

CHEAP'EAU

SOLUTIONS INNOVANTES A BAS COUT POUR LE SUIVI DES SYSTEMES DE GESTION DES EAUX URBAINES

Durée du projet : 2020-2022

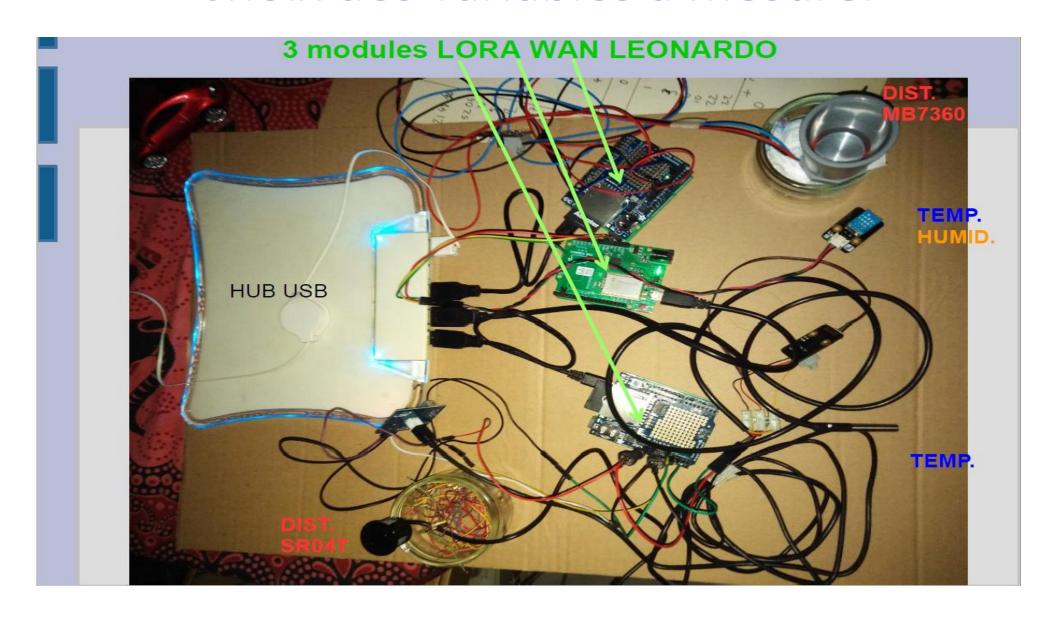
Sommaire

- Le projet
- Choix et développement technique
 - Mise en situation
 - Gestion des données
 - Conclusions

Le projet

Projet Cheap'Eau: Objectifs à atteindre

- Abordable
- Robuste et discret
- Autonome
- Performances
- Connectés
- Simple à construire et à prendre en main


Projet Cheap'Eau: cahier des charges

- Utiliser des capteurs bon marché (< 10-15 € / unité)
- Fabriqués en série pour l'industrie, les transports ou la maison, et immédiatement disponibles dans le commerce
- Panneaux solaires/batterie
- Encapsulage simple
- Les adapter aux matériels informatiques et logiciels libres des communautés d'utilisateurs Arduino®
- Réseau IoT : Lora ou SigFox IoT
- Définir les besoins avec les gestionnaires, BE et citoyens (associations) et assurer le transfert de ces systèmes

Les étapes du projet

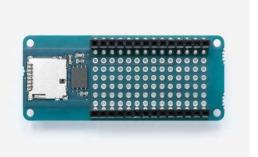
- Choix des variables à mesurer : quels besoins, pour quels objectifs? collecte des attentes des opérationnels, choix des systèmes (AEGIR)
- Choix des systèmes et leurs développements des solutions techniques à bas coûts les plus adaptées aux objectifs
- Tests en milieux contrôlés (laboratoire, bungalow OTHU)
- Évaluation sur le terrain en comparaison avec les systèmes traditionnels
- Transfert des résultats et valorisation opérationnelle

Choix des variables à mesurer

Choix et développement technique

Lora ou Sigfox?

Technology	LoRa	Sigfox	
Bandwidth	very	low	
Range	few	kms!	
Frequency	unlice	ensed	
Frequencies [Mhz]	415, 868, 902, 915, 923	868, 902, 920, 923	
Antenna / gateway	public / private	private	
Coverage	crowdsourced	one company / country	
Subscription	free	15-30 € / year	
Power consumption	very	low	
Complexity (programming)	medium		
Peer-to-peer communication	possible	impossible	
Two-ways communication	yes but very limited		
Security	medium	medium or high?	


