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Motivation

I Stochastic Arithmetic
I Numerical errors modeled by introducing random perturbations.
I Estimate significance of result by collecting many samples.

I Motivation for statistical analysis
I How many stochastic samples should be run?
I What is the probability of over-estimating the number of significant

digits?
I Can we give a sound confidence interval for the number of significant

digits?
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Example: Kahan 2x2 System

I Ill-conditioned linear system (condition number 2.5× 108).
I We solve it with the Cramer’s formula.

(
0.2161 0.1441
1.2969 0.8648

)
x =

(
0.1440
0.8642

)
(1)

xreal =
(

2
−2

)
xieee =

(
1.9999999958366637
−1.9999999972244424

)
(2)

I The IEEE-754 result has 8 significant decimal digits.
I xieee[0] has 28.8 significant bits.
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Kahan 2x2 System – Stott Parker’s significant digits

I With Verificarlo, we collect 10000 t = 52 FULL MCA samples.

sPARKER = − log2
σ̂

|µ̂|
≈ 28.5.

I But how confident are we that it is a good estimate? Could we have
used a smaller number of samples and still get a reliable estimation
of the results quality?

4 / 32



Some notations

I xieee is the IEEE-754 result
I X1,X2, . . . ,Xn are the values returned by n runs of the program

using stochastic arithmetic. These are seen as realizations of a
random variable X .

I µ̂ and σ̂ are the empirical average and standard deviation.
I µ and σ are the mean and std. deviation of the random variable X .
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Choosing a reference value

I We require a reference value against which accuracy is measured.
I Examples of common reference values,

I xreal, if the exact solution is known.
I xieee, when the program is deterministic.
I µ̂, a safe default.
I Y , a random variable, to compare two implementations of an

algorithm or measuring significance between runs of the same
program.
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Modeling the error

I Four kind of scenarios are studied in our paper.
I In each case the error is modeled by a random variable Z .
I For simplicity, in the following we consider the relative precision with

scalar reference.

reference x reference Y
absolute precision Z = X − x Z = X − Y
relative precision Z = X/x − 1 Z = X/Y − 1

I With no error, the expected result of Z is 0.
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Significant bits

I Stott Parker defines the number of significant digits in common
between x and y as the largest s that satisfies |x/y − 1| ≤ 2−s .

I Or put more simply, the error is less than 2−s .
I We naturally extend this definition to Z the random variable

modeling the stochastic error.

Significant bits
The number of significant digits with probability ps can be defined as the
largest number s such that

P
(
|Z | ≤ 2−s) ≥ ps . (3)

0 1 2 . . . s . . . 45 46 47 48 49 50 51 52

s significant error satisfies |Z | ≤ 2−s
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Contributing bits

I Bits after s still can encode useful information about the result.
I Even if bits on its left are wrong, they can improve the accuracy...
I ...if they are correct on average (pc > 51%).
I Keeping these bits improves the rounded result on average.

I A bit k after s contributes to the result with probability pc iff the
k-th bit of Z is 0 (no error in this bit) with probability pc .

0 1 2 . . . s . . . 45 46 47 . . . c . . . 51 52

significant at ps = .99

contributing at pc = .51

random noise
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Contributions

1. Probability for significance and contribution for Normal Centered
Distributions.

2. Probability for significance and contribution for General
Distributions.

Preprint: Confidence Intervals for Stochastic Arithmetic, D. Sohier, P. de
Oliveira Castro, F. Févotte, B. Lathuilière, E. Petit, O. Jamond. 2018.
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Normality of the Kahan 2x2 System
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Figure: Normality of 10000 samples of X [0] with t = 52 and FULL MCA

I We take as reference the empirical mean µ̂X : Z = X
µ̂X
− 1

I µ̂Z = 0
I σZ = σX/µ̂X
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Centered Normal Hypothesis: Significant bits

- 3 - 2 - 1

N(0,1) Cumulative distribution function
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Centered Normal Hypothesis: Significant bits

Theorem
For a normal centered error distribution Z ∼ N (0, σ), the s-th bit is
significant with probability

ps = 2F
(

2−s

σ

)
− 1,

with F the cumulative function of the normal distribution with mean 0
and variance 1.

