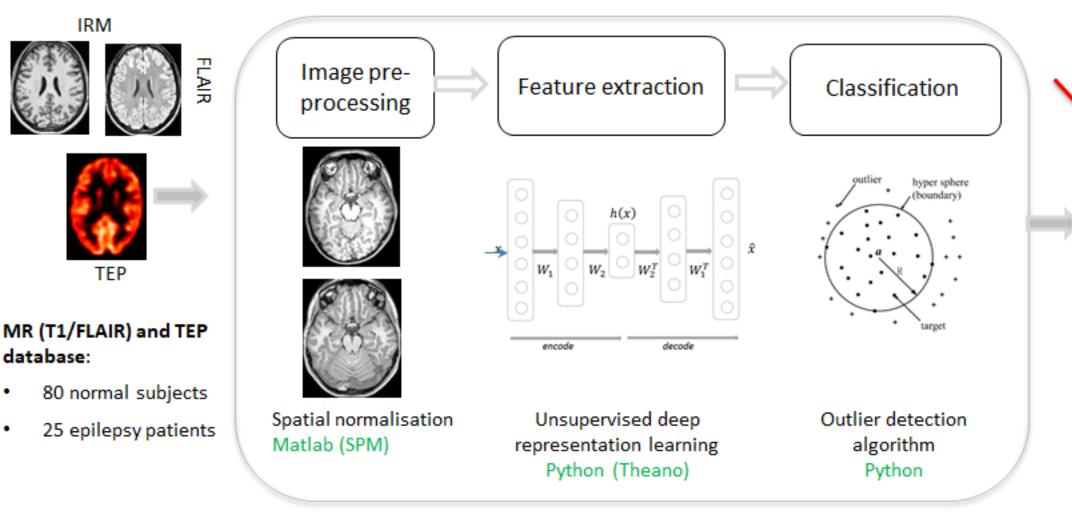
(e) US at frame 0

(i) t-MR (ch.3) at frame 5

(i) US at frame 5

(o) US at frame 10

(m) t-MR (ch.2) at frame 10


(n) t-MR (ch.3) at frame 10

CAD for Epilepsy

Credit: Carole Lartizien, PhD work of Zara Alaverdyan

[Alaverdyan MIDL 2018]

VIP achievements and challenges

- Transparent access to distributed computing resources
 - VIP relies on the France Grilles DIRAC instance (https://dirac.francegrilles.fr/DIRAC)
 - Exploit parallelism through workflows
- Scientific applications as a service
 - No need for installation on the users' side
- Facilitate the sharing of applications and data
- GPU usage
- Foster open and reproducible science
 - Can I have my results reproduced (e.g., by reviewers)?
 - Can I share/exchange applications/data across platforms?

Boutiques 200 and FAIR data analysis

Describe, publish, integrate and execute applications across platforms

www.creatis.insa-lyon.fr

Facilitate application porting \bigcirc

Medical Imaging Research Laboratory

- Import and exchange of Ο applications
- https://github.com/boutiques

Findable

- 1. Globally persistent records
- 2. Described with rich metadata
- 3. Searchable

We leverage Zenodo [2] to create DOIs for Boutiques descriptors which can be accessed via the Zenodo API.

Interoperable

- 1. Formalized and shared metadata standard
- 2. Metadata standards adopted are FAIR
- 3. Linking between objects where appropriate

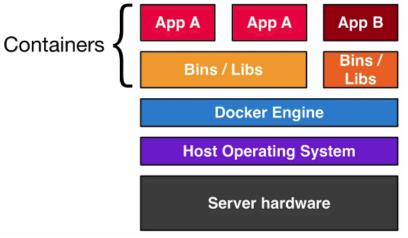
CARMIN [3] and Boutiques [4] standards are used to describe and launch tools, either locally or through a RESTful API.

- 1. Easily retrievable
- Universal access
- 3. Persistent metadata beyond data lifetime

The retrievable tool descriptions contain **immutable** human- and machine-readable instructions for testing and launching each tool.

