

Solid-state deformations Several classes of deformations in materials are the following: Elastic: The material recovers its initial shape after deformation. Plastic: The applied force induces non-recoverable deformations in the material when the stress (or elastic strain) reaches a critical magnitude, called the yield point. Viscoelastic: If the time-dependent resistive contributions are large, and cannot be neglected. Rubbers and plastics have this property, and certainly do not satisfy Hooke's law. In fact, elastic hysteresis occurs. Anelastic: if the material is close to elastic, but the applied force induces additional time-dependent resistive forces (i.e. depend on rate of change of extension/compression, in addition to the extension/compression). Hyperelastic: The applied force induces displacements in the material following a strain energy density function. UMONS BEMISOL

Multifrequency AFM

Measuring the resonance frequency			
Methods	What it does	Benefits	Disadvantages
Fixed frequency ²	The cantilever response is measured at a fixed frequency, which varies as the contact resonance frequency shifts.	Simple to implement and produces elastic contrast images.	Produces only qualitative results since the frequency shift itself is not measured. Contrast is lost if the peak shifts too far from the selected frequency.
PLL frequency tracking ¹	A phase-locked loop (PLL) uses the phase of the cantilever response to track the contact resonance frequency.	The actual contact resonance frequency is tracked.	Difficult to tune the PLL to achieve stable frequency tracking due to spurious phase shifts in the response. Does not measure the Q of the resonance.
Frequency sweep (chirp) ^{3,4,5}	A frequency sweep (chirp) is done at each point. The cantilever response is Fourier analyzed to recover the full frequency response.	Measures the entire frequency response, so both the frequency and Q are obtained. Additional analysis is possible based on more complex models.	Mapping is quite slow when collecting large numbers of pixels. Each sweep must be done slowly enough for the cantilever to respond (rate limited by Q).
DART ^{6,7,8} (DRFT)	The amplitude and phase response at two frequencies (bracketing the contact resonance) is measured, which enables the contact resonance to be tracked.	Provides both the contact resonance frequency and Q. The tracking is extremely fast, so DART imaging can be done at normal imaging rates.	The full response is not measured, so analysis is more limited than frequency sweep or band excitation methods.
Band Excitation ^{8,9}	A continuous band of frequencies is excited. The cantilever response is Fourier analyzed to recover the full frequency response.	The entire frequency response is measured. By exciting the entire band at once, it is much faster than other full spectrum techniques (e.g. sweep).	Data transfer bandwidth limitations make the current implementation significantly slower than DART. Future speed improvements are possible.
From Asylum Research (CR-AFM application note) UMONS Journée Nanomécanique en Champ Proche - Grenoble (France) 68			

Nano Dynamical Mechanical Analysis

58

BEMISO

<section-header><section-header><section-header><section-header><text><image>

Conclusions New methods (such HMX, PFT, BE, CR, nDMA...) are able to « rapidly » map the mechanical properties at the nanometer scale due to the (very) fast data acquisition and analysis processes. AFM-nDMA <u>U</u>MONS REMISOL

Journée Nanomécanique en Champ

143

A de	cad	e aç	go	•				$\mathbf{\nabla}$
	PeakForce QNM	HarmoniX	TappingMode Phase Imaging	Single Harmonic	Dual AC	Pulsed Force Mode	Force Volume	
Young's modulus and adhesion mapping	Yes	Yes	Mixed & Parameter dependent	Mixed & Parameter dependent	Mixed & Parameter dependent	Qualitative	Possible offline	-
Deformation depth mapped?	Yes	Yes	No	No	No	No	Possible offline	-
Quantitative Modulus range	0.7 Mpa – 70 GPa	10 Mpa – 79 GPa	-	-	-	-	<1 MPa - 100 GPa	
Adhesion noise level	<10 pN	200 pN	-	-	-	<1 nN	<10 pN	-
Feedback on Peak Force?	Yes	No	No	No	No	Yes	Yes	-
Peak force	<100 pN	<5 pN	<3 nN	<10 nN	<5 nN	<20 nN	<50 nN	-
Lateral resolution	<5 nm	<10 nm	<5 nm	<10 nm	<10 nm	<50 nm	<100 nm	-
Simultaneous high resolution imaging	Yes	Yes	Yes	Yes	Yes	Moderate	No	-
Mapping Time	4 minutes	4 minutes	4 minutes	4 minutes	4 minutes	4 minutes	18 hours	-
Easy to use?	Yes	No	Yes	No	No	No	No	-
Viscoelasti	c prope	erties (E	', E'', ta	n δ)				

Conclusions

Multifrequency methods are extremely promising but also need some (new) models to provide quantitative parameters. Data-driven materials development and design (machine learning, AI) are most probably the key issue to achieve this goal.