I By inverting this formula, we can provide a formula for the number
of significant digits that only depends on σ and ps ,

s = − log2 (σ)− log2

(
F−1

(
ps + 1

2

))
.
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Figure: Profile of the significant bit curve ps = 2F
(

2−s

σ

)
− 1

I If we take the empirical average as reference value, we fall back into
Stott Parker definition of significant bits assuming a large number of
samples − log2(σ) = − log2(σX

|µ̂| )
I The digit of Stott Parker’s formula has 68 % chances of being

significant. (1-sigma rule)
I If we substract 1.37 bits from Stott Parker’s formula, the resulting

bit has 99 % chances of being significant. 14 / 32



CNH: Taking into account the estimation bias

s = − log2 (σ)− log2

(
F−1

(
ps + 1

2

))
.

I Why is this formula independent of the number of samples n ?
I σ is unknown; we can only estimate it from σ̂

I For normal distributions, the following confidence interval with
confidence 1− α based on the χ2 distribution with (n − 1) degrees
of freedom is sound [3]:

(n − 1)σ̂2

χ2
α/2

≤ σ2 ≤ (n − 1)σ̂2

χ2
1−α/2

. (4)

I In the following we choose a confidence of 1− α = 95%.
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CNH: Significant bits lower bound

I By combination, we produce a sound lower bound on the significant
bits,

s > − log2 (σ̂)−
[

1
2 log2

(
n − 1
χ2

1−α/2

)
+ log2

(
F−1

(
p + 1

2

))]
︸ ︷︷ ︸

δcnh︸ ︷︷ ︸
ŝcnh

(5)

I For n = 30 samples and p = 99% s ≥ −log2σ̂ − 1.792
I For n = 15 samples and p = 99% s ≥ −log2σ̂ − 2.023

(log2σ̂ is Stott Parker’s formula when the reference is µ̂)
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Results: Significant bits
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Figure: Significant bits for Cramer x [0] variable computed under the normal
hypothesis using 30 and 10000 samples. The Confidence Interval (CI) lower
bound is computed by using the probability of theorem 1 and bounding σ with
a 95% Chi-2 confidence interval.
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Summary: Significant and Contributing bits in the CNH
(1/2)

0 . . . 25 26 27 28 29 30 31 32 33 34 . . . 52

− log2 σ ≥ 28.45
− log2(pc − 1

2 )− log2(2
√

2π) ≈ +4.32− log2
(

F −1 ( ps +1
2

))
≈ −1.37

significant at p = .99

contributing at p′ = .51

random noise

1. We estimate a lower bound for
−logσ ≥ 28.45 ≈ − log2 σ̂ − 1

2 log2

(
n−1
χ2

1−α/2

)
2. We apply a shift left (computed with ps = 99%) to get a safe

significant bits lower-bound.
3. We apply a shift right (computed with pc = 51%) to get a safe

contributing bits lower-bound.
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Summary: Significant and Contributing bits in the CNH
(2/2)

0 . . . 25 26 27 28 29 30 31 32 33 34 . . . 52

− log2 σ ≥ 28.45
− log2(pc − 1

2 )− log2(2
√

2π) ≈ +4.32− log2
(

F −1 ( ps +1
2

))
≈ −1.37

significant at p = .99

contributing at p′ = .51

random noise

I Contributing bits help decide how many digits to print or store
during a check-point restart.

I Only keeping contributing bits can help reducing storage and
database sizes!
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General Distributions
I What if the distribution is not centered normal?
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Figure: Non normality of buckling samples on z axis and node 1. Shapiro Wilk
rejects the normality hypothesis.
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Model by Bernoulli Trials (1/2)

I Let us choose a single k in the mantissa and single sample i among
the n samples.

I We can define a binary test,
I Sk

i = “|Zi | ≤ 2−k ”, true iff for the i-th sample the k-th first bits are
significant.

I With n samples we have n Bernoulli Trials.
I The trials are realizations of the Bernoulli random variables Sk
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Model by Bernoulli Trials (2/2)

I We choose a given k.

