Platform For Nano Characterization (PFNC)

ATOMICJ

ATOMICJ : THE PUBLICATION

AtomicJ: An open source software for analysis of force curves

Review of Scientific Instruments 85, 063703 (2014); https://doi.org/10.1063/1.4881683

Paweł Hermanowicz^{1, a)}, Michał Sarna², Kvetoslava Burda², and Halina Gabryś¹

Hide Affiliations

 ¹Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
²Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

https://doi.org/10.1063/1.4881683

Download site https://sourceforge.net/projects/jrobust/

Project Activity	× 🔊
Released /2.0/AtomicJ_2.0_OS_Independent.zip	3 months ago
Released /2.0/AtomicJ_2.0_Win64.zip	3 months ago
Released /1.8.2/AtomicJ_1.8.2_OS_Independent.zip	1 year ago
Released /1.8.2/ReleaseNotes_AtomicJ_1_8.2_readme.txt	1 year ago
Released /1.8.2/AtomicJ_1.8.2_Win64.zip	1 year ago

See All Activity >

ATOMICJ – COMPUTER PLATFORM COMPATIBILITES

AJ is written in JAVA SE 7 (JFreeChart, JAMA, Commons Math, FreeHELP, Sanse-lan,

Commons Compress, Bio-Formats and iText® 2.1.5)

 \Rightarrow Windows (7 & 10) 64 bits with JAVA run time environment

 \Rightarrow OS independent (MAC OS, Linux, older Windows)

 \Rightarrow Memory allocation

 \Rightarrow Default needed RAM is 3Gbits

 \Rightarrow Reallocate more memory using the shell command (win) :

java – Xmx memory Maximum m - jar Atomic J. jar

(*memoryMawimum* in Mbits / see AJ manual, page 6)

ATOMICJ – AFM PLATFORM COMPATIBILITES

AtomicJ supports :

- plain text files
- Agilent
- JPK Instruments
- Asylum Research
- Park Systems
- NT-MDT
- Nanosurf
- AFMWorkshop.
- It also supports some file formats generated by the Nanotec Electronica WSxM software.
- Bruker
 - Nanoscope 9.2/9.3 & older : full compatibilities (FV & PFC)
 - Nanoscope 9.4 : issues on supporting PeakForce Capture
 - Nanoscope 9.7 (Win10) : issues on Ramp & Hold & PeakForce Capture

ATOMICJ – THE DOWNLOADED FOLDER (AFTER UNZIPPING)

	AtomicJ_lib	10/11/2019 15:43	Dossier de fichiers	
The software	<mark></mark> jre1.8.0_181	10/11/2019 15:44	Dossier de fichiers	
	Resources	10/11/2019 15:44	Dossier de fichiers	
	🔼 AtomicJ	05/10/2018 09:00	Application	61 Ko
	🕌 AtomicJ	05/10/2018 09:00	Executable Jar File	5 857 Ko
	AtomicJ_2.0.1	05/10/2018 09:00	Document XML	3 Ko
	AtomicJ_Users_Manual	05/10/2018 09:00	Adobe Acrobat D	4 391 Ko
	launch4j	05/10/2018 09:01	Document texte	4 Ko
	license_GPL	05/10/2018 09:01	Document texte	18 Ko
	README	05/10/2018 09:01	Document texte	7 Ko

ATOMICJ – SUPPORTED TIP SHAPES

Paraboloid

that approximates sphere in the Hertz's equation. *R* – radius of curvature at the apex

Hyperboloid

R – radius of curvature at the apex, θ – half angle between the asymptotes. **Cone** θ – half angle.

Truncated cone b – truncation radius, θ – half angle

After AtomicJ – User manual

ATOMICJ – CONTACT MECHANICS MODELS

ELASTIC MODELS

1. Sphere (Hertz) - 2. Sphere (Sneddon) (Sneddon 1965) - 3. Sphere, thin sample (Dimitriadis et al. 2002) - 4. Hyperboloid (Akhremitchev and Walker 1999) - 5. Cone (Harding and Sneddon 1945) - 6. Cone, thin sample (Gavara and Chadwick 2012) - 7. Power-shaped (Galin 1946). - 8. Blunt cone (Briscoe et al. 1994). - 9. Truncated cone (Briscoe et al. 1994). – 10. Pyramid, regular, four sided (Bilodeau 1992) - 11. Blunt pyramid, regular, four-sided (Rico et al. 2005) – 12.Truncated pyramid (Rico et al. 2005).

