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Section 1

Asynchronous Stochastic Arithmetic



The computer scientist perspective

I Gap between real numbers and machine representation is amazingly
complex

I IEEE754 Floating point is an highly engineered solution (hw and sw)
that has empirically proved to be a good trade-off

I HPC dev are conveniently focusing on using double precision
I Processor arithmetic is entering a new burst of evolution

I New application such as ML can use more efficient representations
e.g. BF16

I Power efficiency requirement
I Indeterminism is the new rule (parallelism, runtime event, system. . . )
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The application developer perspective

Building fast and robust applications for HPC is a complex task !

I At each step, numerical bugs can be introduced
Objective 1: Track and analyze numerical bugs
Objective 2: Optimize FP usage
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Issue with implementing FP codes on a moving base

Performance improvement allows larger, more complex, higher resolution
simulations. Changing architecture, parallelization, heterogeneity,
compiler, optimizations level and language

generates different numerical results.

I How to assess correctness of a result?
I How to validate an implementation?
I How to produce code resilient to indeterminism?
I How to find the most efficient format for a given application?
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Verifying correctness?
Does different results means wrong results?
Ensuring the numerical reproducibility is not always
a requirement!

Fragilized

Fragilized

a. Normal (IEEE) b. Fragilized (IEEE)

c. Normal (100 MCA samples) d. Fragilized (100 MCA samples)
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Figure: Buckling simulation of a 1D beam with EPX
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Code verification for FP errors?

I Is statistical FP implementation debugging, optimization and
verification enough for you?

I Unitary test coverage?
I On my use case, I am 95% confident that with a probability p:

I (The model predict that) My nuclear reactor will not melt.
I My search engine is giving accurate results.

I FP arithmetic statiscal verification tools verify the implementation of
your model with a probability p on a given set of experiment with a
given confidency

I Debugging on the other hand is always a good idea ;)
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Floating point computation: the IEEE-754 standard

I What Every Computer Scientist Should Know About Floating-Point
Arithmetic, David Goldberg, 1991 ACM issue of Computing Surveys

I Floating point (FP) numbers approximate real numbers with a finite
precision

I Discrete and finite set of values
I In base 2

I Different representation and encoding in memory defined in IEEE
754

I Trade-off between range and precision
I Single (1 + 8 + 23 = 32 bits), Double (1 + 11 + 52 = 64 bits)...

I And four rounding modes :
I nearest, toward +∞, toward −∞, toward zero
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Floating point computation: some adverse effects

I A floating point computation approximates the real computation
I Representation errors

I 3.14159265359300
I Loss of arithmetical properties (for example the floating point

summation is not associative)
I Absorption, a part of the significant digits cannot be represented in

the result format.
I 3.14159+0.00141421=3.14300{421}

I Cancellation, relative error when subtracting variables with very close
values

I 3.14300-3.14159=0.00141

223           

+

1.625           ×

23          1.3×

absorbed digits
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The most common sources of FP arithmetic bugs,
indeterminism or imprecision in HPC

I Large summation: dot product, integral computation, global values
reduction (global energy...)

I Gradient computation of near values: small variations in large
quantities, gradient with neighbor (e.g. stencil, CFD), residual

I Small contributions overtime: explicit methods, last iterations of a
linear solver

I Duplication of mathematically equivalent computation on parallel
actors

I Or a combination of the above: L2 norm of a residual,
standard-deviation...
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Modeling error with stochastic Arithmetic

I Each FP operation may introduce a δ error

z = fl [x + y ] = (x + y)(1 + δ)

I When chaining multiple operations, errors can accumulate and
snowball

I Monte Carlo Arithmetic key principle
I Make δ a random variable
I Use a Monte Carlo simulation to empirically estimate the FP error

distribution [Stott Parker, 1999]
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Some notations

I xieee is the IEEE-754 result
I X1,X2, . . . ,Xn are the values returned by n runs of the program

using stochastic arithmetic. These are seen as realizations of a
random variable X .