- 1. Multiple accurate and relevant attributes
- 2. Clearly licensed
- Meets minimum domain standards

Docker [5] and Singularity [6] virtualization enable re-runability across platforms and enclosed testing. Simulation and guerying allow runtime evaluation.


FAIR tools. Credit: Gregory Kiar and Tristan Glatard

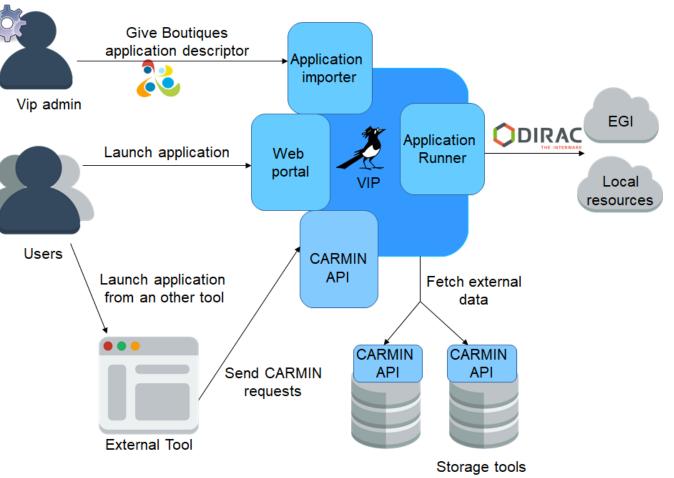
Containers

- A container = an entire runtime environment
 - An application + all its dependencies, libraries and other binaries, and configuration files needed to run it, bundled into one package
 - Facilitates application installation and sharing
- Docker has become synonymous with container technology because its success, but
 - Container technology is not new
 - Other containers exist (Singularity)
- DockerHub
 - Image discovery and distribution
 - https://hub.docker.com

Credit: https://stackoverflow.com

Application publishing in VIP with Boutiques

- Share your tools in a packaged and fully described fashion
- Boutiques publishes descriptors to Zenodo (<u>https://zenodo.org</u>)


	Application: GateCLforOpenDose				Add Version	Refresh	Add/Edit Version
		Visible	Version A		LFN		Application: GateCLforOpenDose
	1	1	v0.1.0		/grid/biomed/creatis/vip	/data/users/sorina_camara	Version
	2		v0.2.0		/grid/biomed/creatis/vip	/data/groups/Opendose/Ga	v0.2.0
							Gwendia LFN
ZENCIÓO Search Q Upload Communities			· · · · · · · · · · · · · · · · · · ·	🕽 Log in 🛛 🕼 Sign up			/grid/biomed/creatis/vip/data/groups/Opendose/GateCLforOpenDose/workflow/GateCLforC
							JSON LFN
February 19, 2019 soft	ware Ope	n Access					/grid/biomed/creatis/vip/data/groups/Opendose/GateCLforOpenDose/json/GateCLforOpenI
GateCLforOpenDose			15	8			Visible
Gilles Mathieu, using GATE application			views	📥 downloads			
Descriptor for the GATE command with input parameters, used for import in VIP via Boutiques			See more det	ails			E Save Kemove
Preview		~					Rublish Version
(^	Indexed in				Status: Not published
¹ "author": "Gilles Mathieu, using GATE application", "command-line": "unzip [INDATA]; source [GATERELEASEPATH]/env.sh [("description": "Descriptor for the GATE command with input paramete	GATEREL	EAS	Open				Rublish
"description": "Descriptor for the GATE command with input paramete "error-codes": [ers, us	ed	Open				
{ "code": 1, "description": "Crashed"							
}							
"inputs": [{			Publication date: February 19, 2019				
<pre>"command-line-flag": "", "command-line-flag-separator": "", "idu "setural result"</pre>			DOI: DOI 10.5281/zenodo.257307:				
"id": "gatereleasepath", "name": "Path to the Gate Release used by the application", "optional": false,	,		Keyword(s):				
"type": "String", "value-key": "[GATERELEASEPATH]"			Boutiques schema-version:0.5 domain:nuclear medicine	application:GATE			
},			License (for files):	tion 4.0 Internation-1			9
"id": "indata", "name": "LFN of the archive containing all input data", "ortionol": folco		~	G Greative Commons Attribu	ation 4.0 International			