HYPERELASTIC MODELS

13. Sphere, Fung's hyperelastic model (Fung 1979) - 14. Sphere, Ogden's hyperelastic model (Ogden 1972)

ADHESIVE CONTACT

15. Derjaguin-Muller-Toporov (DMT) (Derjaguin et al. 1975) - 16. Johnson-Kendall-Roberts (JKR) (Johnson et al. 1971) – 17. Sphere, Maugis solution. Maugis (1995) - 18. Hyperboloid, Sun-Akhremitchev-Walker (SAW), Sun et al (2004)

See a full descriptions of the models at :

ftp://ftp.aip.org/epaps/rev_sci_instrum/E-RSINAK-85-038406/Supported%20contact%20mechanics%20models.docx

Akhremitchev et al., Finite Sample Thickness Effects on Elasticity Determination Using Atomic Force Microscopy, Langmuir 15: 5630 – 5634 (1999). Bilodeau et al., Pyramid Punch Problem. ASME J Appl Mech. 59: 519 – 523 (1992). Briscoe et al., The effect of indenter geometry on the elastic response to indentation. J Phys D: Appl Phys 27: 1156 – 1162 (1994). Derjaquin , Muller , Toporov, Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53: 314-326 (1975). Dimitriadis et eta, Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82:2798–2810 (2002). Fung et al., Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol-Heart C 237:H620–H631 (1979). Galin, Spatial contact problems of the theory of elasticity for punches of circular shape in planar projection. J. Appl. Math. Mech. (PMM) 10: 425–448 (1946). Gavara et al., Determination of the elastic moduli of thin samples and adherent cells using conical AFM tips. Nature Nanotechnology 7: 733–736 (2012). Harding & Sneddon, The elastic stresses produced by the indentation of the plane surface of a semi-infinite elastic solid by a rigid punch. Proc Camb Philol Soc. 41:16 (1945). Johnson, Kendall & Roberts, Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324: 301-312 (1971). Lin et al., Spherical indentation of soft matter beyond the Hertzian regime: numerical and experimental validation of hyperelastic models. Biomech Model Mechanobiol 8:345–358 (2009). Maugis, Extension of the Johnson-Kendall-Roberts theory of the elastic contact of spheres to large contact radii. Langmuir 11: 679 – 682 (1995). Ogden, Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond A Math Phys Sci 326: 565–584 (1972). Rico F et al., Probing Mechanical Properties of Living Cells by Atomic Force Microscopy With Blunted Pyramidal Cantilever Tips. Phys Rev E 72, 021914 (2005). Sneddon The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3: 47 – 57 (1965). Sun Y et al., Using the adhesive interaction between atomic force microscopy tips ad polymer surfaces to measure the elastic modulus of compliant samples. Langmuir 20: 5837 – 5845 (2004).

- The ease of use (very intuitive, useful manual)
- The large scope of embedded contact mechanics models / tip shapes
- The advanced mathematical computation for contact point determination
- The curves pre-processing (cropping, filtering)
- Automatic/manual contact point determination curve by curve (by a least square fit regression) without any "range" applied for ALL the curves
- The patching : applying different mechanical modeling on different patches of the surface.
- Seeing the fit on each curve (+ the R² map)
- The pointwise modulus
- The batch processing
- The statistics (& the histograms) including on ROIs
- The stacks images
- The aim to open & treat .csv / .tsv raw data

- No models on viscoelasticity
- No patch saving (or via ROI ?)
- Minor bugs on "live charts style"
- No full compatibility with recent Bruker/Nanoscope file formats
- Future version / support ?

Leti, technology research institute Commissariat à l'énergie atomique et aux énergies alternatives Minatec Campus | 17 rue des Martyrs | 38054 Grenoble Cedex | France www.leti.fr