I µ̂ and σ̂ are the empirical average and standard deviation.
I µ and σ are the mean and std. deviation of the random variable X .
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How to measure the significance of a result ? (2/2)

I Stott Parker defines the number of significant digits as
ŝ = − log σ̂

|µ̂|
I σ̂ is the empirical standard deviation of X
I µ̂ is the empirical average of X

I This term is the magnitude of the signal to noise ratio.
I Intuitively it maps to the number of common digits among the MCA

samples.
I Later we will introduce a rigorous probabilistic definition of the

number of significant digits. In this probabilistic framework, the digit
computed by Stott Parker formula has 68% chances of being
significant with confidence 95% for a centered normal distribution.
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Monte Carlo Arithmetic: Random Rounding
I MCA simulates error with

inexact(x) = x + 2ex−tξ

I ex = blog2 |x |c+ 1 is the order of magnitude of x;
I ξ is an uniform random variable in ]− 1

2 ,
1
2 [ ;

I t is the virtual precision, selects the magnitude of the simulated error.

absorption and rounding errors
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Absorption example

float a = 13631488.0f; // 1.625 * 2ˆ23
float b = 10.4f; // 1.3 * 2ˆ3
printf("%0.7f\n", a+b);

I Exact result = 13631498.4
I IEEE-754 result = 13631498 (always)
I MCA Random Rounding noise with t = 24

Sample Result
1 13631498
2 13631499
3 13631498

I Exact digits are common across MCA samples
I Error digits change across MCA samples
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MCA Random Rounding at the ulp

I t=24 for float and t=53 for double is a special case: the virtual
precision corresponds to a one ulp ε error.

I The random error introduced is in ]− ε
2 ,

ε
2 [.

I MCA result is either the downwards or upwards roundoff, with a
probability proportional to dxe−x

ε .
I For exact values no error is introduced in this mode.

ℝ
𝔽 ⌊x⌋ ⌈x⌉

x

25% 75%

I This mode is equivalent to Verrou’s average random rounding.

16 / 80



Summation example: t=53 (random rounding at the ulp)

I 0.1 is not representable in F. The closest value is
0.10000000000000000555...

double a = 0;
for (int i=0; i < 10000; i++)

a += 0.1;

Sample MCA RR t=53
1 1000.0000000001186891
2 1000.0000000001174385
3 1000.0000000001175522

double a = 0;
for (int i=0; i < 10000; i++)

a += 0.25;

Sample MCA RR t=53
1 2500.0
2 2500.0
3 2500.0
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Catastrophic Cancellation
I A cancellation happens when we subtract two close values:

I 9633812.0− 9633792.0 = 20.000000

-

I Random Rounding models this operation as exact: the right-digits
are always the same.

Sample MCA RR t=53
1 20.0000000
2 20.0000000
3 20.0000000

I How to model the fact that the right-digits came out of thin-air and
information may have been lost ?
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Monte Carlo Arithmetic: Precision Bound Mode

-

Across multiple MCA executions: error digits will change
significant digits will stay stable

cancellation
mca noise
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Precision Bound Mode Example

float a = 9.633812E6 ;
float b = 9.633792E6 ;
printf("%0.7f\n", a - b);

Sample MCA PB t=24 MCA RR t=24
1 19.9846210 20.0000000
2 20.0592098 20.0000000
3 19.8788948 20.0000000
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Monte Carlo Arithmetic: Full MCA Mode

I Full MCA Mode combines both Random Rounding and Precision
Bound.

absorption cancellation
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Example: Kahan 2x2 ill conditioned System

I Ill-conditioned linear system (condition number 2.5× 108).
I We solve it with the Cramer’s formula.