Interoperability and CARMIN

- Common API for Research
 Medical Imaging Network
 - https://github.com/CARMIN-org
- Enables communication between services
- Interoperability among data and computing platforms

Outline

- The Virtual Imaging Platform
- Towards open and reproducible science
 - Boutiques and FAIR data analysis
 - Interoperability and CARMIN
- Organization of conference challenges
- Conclusions

REPRODUCTIBILITY IN MEDICAL IMAGING PROCESSING:

PRIVATE AND SENSIBLE DATA. SMALL DATASET (not least true). COMPARISON NOT EASY.

CHALLENGE:

EVENTS DURING INTERNATIONAL CONFERENCE. OPPORTUNITY FOR GROUPS WORKING WITH COMPETITIVE APPROACHES TO RANK THEIR METHODS. SAME DATASET TO COMPARE. SAME METRICS TO COMPARE. DIFFERENTS PHASE (TRAINING, TESTING, RANKING). COMPUTATION/RESEARCH/TESTING DURING A SHORT TIME. LIVING AFTER CHALLENGE END.

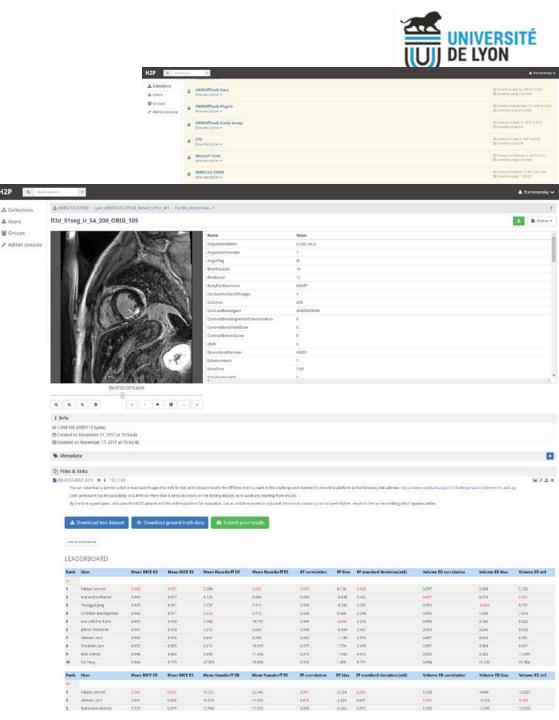
CHALLENGES:

CETUS (2014): MICCAI PICMUS (2016): IUS ACDC(2017): MICCAI, 2 challenges, 10 teams, >50 submissions. After: 500 users, >250 submissions SAF-VI (2018): IUS, 7 teams, 50 submissions CAMUS (2019): Article, Submitted

CREATIS Medical Imaging Research Laboratory

ACDC CHALLENGE CONTEXT : data warehouse

2 challenges


Compare different segmentation methods on Heart (left ventricle, right ventricle and myocardium) and different cardiac pathologies (150 subjects).

Based on **GIRDER data warehouse** (free and open source web-data management platform).

Several instances deployed at Creatis (H2P, ultrasoundwarehouse, ...) for different uses: simple warehouse, cohort, challenge, ...

Server: CherryPY, very flexible plugin system Front-end: javascript + template pages (pug, stylesheets) Database server: MongoDB (more flexible) Plugins can be easily developed example: DicomViewer (1 file/server, 4 files/client)

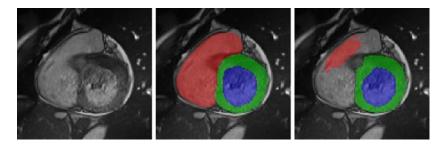
CHALLENGE PLUGIN: Metrics on **docker**, specific front-end for ranking and submission.

