

Centre de Nanosciences et de Nanotechnologies

Center for Nanoscience and Nanotechnology

A new research center for nanoscience

- Created in June 2016, merging of two labs IEF-upsud and LPN-cnrs
- 400 members:
 - 200 permanent researchers, engineers and admin staff
 - More than 100 PhD students and Post-docs
 - 37 nationalities
- 4 research departments
- 6 technology platforms
- A new building in the heart of Paris-Saclay
 - 18 000 m², including 2 900 m² high class cleanroom facilities

C2N Research and Platforms

Photonique hybride III-V sur Si :

Caractérisation structurale, optique et électrique de l'interface

A.Talneau⁽¹⁾, G.Beaudoin⁽¹⁾, K.Pantzas⁽¹⁾, F.Ducroquet⁽²⁾, D.Alamarguy⁽³⁾ and G.Patriarche⁽¹⁾

(1) C2N, Centre de Nanosciences et de Nanotechnologies 10 Boulevard Thomas Gobert, 91120 Palaiseau
(2) IMEP LAHC Univ. Grenoble Alpes F-38000 Grenoble
(3) GeEPs Group of Electrical engineering Centrale Supelec Univ Paris-Sud Plateau du Moulon F-91192 Gif sur Yvette

- Intégration hybride III-V sur Si : état de l'art
- Collage Oxide-free: caractérisation structurale et optique de l'interface
- Collage oxide @ 300°C : préparation des surfaces PEALD-SiO₂ et Ozone
- Caractérisation XPS des surfaces activées
- Mesure de l'énergie du joint de collage par nanoindentation
- Performances de dispositifs photoniques comportant un interface hybride
- Mesure du transport électrique à travers l'interface hybride
- Conclusion

State of the art: Hybrid optoelectronic III-V/Si devices

operating at 1.55µm including a Oxide-mediated bonded interface

50-100nm thick PECVD SiO2 layer CMP planarized prior bonding

B.BenBakir et al., Optics Express, 19,10317 (2011)

Intermediate bonding layer

The oxide layer

- poor thermal conductivity

- low optical index material in the core of the device

- prevent electrical transport at the interface

→ The thinnest layer will optimize the optical performances and allow electrical operation of the device through the hybrid interface

State of the art: Electrical injection through III-V / Si hybrid interface

K. Tanabe, K. Watanabe, and Y. Arakawa, Scientific Reports, 2, 349 (2012)

→ InAs/GaAs QD lasers on Si rib waveguides with current injection through the heterointerface

K. Tanabe, K. Watanabe, and Y. Arakawa, Optics Express **20**,B315 (2012)

→ Ohmic InP/Si direct-bonded heterointerface

Electrical operation through the interface : Improved thermal behavior

7

Bonding equipement at C2N

Presse Instron + four SEMCO

custom-design

T up to 700°C Perfect flatness on 2" Bonding under vacuum

SB6e-Suss Microtech bonding machine

T up to 500°C Flatness on 6" Bonding under vacuum

Description des échantillons

- →Membrane InP épitaxié (450nm) épitaxiée sur InGaAs/InP par MOVPE
- →Retrait des oxydes natifs des surfaces de l'InP et du Si
- Collage
- →Retrait chimique sélectif du substrat InP et de la couche d'arrêt InGaAs

InP / Si oxide-free bonding : experimental approach

XPS of oxide-free InP surface

Surface to be bonded InP top layer 71 nm 5 InGaAsP barriers 16 nm 4 InGaAs QW 10 nm InP 71 nm InGaAs stop etch 300nm InP buffer, InP substrate 300µm

∆a/a=8.10%

Oxide-free surfaces Surface preparation:

Si : RCA, HF 4% \rightarrow hydrophobic, oxide-free –H terminated InP : HF 40% \rightarrow oxide-free

1 - Both materials are grown, lattice matched, on their own substrate

2 - Surfaces preparation, contact

3 – Annealing Vacuum T=550°C, 90mn Pressure : 0.2MPa High pressure uniformity

Mandatory : smoothness, flatness, cleanliness, reactivity

Quantum wells InP-based bonded stack

X-Ray characterization of the bonded membrane

InP/Si $\Delta a/a=8.10\%$

Perpendicular mismatch ~ 8.151%

Diffraction peaks due to (004) planes, versus angular position of the detector

Correct relative alignment of both crystals

Parallel mismatch ~ 8.152%

Diffraction peaks due to (220) planes normal to the surface

Tilt angle < 0.05° Twist angle < 0.1°

Ludovic Largeau, C2N

TEM characterization of the bonded interface

Atomic-plane-thick reconstruction across the interface

Geometrical Phase Analysis cartography

Local analysis of lattice parameter

Si

Abrupt interface transition

Room Temp. Photoluminescence of bonded QW

Bonding operating conditions

Oxide-free : vacuum T=550°C , 90mn Low Pressure : 0.2MPa High pressure uniformity

InP top layer	71 nm
5 InGaAsP barriers 4 InGaAs QW	16 nm 10 nm
InP	71 nm

Oxide-mediated bonding mechanism of III-V materials on Si

State of the art

Both surfaces are cleaned and desoxidized

♦ 3 steps process

1st : Oxide layer Elaboration

Several techniques are used: -SiO2 PECVD -SiO2 Sputtering -O2 plasma CCP- RIE -O2 plasma ICP- RIE -Thermal oxidation, for the Si surface