(
0.2161 0.1441
1.2969 0.8648

)
x =

(
0.1440
0.8642

)
(1)

xreal =
(

2
−2

)
(2)

xsingle =
(

1.33317912
−1.00000000

)
xdouble =

(
2.00000000240030218
−2.00000000359962060

)
I The IEEE-754 result has 8 significant decimal digits.
I xieee[0] has 28.8 significant bits.
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Example: Kahan 2x2 ill conditioned System
I Computations using IEEE-754 FP numbers (C=2.497e8)

Precision Result s
SP x1 = 1.33317912 0

x2 = −1.00000000 0
DP x1 = 2.00000000240030218 9

x2 = 2.00000000359962060 9

I Computation performed with MCA (N = 1000 samples)

Precision µ̂ σ̂ ŝ
MCA SP µ̂1 = 1.02463705 σ̂1 = 6.4... 0.0

µ̂2 = 6.46717332 σ̂2 = 9.6... 0.0
MCA DP µ̂1 = 1.9999999992 σ̂1 = 8.4...× 10−9 8.3

µ̂2 = −1.9999999988 σ̂2 = 1.2...× 10−8 8.2

I For this example, Verificarlo automatically instrumented LAPACK
and BLAS libraries without any modification of their source code

I But how confident are we that it is a good estimate? Could we have
used a smaller number of samples and still get a reliable estimation
of the results quality?
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Existing tools

D
eb

ug
gi

ng
Method Name Implementation

StochasticArithmetic
CADNA [9] CESTAC/DSA (library)

VERROU [6] CESTAC (Valgrind)
Verificarlo [4] MCA (LLVM)

ExtendedPrecision
HPC Craft [10] Exponent comparison (DynInst)

FpDebug [2] MPFR (Valgrind)
Herbgrind [14] MPFR (Valgrind)

O
pt

im
iz

at
io

n Name Method Mixed-Precision Any-Precision

Verificarlo [3, 4] Vprec:MCA (Heuristic, temporal) 3 3
HPC Craft [10] Bitmask (ref value) 3 3

Promise [8] CESTAC/DSA (∆− debug) 3 7
Precimonious [13] EP (∆− debug) 3 7

Herbie [12] EP (Rewriting) 7 7
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Section 2

Verificarlo: Debugging and optimizing floating
point usage in numerical simulation



Introducing Verificarlo

I LLVM compiler pass to replace all floating point operation by
call-back to custom arithmetic backend

I MonteCarlo Arithmetic that allows statistical analysis of rounding
errors and tracer extension to follow FP characteristic over time with
context info (which variable, callsite, iteration. . . )

I Variable precision backend and variable precision runtime
I Open Source GPLv3 at github.com/verificarlo/verificarlo
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Verificarlo workflow
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Verificarlo: Illustration of key principles

I Instrumentation occurs just before code generation
I Enables analyzing what is really executed after optimizations

for (int i=1;i<n;i++) {
y = f[i] - c;
t = sum + y;
c = (t - sum) - y;
sum = t;

}
return sum;

Figure: Analysis of the effect of compiler flags on a Kahan compensated sum
algorithm (Random Rounding with p=53)
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Kahan Sum
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Veritracer motivation

Existing tools explore the spatial dimension of numerical computations:
I which variable, operation or function is imprecise

But function in a programs have different numerical requirements over
execution time when the context vary

I Call site (e.g. dot product called in many places with various size
and conditioning)

I Iteration (e.g. iterative solver)
I Input data (e.g. polynomial evaluation)
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Veritracer: Illustration of key principles

Computing the numerical limit of the following Muller’s sequence:

un+1 = 111− 1130
un

+ 3000
unun−1

with u0 = 1, u1 = −4

I The accurate result is 6
I Whatever the finite precision, a computer will answer 100
⇒ That is an example of being ’precisely wrong’ !
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Muller’s sequence
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Iteration

0
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Significant digits evolution

s

I At n = 30, s = 16
⇒ Fully precise !