0 1 2 . . . k . . . 48 49 50 51 52 Sk
1 SuccessSample X1

|Z1| ≤ 2−k

0 1 2 . . . k . . . 48 49 50 51 52 Sk
2 FailureSample X2

|Z2| > 2−k

0 1 2 . . . k . . . 48 49 50 51 52 Sk
3 SuccessSample X3

|Z3| ≤ 2−k

I Out of three samples: 2 success and 1 failure; ns = 2.
I Can we estimate the Bernoulli distribution of Sk ?
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Bernoulli Estimator

I [1] gives the following lower-bound for the success probability of a
Bernoulli distribution at 95% confidence,

ns + 2
n + 4 − 1.65

√
(ns + 2)(n − ns + 2)

(n + 4)3

I By counting for Sk
i the number of successes ns (where the first k

digits are significant) we can derive a safe lower-bound probability.
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Example of Bernoulli Estimator on Kahan’s system
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Figure: Significance and contribution per bit for variable X [0] of the Cramer’s
system with 30 and 10000 samples. 24 / 32



Special Case: No failures

I Let us consider the largest k so that Sk
i is true for all i . In other

words, k is significant in all the collected samples.
I In that case, [2] shows that P(Sk) > p with confidence 1− α if we

have
n = ns ≥

⌈
ln(α)
ln(p)

⌉
I This formula gives us a simple criterion for choosing a minimal

number of samples depending on the required confidence level.
1. Choose a probability and confidence level that are acceptable for

your experiment: eg. p = 90% and 1− α = 95%
2. Compute and collect the required number of samples, here n = 29.
3. Find the largest k that is significant for all samples; that k is

significant with p = 90% at confidence level 95%.
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How many samples are required?

Confidence
level 1− α

Probability p
0.66 0.75 0.8 0.85 0.9 0.95 0.99 0.995 0.999

0.66 3 4 5 7 11 22 108 216 1079
0.75 4 5 7 9 14 28 138 277 1386
0.8 4 6 8 10 16 32 161 322 1609

0.85 5 7 9 12 19 37 189 379 1897
0.9 6 9 11 15 22 45 230 460 2302

0.95 8 11 14 19 29 59 299 598 2995
0.99 12 17 21 29 44 90 459 919 4603

0.995 13 19 24 33 51 104 528 1058 5296
0.999 17 25 31 43 66 135 688 1379 6905

Table: Number of samples necessary to obtain a given confidence interval with
probability p, according to the Bernoulli estimator (i.e. without any assumption
on the probability law).
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EuroPlexus Buckling Analysis (1/2)
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Figure: Significant bits on the z axis distribution. Bernoulli estimation captures
precisely the behavior (except for node 2). Normal formula overestimates the
number of digits, this is expected since the distribution is strongly non normal.
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EuroPlexus Buckling Analysis (2/2)
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Figure: Relative error between the samples and the mean of the z-axis
distribution. The blue envelope corresponds to the computed confidence
interval with 30 samples. Black dots are samples that fall inside the CI. Red
crosses are outliers that fall outside the CI. In the Bernoulli case, only 3
samples out of 70 fall outside of the interval; which is compatible with the 90%
probability threshold. 28 / 32



Limits and Discussion
I These confidence intervals estimate the error of over-estimating s

due to sampling errors
I not enough samples taken or biased sampling

I These confidence intervals do not account for model errors
I Changes in the dataset
I Failures of MCA or CESTAC to correctly model FP errors (thread

scheduling, model corner-cases, etc.)
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Conclusion on Confidence Intervals for Stochastic
Arithmetic

I For normal centered distributions:
I Simple probability formulations for significance and contribution that

only depend on σ̂, n and 1− α.
I Applying a left or right shift to the pivotal −log2(σ) Stott Parker’s

estimator produces a lower-bound on the number of significant and
contributing bits.

I For general distributions:
I Model each mantissa bit as a separate Bernoulli distribution.
I When only interested in the significant bits, a simple formula

computes how many samples are needed to reach a given probability
level.

I How can I apply these results to my studies?
I Tables for the CNH shifts and number of required samples are

available in the preprint.
I A jupyter notebook implemenenting the formulas is also available.
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Join us!

github.com/verificarlo/verificarlo
github.com/edf-hpc/verrou
github.com/interflop/interflop
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