Choix du type de carte Arduino Lora

TTN-UN-868

Mkr WAN 1300 (connectivité Lora) Arduino

Leonardo

Microcontrôleur: Atmega 32U4

Mémoire flash 32ko

Horloge: 16 Mhz

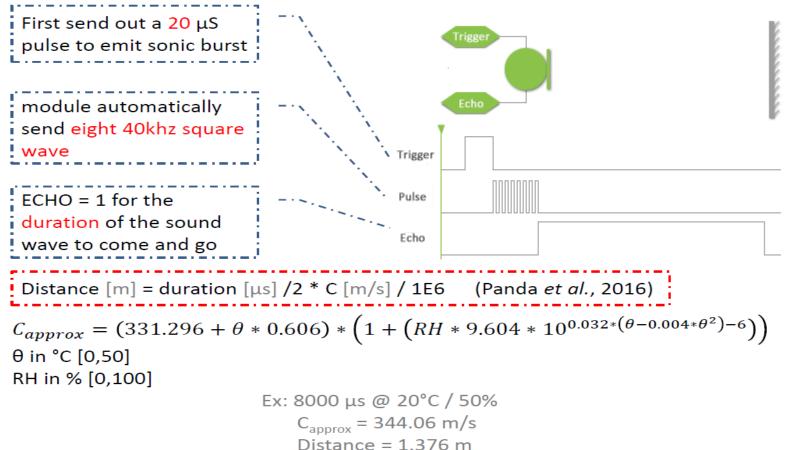
Microcontrôleur: Atmel SAM D21

Mémoire flash: 256 ko

Horloge: 48 Mhz

Choix du capteur de mesure de distance

Sensor: JSN-SR04T

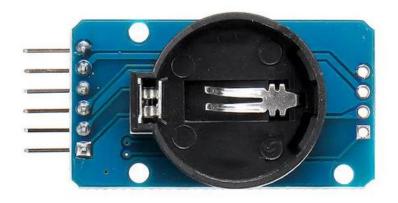


Plage de mesure : de 25cm à 4.5m

Précision: 0.5cm

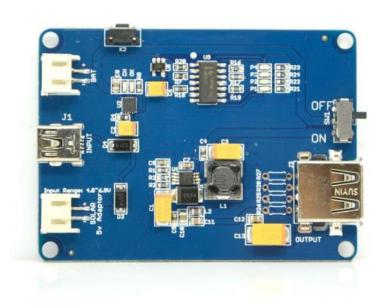
Principe de la mesure

Ultrasonic ranging principle



Capteur de distance (Programme)

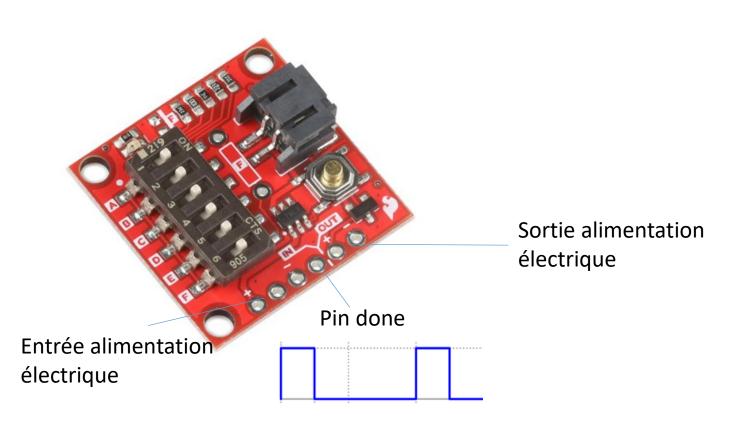
```
// CAPTEUR DISTANCE SR04T
valeurTemp = rtc.getTemperature();
digitalWrite(trigPin, HIGH);
                                 — Variable d'impulsion > 10microsec
delayMicroseconds(10);
digitalWrite(trigPin, LOW);
// FIN DU SIGNAL ACOUSTIQUE
unsigned long duration = pulseIn(echoPin, HIGH);
vitesseSon = 331.5 + 0.6 * valeurTemp ;
// vitesseSonCorrigeeHumidite = 331.4 + 0.6 * valeurTemp + 0.0124 * humidity;
Distancel = duration * vitesseSon / 20000 ;
                                              Influence humidité négligeable
// BOUCLE DE MOYENNAGE DES VALEURS DE TEMPERATURE ET DE DISTANCE
for (int i = 0; i < 15; i++) { Moyenne sur 15 échantillons
 valeurTemp = (valeurTemp + rtc.getTemperature()) / 2;
  Distancel = (Distancel + (duration * vitesseSon / 20000)) / 2;
 delay(1000); -
                     Échantillonnage toutes les secondes
```