I for n = 14, s < 0 ⇒ u14 has no correct decimal digits.
I Most of FP analysis tools will conclude on a fully precise result.
I Veritracer allow to trace the precision and highlight the problem
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Results on ABINIT

I ABINIT [7] Calculates observable properties of materials (optical, mechanical,
vibrational)

I Works on any chemical composition (molecules, nanostructures, solids)

Figure: Sound velocity calculation in an earth mantle component
(MgSiO3 perovskyte with Al impurities) [1]
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Compensated version of Simp gen

I Computes an integral by
Simpsons’ rule over a
generalized 1D-grid

I Can be seen a dot product
I Replaces by a compensated

version Dot2 [11]
I The precision of 30/31 CSPs

is improved
I 1 CSP has a low precision

due to reentrance of the
error
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Vprec backend

I Emulate any range and precision fitting in original type
I Handle denormals, special values
I Implement correct rounding to nearest

I Propose a heuristic based algorithm to explore lower precision
implementation of an algorithm over time

I Complementary to other spatial exploration like delta debug (verrou,
precimonious) and automatic differentiation (Adapt)

I Putting all together in the interflop initiative

r pbinary16

s exponent pseudo-mantissa
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Vprec: Illustration of key principles
I Newton Raphson iteration to compute sqrt()
I Self-correcting iterations
I Quadratic convergence expected (min)
I Precision required for accurate computation can be gradually

increased
I However the convergence profile vary with the input or alternative

algorithm (e.g. Goldsmith use p=53 on all iterations)
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Heuristic exploration of optimization space
Binary tree search heuristic folowing three principles:

1. Configurations where the precision changes slowly over time are
preferable to configurations which quickly oscillate

2. Precision lowering should be distributed among all iterations
3. Early iterations are generally more robust to error
↪→ Width or depth first tree traversal

n
4

n
2

3n
4

n

20

40
0

1

2

3
4

5

6

iteration (k)

vi
rt

ua
lp

re
cis

io
n

(p
k)

36 / 80



Results on Yales2 (1/4)
I Yales2is a solver for two-phase combustion from primary atomization to

pollutant prediction
I CFD is using DPCG solver on unstructured meshes up to billions of elements
I Allows Direct Numerical Simulation of laboratory and industrial configurations
I Coria-CNRS and Safran, Solvay, GDF-Suez, https://www.coria-cfd.fr

Figure: Preccinsta burner
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Results on Yales2 (2/4)

Figure: Reducing precision on the full DPCG solver
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Results on Yales2 (3/4)

Figure: Reducing precision on the Deflated part of the DPCG solver
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Results on Yales2 (4/4)

I Exploration mixed single/double configuration Evaluation on 1.75,
40 and 870 Million element mesh

I From 28 to 560 cores on CRIANN cluster (Atos, Intel OPA, Intel
CPUs)

I 28 to 67% communication volume gain
I (nearly) Linear with energy gain

I Perf gain from -2% to 27%...
I Expected: perf dominated by comm latency
I With commonly used mesh size and core count, around 10%

SpeedUp
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Future work with Interflop

I Consortium: UVSQ, Intel, EDF, Lip6, CEA, ANEO, UPVD
I Objectives is to mutualize and formalize a common interface to build

synergies in floating point analysis tools and provides:
I new frontend/backend,
I new hybrid formal/stochastic approaches,
I common background theory,
I new methodologies to apply the tools on REAL USE-CASES

I Prototype Verrou ⇐⇒ Verificarlo fully functional, yet to be finalize
and released.
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Section 3

Verrou : deboguage numerique des codes de
calcul industriels



Section 4

Confidence interval for stochastic arithmetic



Statistical Analysis of Stochastic Arithmetic: Motivation

I Stochastic Arithmetic
I Numerical errors modeled by introducing random perturbations.
I Estimate significance of result by collecting many samples.