Mass FD correlation

ACDC CHALLENGE RESULTS:

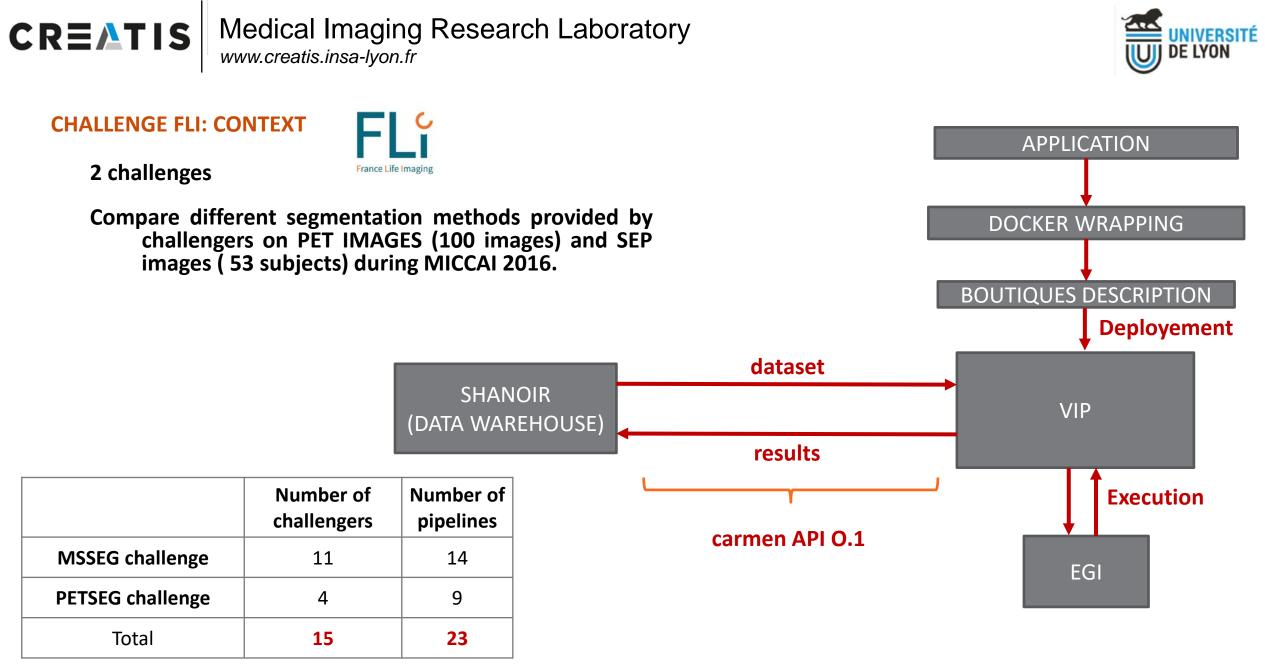
During challenge : 10 teams, > 50 submissions.
After: 500 users, > 250 submissions
Real-Time Ranking.
Each entry on leaderboard associated to an article.
Execution time between 5 min. and 30 min.

