

GT NanoMécanique – 4/12/2019 Grenoble

LABORATOIRE DE MÉCANIQUE ET GÉNIE CIVIL - UM/CNRS

(Rappel de) Mécanique du contact et (petite) analyse critique des modèles utilisés en AFM (ou pas)

Olivier ARNOULD

EQUIPE BOIS

Laboratoire de Mécanique et Génie Civil (LMGC)

CNRS/Université de Montpellier

olivier.arnould@umontpellier.fr

Sommaire

Bone micromechanics using in situ AFM in SEM

- Théorie de Hertz
- Adhésion (DMT-JKR)
- Autres cas et comparatif
- Anisotropie et viscosité
- Plasticité > NanoIndentation

[Jimenez-Palomar et al., J. Mech. Beh. Bio. Mat., 2011]

Reminder

Aims at finding the relationship between:

- The load F and the relative displacement δ of the two bodies (far away from the contact)
- ➡ the load F and the shape and size a of the contact area
- ➡ the load *F* and the stress fields in each bodies

- Hertz's theory (1882 Ger. \rightarrow 1896 Eng.)
 - Elastic deformation of two glass lenses in contact

- Assumptions:
 - Surfaces are continuous and **non-conforming** (i.e., $R_1 \neq -R_2$) $\rightarrow a \ll R$
 - Strains are small: a << R
 - Linear elastic isotropic and homogeneous materials
 - Friction is neglected
- Each solid is considered as an elastic half-space (plane) loaded over a small elliptical region of its plane surface

[K.L. Johnson, Contact Mechanics, Cambridge University Press, 2001]

• Hertz's theory (1882)

Each solid is locally described as paraboloid of revolution, for a sphere:

$$z_2 = \frac{1}{2R_2} \left(x^2 + y^2 \right)$$

Distance separation between the two solids

$$\delta_1 \qquad u_{z_1} \qquad \zeta_2 \qquad \qquad \zeta_2 \qquad \zeta_2$$

ΔZ

$$h = z_1 + z_2 = \frac{1}{2R} (x^2 + y^2)$$
 with $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$

Under load

 $h - (\delta_1 + \delta_2) + (u_{z_1} + u_{z_2}) = 0 \text{ in the contact area}$ > 0 outside ($\underline{\sigma} \cdot \underline{z} = \underline{0}$)

What's the pressure distribution at the contact surface?

[K.L. Johnson, Contact Mechanics, Cambridge University Press, 2001]

- Hertz's theory (1882)
 - Concentrated normal force (Green's function method):

 \rightarrow linear elasticity \rightarrow superposition for a distributed normal load f(x,y)!

$$u_{z}(x,y) = \frac{1-\nu^{2}}{E} \iint_{S} \frac{dF(x',y')}{\pi \sqrt{(x-x')^{2} + (y-y')^{2}}}$$

and $\frac{1}{2R}(x^{2}+y^{2}) - (\delta_{1}+\delta_{2}) + (u_{z_{1}}(x,y) + u_{z_{2}}(x,y)) = 0$

⇒ Hertz's pressure distribution: $p(r) = p_0 \sqrt{1 - (r/a)^2}$

[K.L. Johnson, Contact Mechanics, Cambridge University Press, 2001]

- Hertz's theory (1882)
 - Second Secon

Material and its Young's modulus	Contact area	radius <i>a</i> , nm	Penetration due to de	formation h , nm	Contact press	sure P , GPa	
Elastomer, <i>E</i> = 0.65 GPa	3.74	8.04	1.04	6.46	0.11	0.25	
PS, E = 1GPa	3.24	6.98	1.05	4.87	0.15	0.33	
Copper, E = 120GPa	0.79	1.7	0.062	0.29	2.55	5.51	
Tungsten, E = 400 GPa	0.68	1.46	0.046	0.21	3.44	7.47	
Diamond, E = 1000 GPa	0.64	1.38	0.041	0.19	3.88	8.36	
at loading force 🗜 , nN							
	5	50	5	50	5	50	

Sommaire

Bone micromechanics using in situ AFM in SEM

- Théorie de Hertz
- Adhésion (DMT-JKR)
- Autres cas et comparatif
- Anisotropie et viscosité
- Plasticité > NanoIndentation

[Jimenez-Palomar et al., J. Mech. Beh. Bio. Mat., 2011]

- Adhesion (~contact at the nano-scale: capillarity, van der Waals, etc.)
 - Derjaguin, Muller and Toporov (DMT) model [J. Coll. Int. Sci., 1975]
 - For stiff material (glassy polymers, crystal), small radius, low adhesive and long range interaction forces outside the contact area
 - Simple "translation" in load of Hertz's equations

$$F \rightarrow F + F_{adh}$$
 with $F_{adh} = 2\pi R w_{adh}$

and Dupré's work of adhesion $W_{adh} = \gamma_1 + \gamma_2 - \gamma_{12}$

- At pull-off $\delta = 0$ and a = 0
- Applicable in the case of capillarity forces with $W_{adh} \approx 2\gamma_{LV}$