I Motivation for statistical analysis
I How many stochastic samples should be run?
I What is the probability of over-estimating the number of significant

digits?
I Can we give a sound confidence interval for the number of significant

digits?
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Contributions

1. Probability for significance and contribution for Normal Centered
Distributions.

2. Probability for significance and contribution for General
Distributions.

Preprint: Confidence Intervals for Stochastic Arithmetic, D. Sohier, P. de
Oliveira Castro, F. Févotte, B. Lathuilière, E. Petit, O. Jamond. 2018.
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Choosing a reference value

I We require a reference value against which accuracy is measured.
I Examples of common reference values,

I xreal, if the exact solution is known.
I xieee, when the program is deterministic.
I µ̂, if the program is non-deterministic.
I Y , a random variable, to compare two implementations of an

algorithm or measuring significance between runs of the same
program.
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Modeling the error

I Four kind of scenarios are studied in our paper.
I In each case the error is modeled by a random variable Z .
I For simplicity, in the following we consider the relative precision with

scalar reference.

reference x reference Y
absolute precision Z = X − x Z = X − Y
relative precision Z = X/x − 1 Z = X/Y − 1

I With no error, the expected result of Z is 0.
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Significant bits

I Stott Parker defines the significant digits between x and y as the
largest s that satisfies |x/y − 1| ≤ 2−s .

I Or put more simply, the error is less than 2−s .
I We naturally extend this definition to Z the random variable

modeling the stochastic error.

Significant bits
The number of significant digits with probability ps can be defined as the
largest number s such that

P
(
|Z | ≤ 2−s) ≥ ps . (3)

0 1 2 . . . s . . . 45 46 47 48 49 50 51 52

s significant error satisfies |Z | ≤ 2−s
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Contributing bits

I Bits after s still can encode useful information about the result.
I Even if bits on its left are wrong, they can improve the accuracy...
I ...if they are correct on average (pc > 51%).
I Keeping these bits improves the rounded result on average.

I A bit k after s contributes to the result with probability pc iff the
k-th bit of Z is 0 (no error in this bit) with probability pc .

0 1 2 . . . s . . . 45 46 47 . . . c . . . 51 52

significant at ps = .99

contributing at pc = .51

random noise
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Normality of the Kahan 2x2 System
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Figure: Normality of 10000 samples of X [0] with t = 52 and FULL MCA

I We take as reference the empirical mean µ̂.
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Centered Normal Hypothesis: Significant bits

- 3 - 2 - 1

N(0,1) Cumulative distribution function
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Centered Normal Hypothesis: Significant bits

Theorem
For a normal centered error distribution Z ∼ N (0, σ), the s-th bit is
significant with probability

ps = 2F
(

2−s

σ

)
− 1,

with F the cumulative function of the normal distribution with mean 0
and variance 1.

I By inverting this formula, we can provide a formula for the number
of significant digits that only depends on σ and ps ,

s = − log2 (σ)− log2

(
F−1

(
ps + 1

2

))
.
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Figure: Profile of the significant bit curve ps = 2F
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− 1

I If we take the empirical average as reference value, we fall back into
Stott Parker definition of significant bits assuming a large number of
samples − log2(σ) = − log2(σX

|µ̂| )
I The digit of Stott Parker’s formula has 68 % chances of being

significant. (1-sigma rule)
I If we substract 1.37 bits from Stott Parker’s formula, the resulting

bit has 99 % chances of being significant. 51 / 80



CNH: Taking into account the estimation bias

s = − log2 (σ)− log2

(
F−1

(
ps + 1

2

))
.