LEADERBOARD


Rank	User	Mean DICE ED	Mean DICE ES	Mean Hausdorff ED	Mean Hausdorff ES	EF correlation	EF blas	EF standard deviation(std)	Volume ED correlation	Volume ED bias	Volume ED std
LV											
1	Fabian Isensee	0.965	0.933	5.608	6.300	0.992	0.338	2.800	0.997	1.590	5.851
2	Clement Zotti	0.964	0.912	6.180	8.386	0.990	-0.476	3.114	0.997	3.746	5,146
3	Mahendra Khened	0.964	0.917	8.129	8.968	0.989	-0.548	3.422	0.997	0.576	5.501
4	Christian Baumgartner	0.963	0.911	6.526	9.170	0.988	0.568	3.398	0.995	1.436	7.610
5	Jelmer Wolterink	0.961	0.918	7.515	9.603	0.988	-0.494	3.421	0.993	3.046	8.692
6	Marc-Michel Robé	0.957	0.900	7.483	10.747	0.989	-0.094	3.215	0.993	4.182	8.622
7	clement zotti	0.957	0.905	6.641	8.706	0.987	-1.185	3.573	0.997	9.640	6.381
8	Shubham Jain	0.955	0.885	8.212	10.929	0.971	1.734	5,476	0.997	9.864	6.671
9	Ilias Grinias	0.948	0.848	8.898	12.934	0.970	-1.736	5.482	0.992	2.454	11.061
10	Xin Yang	0.864	0.775	47.873	53.050	0.926	1.496	8.731	0.894	12.232	31.964
Rank	User	Mean DICE ED	Mean DICE ES	Mean Hausdorff ED	Mean Hausdorff ES	EF correlation	EF bias	EF standard deviation (std)	Volume ED correlation	Volume ED bias	Volume ED std
RV											
1	Fabian Isensee	0.946	0.904	8.835	11.376	0.925	-2.966	5.088	0.991	2.136	8.965
2	Clement Zotti	0.934	0.885	11.052	12.650	0.869	-0.872	6.760	0.986	2.372	11.531
3	clement zotti	0.941	0.882	10.318	14.053	0.872	-2.228	6.847	0.991	-3.722	9.255
4	Mahendra Khened	0.935	0.879	13.994	13.930	0.858	-2.246	6.953	0.982	-2.896	12.650
5	Christian Baumgartner	0.932	0.883	12.670	14.691	0.851	1.218	7.314	0.977	-2.290	15.153
6	Jelmer Wolterink	0.928	0.872	11.879	13.399	0.852	-4.610	6.884	0.980	3.596	15.192
7	Marc-Michel Rohé	0.916	0.845	14.049	15.926	0.781	-0.662	9,896	0.983	7.340	13.363
8	Shubham Jain	0.911	0.819	13.517	18.729	0.791	6.784	8.082	0.945	5.634	22.251
9	Illas Grinias	0.887	0.767	19.041	24.249	0.756	-0.192	9.693	0.916	11.910	27.824
2											

Mean Hausdorff FS

Issues on dataset. Instability on early deploiement High maintenance. Needed a strong support. Metric code on github


1 articles with IEEE TMI > 350 mails exchanged with challengers Ranking

Volume FS correlation

Volume FS bias Volume FS standard deviation (std)

[Left] input image; [Middle] ground truth; [Right] prediction.

CHALLENGE FLI: RESULTS

- During the challenge, the executions took place in production conditions (*i.e.* on a shared infrastructure) the resource usage was influenced by the charge of the platform at the moment of the execution.

Benchmark :

- 1 Intel Xeon E5-2630L v4 processor (1.8GHz, 10 cores, 2 threads per core) and 64GB of RAM

- All MSSEG Pipelines
- Only 4 subjects
- Sequentially to avoid overlap

2 articles with Nature

> 650 mails exchanged between VIP team and challengers

- **Integration not too smooth** at the beginning for complex pipelines.
- Issues on MSSEG dataset: relaunch 3 three times all pipelines=> time consuming

I	Pipeline (method)	Elapsed time Average (second)	Maximum resident set size (Mbytes)	
		Average	Average	
edg	ebasedmsseg_pipeline	232,00	3 469,39	
	eline_EOT	385,25	641,79	
MSS	Seg_MIVG	620,75	4 409,77	
sls-o	challenge2016	741,50	4 222,97	
inte	ensityNormalizedSegmentation.py	950,50	3 746,01	
grap	phCutSegmentation.py	1 439,25	4 979,52	
ms_	_run_t1_flair_only	1 617,00	10 133,26	
Mic	cai_Urien_pipeline	2 158,00	6 743,54	
ms_	_run	2 654,75	8 047,65	
Ploo	cus_MSseg	2 801,00	3 770,34	
nab	la-MS	4 669,00	22 510,86	
dee	p_challenge	9 328,50	4 722,65	
CRL	2	12 646,25	11 452,65	
mus	schellij2_msseg	15 852,25	15 745,71 16	

DATA/RESULTS REPRODUCTIBILITY

ACCESSIBILITY

Guidelines to share Challenges Identified and labelised infrastructures TRACABILITY