- Adhesion (~contact at the nano-scale: capillarity, van der Waals, etc.)
 - Johnson, Kendall and Roberts (JKR) model [Proc. R. Soc. London A, 1971]
 - For soft sample (elastomers), large radius, strong adhesive and short range interaction forces inside the contact area

- Hertz's theory is no longer valid: no direct relation between F and δ

$$F = \frac{4}{3}E^*\frac{a^3}{R} - \sqrt{8\pi E^* w_{adh}a^3} \qquad \delta = \frac{a^2}{R} - \sqrt{\frac{2\pi w_{adh}a}{E^*}}$$

At pull-off $a \neq 0$ and $F = -F_{adh} = -\frac{3}{2}\pi R w_{adh}$

• Adhesion (~contact at the nano-scale: capillarity, van der Waals, etc.)

Intermediate cases: Maugis-Dugdale
[J. Colloid Int. Sci., 1992; E. Barthel, J. Phys. D, 2008]

• Adhesion (~contact at the nano-scale: capillarity, van der Waals, etc.)

Sommaire

Bone micromechanics using in situ AFM in SEM

- Théorie de Hertz
- Adhésion (DMT-JKR)
- Autres cas et comparatif
- Anisotropie et viscosité
- Plasticité > NanoIndentation

[Jimenez-Palomar et al., J. Mech. Beh. Bio. Mat., 2011]

Tip shapes 100 nm (b) pA HFW 69.0 25.3 μm Tilt 45.0° 08/11/05 16:42:06 5 µm (c)

[Kopycinska-Müller et al, Ultramicroscopy, 2006; Nanotechnology, 2016]

16

[www.nanoandmore.com]

Different cases implemented in AtomicJ

Suppl. Mat. [Hermanowicz et al, Rev. Sci. Inst., 2014]

19

-20

-40

• Examples of tip shape Bruker RTESPA 525(-30)

Geometry:	Rotated (Symmetric)
Tip Height (h):	10 - 15µm
Front Angle (FA):	15 ± 2°
Back Angle (BA):	25 ± 2 °
Side Angle (SA):	17.5 ± 2 °
Tip Radius (Nom):	30 nm
Tip Radius (Max):	36 nm

Sommaire

Bone micromechanics using in situ AFM in SEM

- Théorie de Hertz
- Adhésion (DMT-JKR)
- Autres cas et comparatif
- Anisotropie et viscosité
- Plasticité > NanoIndentation

[Jimenez-Palomar et al., J. Mech. Beh. Bio. Mat., 2011]

Anisotropy

For a typical S2-layer with MFA~0° [Jäger et al, 2011]

 $M_{\rm L} \approx 19$ GPa whereas $E_{\rm L} \approx 45$ GPa

$$(E_{t} \approx E_{r} \approx 12 \text{ GPa}, v_{tL} \approx v_{rL} \approx 0.028, v_{rt} \approx 0.28 G_{tL} \approx G_{rL} \approx 2.5 \text{ GPa}, G_{rt} \approx 2 \text{ GPa})$$

Kevlar fibre: M// ≈ 15-20 / E// ≈ 80 GPa [Arnould et al, 2017]

Viscoelasticity

Loading-unloading curve of a pure viscoelastic material [Cheng and Cheng, Mat. Sci. Eng. R, 2004]

Sommaire

Bone micromechanics using in situ AFM in SEM

- Théorie de Hertz
- Adhésion (DMT-JKR)
- Autres cas et comparatif
- Anisotropie et viscosité
- Plasticité > NanoIndentation

[Jimenez-Palomar et al., J. Mech. Beh. Bio. Mat., 2011]

Plasticity : NanoIndentation

The depth of penetration $h(\delta!)$ is measured during load application mainly with a Berkovich indenter (3-sided pyramid)

[www.brukerafmprobes.com]

• Plasticity : NanoIndentation

• Plasticity : NanoIndentation

Conclusions – Questions ouvertes

- Respecter/vérifier les domaines de validité des modèles de contact suivant les conditions expérimentales (profondeur indentation, adhesion, rayon de pointe, rigidité du matériau testé, ...)
- Choix, et mesure de la forme, de la pointe + dimension optimale de la pointe / rugosité ou hétérogénéité de la surface (+ tenue à l'usure)
- Effet de la topographie et de la profondeur de mesure par rapport aux effets de surface (liés à la préparation des échantillons + comportement matériaux)
- Calibration des échantillons de référence en terme d'échelle, de fréquence (TTSP ?) et de mode de sollicitation ? Idem pour le matériau mesuré...
- Attention au choix de la raideur (et facteur de qualité) du levier / matériau à tester
- Attention au comportement anisotrope ($E \neq M$) surtout aux échelles nano
- Indentation non normale... raideur tangentiel en anisotrope ? Comment la mesurer ?
- Utilisation de la courbe d'approche ou de retrait ou ... ? Et effet de la viscosité ?
- Problème de la vitesse de sollicitation / comportement viscoélastique