I Why is this formula independent of the number of samples n ?
I σ is unknown; we can only estimate it from σ̂

I For normal distributions, the following confidence interval with
confidence 1− α based on the χ2 distribution with (n − 1) degrees
of freedom is sound [?]:

(n − 1)σ̂2

χ2
α/2

≤ σ2 ≤ (n − 1)σ̂2

χ2
1−α/2

. (4)

I In the following we choose a confidence of 1− α = 95%.
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CNH: Significant bits lower bound

I By combination, we produce a sound lower bound on the significant
bits,

s > − log2 (σ̂)−
[

1
2 log2

(
n − 1
χ2

1−α/2

)
+ log2

(
F−1

(
p + 1

2

))]
︸ ︷︷ ︸

δcnh︸ ︷︷ ︸
ŝcnh

(5)

I For n = 30 samples and p = 99% s ≥ −log2σ̂ − 1.792
I For n = 15 samples and p = 99% s ≥ −log2σ̂ − 2.023

(log2σ̂ is Stott Parker’s formula when the reference is µ̂)
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CNH: Contributing bits
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Figure: Normal curve; the gray zones correspond to the area where the k-th bit
contributes to make the result closer to 0 (whatever the preceding digits).

∃i ,
⌊
2k |Z |

⌋
= 2i

⇔ 2i ≤ 2k |Z | < 2i + 1
⇔ 2−k(2i) ≤ |Z | < 2−k(2i + 1). (6)
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CNH: Contributing bits

Theorem
For a normal centered error distribution Z ∼ N (0, σ), when 2−c

σ is small,
the c-th bit contributes to the result accuracy with probability

pc ∼
2−c

2σ
√

2π
+ 1

2 .

If we wish to keep only bits improving the result with a probability
greater than p, then we will keep c contributing bits, with

c = − log2(σ)− log2(pc −
1
2 )− log2(2

√
2π). (7)

Again, this formula only depends on σ and the probability pc . As
previously, a sound lower or upper bound can be computed with the
Chi-2 confidence interval of σ.
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Figure: Profile of the contribution bit curve: The shaded area represents the
bound on the error. The approximation is very tight for probabilities less than
70%.

56 / 80



Results: Significant bits

20 25 30 35 40 45 50
k

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pr
ob

ab
ilit

y

30 samples
empirical
CI lower bound

20 25 30 35 40 45 50
k

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

pr
ob

ab
ilit

y

10000 samples
empirical
CI lower bound

Figure: Significant bits for Cramer x [0] variable computed under the normal
hypothesis using 30 and 10000 samples. The Confidence Interval (CI) lower
bound is computed by using the probability of theorem 1 and bounding σ with
a 95% Chi-2 confidence interval.
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Results: Contributing bits
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Figure: Contributing bits for Cramer x [0] variable computed under the normal
hypothesis using 30 and 10000 samples.
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Summary: Significant and Contributing bits in the CNH
(1/2)

0 . . . 25 26 27 28 29 30 31 32 33 34 . . . 52

− log2 σ ≥ 28.45
− log2(pc − 1

2 )− log2(2
√

2π) ≈ +4.32− log2
(

F −1 ( ps +1
2

))
≈ −1.37

significant at p = .99

contributing at p′ = .51

random noise

1. We estimate a lower bound for
−logσ ≥ 28.45 ≈ − log2 σ̂ − 1

2 log2

(
n−1
χ2

1−α/2

)
2. We apply a shift left (computed with ps = 99%) to get a safe

significant bits lower-bound.
3. We apply a shift right (computed with pc = 51%) to get a safe

contributing bits lower-bound.
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Summary: Significant and Contributing bits in the CNH
(2/2)

0 . . . 25 26 27 28 29 30 31 32 33 34 . . . 52

− log2 σ ≥ 28.45
− log2(pc − 1

2 )− log2(2
√

2π) ≈ +4.32− log2
(

F −1 ( ps +1
2

))
≈ −1.37

significant at p = .99

contributing at p′ = .51

random noise

I Contributing bits help decide how many digits to print or store
during a check-point restart.

I Only keeping contributing bits can help reducing storage and
database sizes!
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General Distributions
I What if the distribution is not centered normal?
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Figure: Non normality of buckling samples on z axis and node 1. Shapiro Wilk
rejects the normality hypothesis.
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Model by Bernoulli Trials (1/2)

I Let us choose a single k in the mantissa and single sample i among
the n samples.