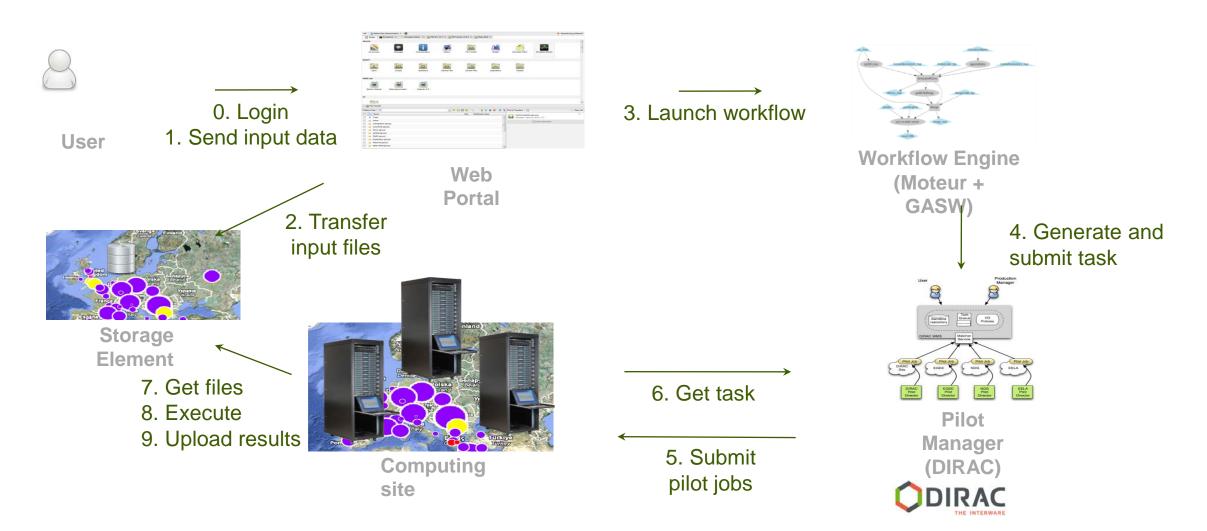
DOI Identify pipelines/workflows QUALITY

Open-source Adapted tools/infrastructure

Conclusions

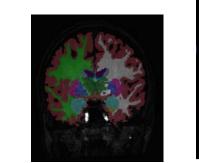
• Achievements

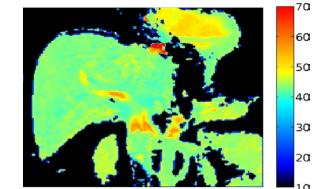
- Transparent access to distributed computing resources
- Scientific applications as a service
- Challenge organization
- Looking to the future
 - Collaboration and tool "re-use"
 - Support and sustainability
 - Interoperability
 - Open and reproducible science



Thank you for you attention! Questions?

sorina.pop@creatis.insa-lyon.fr frederic.cervenansky@creatis.insa-lyon.fr





Biomed community

- Life Sciences sector with three main thematic groups
 - Medical image analysis
 - Bioinformatics
 - Drug discovery
- EGI's biomed VO
 - Operating since 2004
 - Approx 50 supporting sites
 - Heterogeneous resources and user profiles
 - 2.5 million jobs and 500 CPU years/year
 - Technical teams on shift for monitoring
- Open access
 - For non-commercial users
 - For life-science applications

Brain tissue segmentation with Freesurfer

Hepatic perfusion index (%) Credits: B. Leporq, O Beuf

A Docker container for our application

- Prepare the Dockerfile
 - Use an existing nvidia image having cuda and cuDNN already installed (nvidia/cuda:7.5cudnn5-devel-centos7)
 - Install and configure anaconda, theano and keras
 - Bring in code source with git clone (or "ADD" local files)
- Build the image
 - \circ docker build -t feature-extraction .
- Use nvidia-docker
 - docker runtime enabling access to the GPU
- Start the container using the nvidia runtime
 - docker run --runtime=nvidia -it feature-extraction