Real Time Clock + Capteur de température

Module RTC DS3231 avec capteur de température Compensée pour les dérives lié à la température

Alimentation électrique

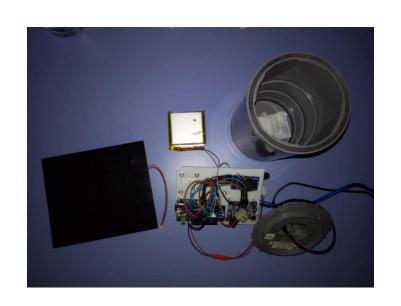
Carte LiPo Rider Pro 106990008



Cellule solaire SOL3W 5,5 V/540 mA - 160 x 138 mm

Batterie LiPo 3.8v 5100mAh

Nano Timer TPL5110

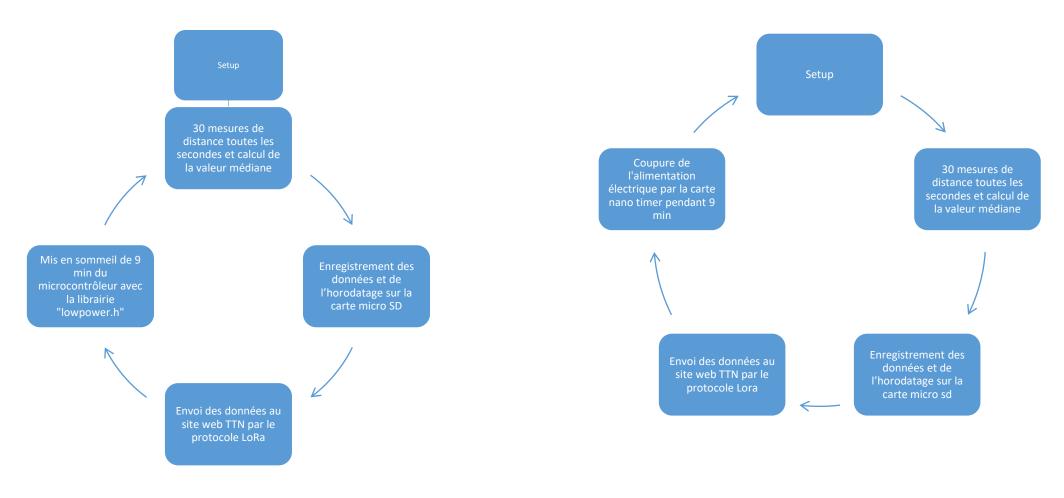

Temps réglable par commutation de switch (2 sec à 15 min)

Consommation électrique à l'arrêt : 35nA pour 2.5v

Précision temporelle : 1%

Timer	Switch Combo	Resistance
2-3 s	A+B+C+D+E	7.579 kΩ
3-4 s	A+B+C+D	7.933 kΩ
4 s	A+B+C	8.470 kΩ
5 s	A+B+E	8.844 kΩ
6 s	A+B	9.329 kΩ
10 s	A+C+D+E	11.563 kΩ
~12 s	A+C+D	12.407 kΩ
~13 s	A+C+E	12.742 kΩ
~15 s	A+D+E	13.225 kΩ
~18 s	A+C	13.774 kΩ
~19 s	B+C+D+E	14.243 kΩ
20 s	A+D	14.341 kΩ
~22 s	A+E	14.790 kΩ
~25 s	B+C+D	15.546 kΩ
~28 s	B+C+E	16.075 kΩ
32 s	B+D+E	16.852 kΩ
35 s	B+C	17.754 kΩ
40 s	B+D	18.707 kΩ
~45 s	B+E	19.479 kΩ
~5 min	C+D+E	40.400 kΩ
8 min	C+D	52.995 kΩ
~12 min	C+E	59.694 kΩ
15 min	D+E	72.033 kΩ

Prototype final



Consommation en mode standby :