I We can define two binary tests,
I Sk

i = “|Zi | ≤ 2−k ”, true iff for the i-th sample the k-th first bits are
significant.

I C k
i = “b2k |Zi |c is even”, true iff for the i-th sample the k-th bit is

contributing.
I With n samples we have n Bernoulli Trials.
I The trials are realizations of two Bernoulli random variables Sk and

Ck .
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Model by Bernoulli Trials (2/2)

I We choose a given k.

0 1 2 . . . k . . . 48 49 50 51 52 Sk
1 SuccessSample X1

|Z1| ≤ 2−k

0 1 2 . . . k . . . 48 49 50 51 52 Sk
2 FailureSample X2

|Z2| > 2−k

0 1 2 . . . k . . . 48 49 50 51 52 Sk
3 SuccessSample X3

|Z3| ≤ 2−k

I Out of three samples: 2 success and 1 failure; ns = 2.
I Can we estimate the Bernoulli distribution of Sk ?
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Bernoulli Estimator

I [?] gives the following lower-bound for the success probability of a
Bernoulli distribution at 95% confidence,

ns + 2
n + 4 − 1.65

√
(ns + 2)(n − ns + 2)

(n + 4)3

I By counting for Sk
i the number of successes ns (where the first k

digits are significant) we can derive a safe lower-bound probability.
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Probability vs. Confidence

I We want to estimate the probability ps of the s-th bit being
significant.

I Suppose ps = 1
3 is the true parameter of the Bernoulli distribution.

I We do m different samplings of n = 10 values:
I 1st sampling: ns = 3→ ps ∈ [.15, .57]
I 2rd sampling: ns = 8→ ps /∈ [.52, .91]
I 3nd sampling: ns = 2→ ps ∈ [.08, .48]
I . . .

I The confidence 1− α measures the proportion of samplings that
produce an interval containing ps .

I Increasing the number of samples n reduces the probability of a
biased interval and therefore increases the confidence.
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Example of Bernoulli Estimator on Kahan’s system
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Figure: Significance and contribution per bit for variable X [0] of the Cramer’s
system with 30 and 10000 samples. 66 / 80



Special Case: No failures

I Let us consider the largest k so that Sk
i is true for all i . In other

words, k is significant in all the collected samples.
I In that case, [5] shows that P(Sk) > p with confidence 1− α if we

have
n = ns ≥

⌈
ln(α)
ln(p)

⌉
I This formula gives us a simple criterion for choosing a minimal

number of samples depending on the required confidence level.
1. Choose a probability and confidence level that are acceptable for

your experiment: eg. p = 90% and 1− α = 95%
2. Compute and collect the required number of samples, here n = 29.
3. Find the largest k that is significant for all samples; that k is

significant with p = 90% at confidence level 95%.
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How many samples are required?

Confidence
level 1− α

Probability p
0.66 0.75 0.8 0.85 0.9 0.95 0.99 0.995 0.999

0.66 3 4 5 7 11 22 108 216 1079
0.75 4 5 7 9 14 28 138 277 1386
0.8 4 6 8 10 16 32 161 322 1609

0.85 5 7 9 12 19 37 189 379 1897
0.9 6 9 11 15 22 45 230 460 2302

0.95 8 11 14 19 29 59 299 598 2995
0.99 12 17 21 29 44 90 459 919 4603

0.995 13 19 24 33 51 104 528 1058 5296
0.999 17 25 31 43 66 135 688 1379 6905

Table: Number of samples necessary to obtain a given confidence interval with
probability p, according to the Bernoulli estimator (i.e. without any assumption
on the probability law).
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EuroPlexus Buckling Analysis (1/2)
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Figure: Significant bits on the z axis distribution. Bernoulli estimation captures
precisely the behavior (except for node 2). Normal formula overestimates the
number of digits, this is expected since the distribution is strongly non normal.
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EuroPlexus Buckling Analysis (2/2)
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Figure: Relative error between the samples and the mean of the z-axis
distribution. The blue envelope corresponds to the computed confidence
interval with 30 samples. Black dots are samples that fall inside the CI. Red
crosses are outliers that fall outside the CI. In the Bernoulli case, only 3
samples out of 70 fall outside of the interval; which is compatible with the 90%
probability threshold. 70 / 80



