
Floating-point profiling of ACTS using Verrou
Hadrien Grasland David Chamont François Févotte Bruno Lathuilière

CNRS – LAL EDF R&D – PERICLES

2

Verrou: a floating-point error checker

● Run any program in Valgrind
● Verrou alters the rounding of

its floating-point operations
– Small effect on a stable

numerical computation

– Large impact if unstable
(caught by test suite)→

● Also points out presence of NaNs
(often symptom of silent failure)→

● Underlying theory: asynchronous CESTAC method, Monte Carlo Arithmetic

3

Choices of rounding mode

● Stochastic modes:
– Random: 50/50 choice between upward/downward

– Average: upward/downward probability determined from exact result

– Few false positives (no change on average), but non-deterministic

– Best for initial exploration, can force an RNG seed to reproduce a run

● Deterministic modes:
– Upwards, downwards, towards 0, farthest

– Can be convenient for failure analysis, especially delta-debugging

4

Delta-debugging

● Locates the origin of a verrou-induced test failure
– Combines an include/exclude mechanism with binary search

– Can go down to the granularity of individual lines of code

– Requires debug information (“-g” compiler flag, “-debuginfo” packages...)

● Very powerful, but takes a while to master
– Prefer deterministic rounding modes if they reproduce your instability

– Otherwise, must tune number of executions before declaring success

– If your test uses random input, force a specific seed that reproduces failure

– Even with binary search, can take a while to converge

5

The joy of verrou_dd

6

ACTS (A Common Tracking Software)

● Project goals:
– Major clean-up of ATLAS Run 2 tracking

– Usable by other experiments, R&D projects

– See presentations by A. Salzburger*

● My main areas of interest:
– Performance (algorithms, trigonometry,

vectorization, memory accesses…)

– Quality (thread-safety, maintainability,
numerical accuracy…)

* For example https://indico.cern.ch/event/587955/contributions/3012710/

https://indico.cern.ch/event/587955/contributions/3012710/

7

Stress-testing ACTS using Verrou

● Build recommendations:
– CMAKE_BUILD_TYPE=Debug

– ACTS_BUILD_TESTS=ON

– ACTS_BUILD_INTEGRATION_TESTS=ON

– As many plug-ins as your patience allows!

● Usage on unit tests:

– valgrind --tool=verrou \
 --rounding-mode=random \
 --trace-children=yes* ctest -j8

* By default, Valgrind does not attach to the extra processes spawned by ctest

8

Issues in the original code

● In the tests:
– Fragile float comparisons (exact, relative near 0, uncontrolled text dump)

– Using floating-point pow() to compute powers of 2

– Some tests gratuitously injected NaNs in input, obscuring actual FP errors :-/

– One test is extremely sensitive to rounding of (2π/N) Not elucidated yet→

● In ACTS itself:
– Divisions whose denominators can get arbitrarily close to zero

– Compute φ coordinate difference via two atan2 + subtract + wraparound

● False positives:
– libm’s sin/cos/tan algorithms are rounding-sensitive: leave them alone

9

Step 2: Move to single precision

● The challenge:
– HEP code tends to use double precision as a safe default

– Single-precision compute is at least 2x as fast*, more on some hardware

– Single-precision isn’t always enough (gives ~10-6 precision, but mP >> 106 me…)

– Choice of precision is undocumented, can’t tell if double used on purpose

● Initial plan:
– Move all current hard-coded doubles to single-precision, see what breaks

– Tune tolerance up a bit & use delta-debugging to locate where things break

– Selectively bring back double precision (or compensated algorithms) as needed

* Uses 2x less cache space & memory bandwidth, enables 2x wider vectorization

10

First round of findings

● More test suite woes
– Even more exact float equality / uncontrolled text dump comparisons

– Some very low relative tolerances (10-11) Arbitrary or intentional?→

– Edge effects (e.g. min <= value < max) Probably a false positive → in this case

– Some tests help more than others (detailed comparisons >> success flag)

● But also...
– Incorrect call to Eigen::Transform constructor which only worked by luck (!)

– ACTS inverts a matrix on every global surface-local coordinate conversion→

– Footguns in boost::test’s handling of tolerances (percentages, float != double…)

11

Limits of initial approach

● Single precision dev branch was unmaintainable
– Changing every “double” to “float” = merge conflicts with everything

● Solved by “float” rounding mode in verrou 2.0
– Greatly reduced magnitude of single-precision patch

– Almost as good as real port (but doesn’t like std::numeric_limits & such)

● Led to more findings
– Uninitialized memory used in average with 0 weight (0 x NaN != 0)

– Broken covariance matrix comparison logic (single relative tolerance)

– Waiting for where uN≤ lim
N →∞

uN u0>uN

12

Conclusions

● Verrou is a nice validation tool for numerical code
– Easy to get started, catches many classic floating-point issues

– Helps finding some suspicious (e.g. unnecessarily complex) code

– No magic bullet: Depends heavily on the quality of your test suite

● Using it was beneficial to ACTS code quality
– Comparison and tolerances in test were deeply re-thought

– Uncovered several classic numerical gotchas in core codebase

● Single-precision port sadly remained a prototype
– Did not find answer to “How much precision do you really need ?”

13

Perspectives

● Found areas of future Verrou improvement
– Better default configuration (e.g. automatically exclude libm false positives)

– verrou_dd is slow and serial, needs parallelization + algorithm work

– Narrowing down rare failures with verrou_dd can be difficult

– verrou_dd could use backtrace sensitivity (for “dot product failures”)

● Verrou already improved much during this study
– Support for longer symbol names (~mandatory for modern C++)

– Python 3 compatibility in verrou_dd

– verrou_dd restricted to symbols with FP ops

– “Float” rounding mode, backtrace on NaN

14

Questions? Comments?
https://github.com/edf-hpc/verrou

https://github.com/edf-hpc/verrou

15

IEEE-754 floating-point is hard

● Internally uses base 2 Most decimals numbers are not stored exactly→
● Not associative [(1 + 10→ 30) – 1030] ≠ [1 + (1030 – 1030)]
● Not totally ordered Think before you sort a list of floats…→
● Javascript-style error handling Trivial mistakes easily get ignored→
● List accumulation can saturate Addition is dangerous→
● Catastrophic cancellation Subtraction is dangerous→
● Limited exponent range Multiplication and division are dangerous→
● Full of correctness edge cases +/-0, multiple NaNs, denormals, +/-inf…→
● Full of performance pitfalls → Trigonometry, sqrt, div, NaNs, subnormals…
● Not optimized by compilers Byproduct of previous properties→

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15