2nd : Oxide layer Activation

-O2 plasma RIE-CCP -O3 *A.ltawi et al., JVSTB, 21, 3784 (2013)*

InP

Si

8-0

SiO₂ PE-ALD layer

+ The thinnest layer ~ 1 MonoLayer

+ Conformal layer when structured surfaces are concerned

Oxide Deposition and Surface Activation in a single processing step

3rd : Contact

 $\begin{array}{l} InP\text{-}OH + HO\text{-}Si \rightarrow InP\text{-}O\text{-}Si + H_2O_{(g)} \\ Si + xH_2O \rightarrow SiO_2 + xH_{2(g)} \end{array}$

SiO₂ Plasma Enhanced ALD cycle

Equipment: Fiji 200 Ultratech–Annealsys

Operating conditions Precursor : TDMAS Oxidant: O2 Gaz Plasma Assisted T=250°C

H₃C CH₃

N

N-Si-N

н

 CH_3

CH₃

H₃C

H₃Ć

17

Ozone activation of both InP and Si surfaces

- De-oxidized surfaces, HF last
- No oxide deposition
- O3 activation of both surfaces
 - \rightarrow Hydroxyl groups on both surfaces

Condensation under annealing InP-OH + HO-Si \rightarrow InP-O-Si +H₂O_(g)

Equipment: UV cleaner, Jelight

Operating conditions

- High intensity low pressure mercury vapor UV grid lamp (λ =184.9nm & 253.7nm)
- Air atmosphere, no Oxygen flow
- 30s

Surface characterization by X-ray Photoelectron Spectroscopy

→ Measure the Si–O links

Equipment : PHI 5000 VersaProbe Scanning XPS Microprobe

Operating conditions Source X : Al K_{α} monochromatic (hv=1486.6 eV), 15kV, 39.3W Beam diameter: 200 µm Emergence angle: 45° Mean free path: ~ 4nm

General spectra Pass Energy: 187.85 eV Step: 0.4 eV

O3 activation XPS surface characterization : Detailed spectra

Pass energy 23.5 eV Step : 0.1 eV Ozone-activated Si surface

Each fit gives the atomic proportion of the related chemical bond to the measured intensity

20

PE-ALD oxide layer bonding : 2.9nm oxide interface

Annealing conditions

- Vacuum
- T=300°C , 3 h
- Low Pressure : 0.2MPa
- High pressure uniformity

 $InP-OH + HO-Si \rightarrow InP-O-Si + H_2O_{(a)}$ $Si + xH_2O \rightarrow SiO_2 + xH_{2(q)}$

400nm thick InP membrane bonded on Si

after selective chemical removal of the substrate and the etch stop layer

4 cycles ALD layer

Hybrid interface TEM charcaterization

A.Talneau et al., Microelectronic Engineering, (2016), pp. 40-44, DOI: 10.1016/j.mee.2016.05.001

Structural and Chemical analysis of the Ozone Bonded Interface : 1.2 nm-thick oxide layer

A.Talneau et al., Microelectronic Engineering, (2018), https://doi.org/10.1016/j.mee.2018.02.007

Bonding energy measurement by instrumented Nanoindentation

Indentation à 20mN

Aux fortes charges, Si est amorphisé sous la pointe

Fig. 5a : Image Nomarsky de cloques sur la membrane InP après indentation à 10 et 20 mN

Collaboration with Eric LeBourhis, Institut P' Poitiers

Bonding energy measurement by instrumented Nanoindentation

AFM Image of a blister

L and tb are the blister length and height

 E_{InP} and t_{InP} are the Young modulus and the thickness of the InP membrane

Photonic devices including an hybrid interface

Shallow ridge waveguide

Technology:

- HSQ e-beam lithography

- Cl₂-based ICP etching

Hybrid cleaved facet

Sub- λ metamaterial + super periodicity waveguide

Design top view

Hybrid cleaved facet

Optical performances of the photonic devices

<u>Fabry-Perot resonance method :</u> Propagation losses are calculated from the fringe contrast

Wavelength selective waveguide

A.Talneau et al., Optics Letters, 40, 5148 (2015)

Electrical transport through the interface

Contact geometry

n-doped (S 10^{19}) 500nm thick InP membrane bonded on a n-doped 10^{19} Si substrate

InP/Si oxide free interface

K. Pantzas et al., IPRM 2014

1,2nm oxide InP/Si interface

Current (A)

A.Talneau et al., MNE , 2018

Conclusion

<u>Wafer fusion of III-V on Silicon or SOI for hybrid photonic devices</u>

Bonding processes:

- ♦ Oxide-free @ 500°C
- ♦ Oxide-mediated (SiO₂ 1.2nm) @ 300°C
- → High Optical Quality of the InP/Si Interface
- → Efficient Electrical transport through the interface

Hybrid photonic devices

- shallow ridge waveguide
- Wavelength selective waveguide
- Hybrid III-V /Si laser polarized through the interface

Hybrid III-V /Si MOS capacitor
 Mach-Zehnder modulator

T. Hiraki et al., Nature Photonics, 11,482 (2017)

Journée Adhésion moléculaire, IOGS, 21 Novembre 2019