Limits and Discussion

I These confidence intervals estimate the error of over-estimating s
due to sampling errors

I not enough samples taken or biased sampling
I These confidence intervals do not account for model errors

I Changes in the dataset
I Failures of MCA or CESTAC to correctly model FP errors (thread

scheduling, model corner-cases, etc.)
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Conclusion on Confidence Intervals for Stochastic
Arithmetic

I For normal centered distributions:
I Simple probability formulations for significance and contribution that

only depend on σ̂, n and 1− α.
I Applying a left or right shift to the pivotal −log2(σ) Stott Parker’s

estimator produces a lower-bound on the number of significant and
contributing bits.

I For general distributions:
I Model each mantissa bit as a separate Bernoulli distribution.
I When only interested in the significant bits, a simple formula

computes how many samples are needed to reach a given probability
level.

I How can I apply these results to my studies?
I Tables for the CNH shifts and number of required samples are

available in the preprint.
I A jupyter notebook implemenenting the formulas is also available.
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Code aster : update reference (1/3)

Implementation ŝmca comment
a e

version0 Fail Fail original version
version1 30.89 19.73 fixes an unstable test
version2 30.96 19.80 compensated summation
version3 32.82 21.65 fully compensated dot product

Table: Summary of the numerical quality assessment of 4 versions of
code aster, using Verrou and the standard MCA estimator with 6 samples.

With version3 the accuracy seems improved, but we need confidence
intervals to update reference value. We choose p = (1− α) = 0.995 :

I Nsample = 1058
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Code aster : update reference (2/3)

Implementation ŝ µ̂b ŝ ieee
b ŝcnh (normality

test p-value)
ŝmca

version1 28

.89

28

.57

29.01 (0.10) 30.59
version2 29

.33

29

.35

29.55 (0.89) 31.13
version3 30

.91

31

.00

31.22 (0.52) 32.79

(a) quantity a

Implementation ŝ µ̂b ŝ ieee
b ŝcnh (normality

test p-value)
ŝmca

version1 17

.73

17

.41

17.85 (0.10) 19.43
version2 18

.16

18

.19

18.39 (0.89) 19.97
version3 19

.75

19

.84

20.05 (0.52) 21.63

(b) quantity e

Table: Comparison of stochastic estimators for 3 version of code aster, with
1058 samples.
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Code aster : update reference (2/3)

Implementation ŝ µ̂b ŝ ieee
b ŝcnh (normality

test p-value)
ŝmca

version1 28.89 28.57 29.01 (0.10) 30.59
version2 29.33 29.35 29.55 (0.89) 31.13
version3 30.91 31.00 31.22 (0.52) 32.79

(a) quantity a

Implementation ŝ µ̂b ŝ ieee
b ŝcnh (normality

test p-value)
ŝmca

version1 17.73 17.41 17.85 (0.10) 19.43
version2 18.16 18.19 18.39 (0.89) 19.97
version3 19.75 19.84 20.05 (0.52) 21.63

(b) quantity e

Table: Comparison of stochastic estimators for 3 version of code aster, with
1058 samples.
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Code aster : update reference (3/3)

version3 is our new reference.

version0 analysis
I

∣∣∣ aversion0
ieee −aversion3

ieee
aversion3

ieee

∣∣∣ = 4.29× 10−10

I

∣∣∣ eversion0
ieee −eversion3

ieee
eversion3

ieee

∣∣∣ = 9.84× 10−7

Need to analyze other test cases related to these 2 corrections before
integration

75 / 80



Join us!

github.com/verificarlo/verificarlo
github.com/edf-hpc/verrou
github.com/interflop/interflop
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