Sans nano timer : 28mA Avec nano timer : 3mA

Les programmes arduino

Sans nano timer Avec nano timer

18

Coût total

• Mkr wan 1300 40.98 euro TTC

• Shield micro SD 21.90 euro TTC

• Capteur ultrason 13.51 euro TTC

• RTC DS3231 3.99 euro TTC

• Batterie LiPo 3.8v 5100mAh 29.95 euro TTC

• Cellule solaire 3Wc 19.00 euro TTC

Carte lipo Rider Pro 15.60 euro TTC

• Encapsulage 10.50 euro TTC

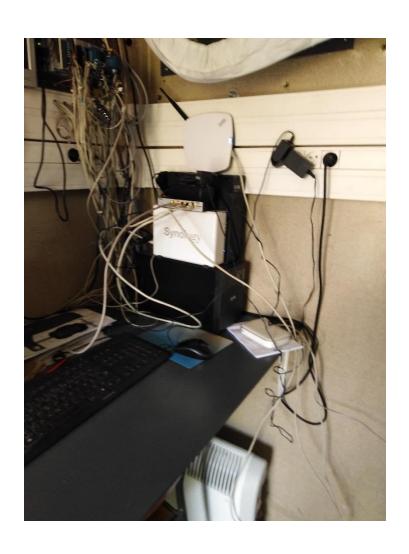
Total: 155.43 euro TTC

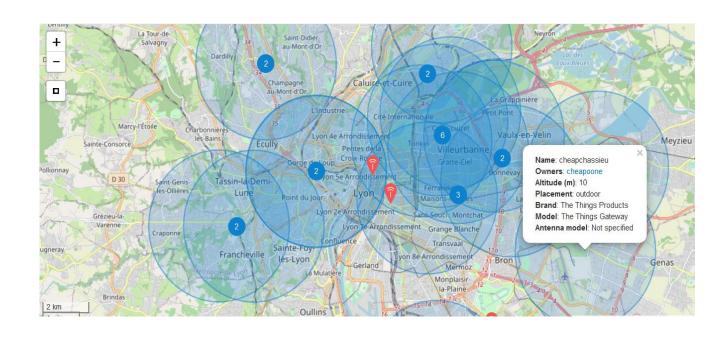
Mise en situation

Site d'essai

Site de Chassieu

Prototype sans nano timer

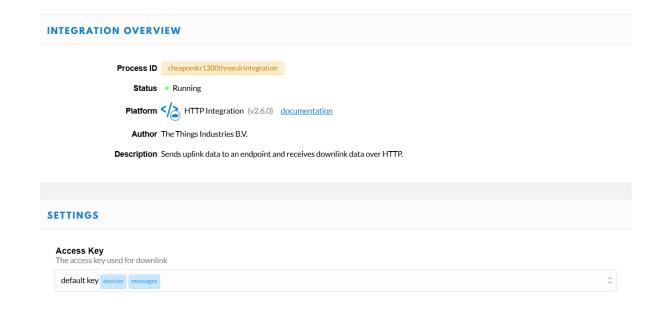



Prototype avec nano timer

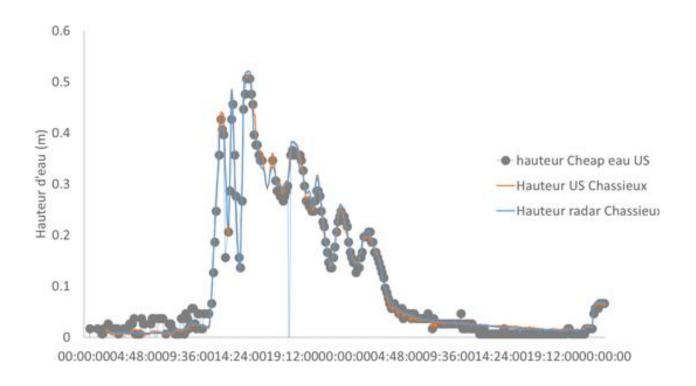
Gateway TTN-GW-868

Coût de la gateway : 301.42 euro HT (Farnell)


Gestion des données


Site web The Things Network

	uplink	downlink	activation	n ack	error
	time	counter	port		
14	:56:57		0		
14	:56:57	0	3 (retry confirmed	payload: 02 3F 00 80 01 83 Bat: 3.87 Dist: 128 Temp: 5.75
14	:56:47				dev addr: 26 01 57 58 app eui: 70 B3 D5 7E D0 02 E6 08 dev eui: A8 61 0A 32 37 4D 81 01
14	:46:53		0		
14	:46:52	0	3 (retry confirmed	payload: 02 71 00 80 01 82 Bat: 3.86 Dist: 128 Temp: 6.25
14	:46:42				dev addr: 26 01 26 38 app eui: 70 B3 D5 7E D0 02 E6 08 dev eui: A8 61 0A 32 37 4D 81 01
14	:36:55		0		
14	:36:54	0	3 (retry confirmed	payload: 02 71 00 80 01 83 Bat: 3.87 Dist: 128 Temp: 6.25
14	:36:44				dev addr: 26 01 6D 51 app eui: 70 B3 D5 7E D0 02 E6 08 dev eui: A8 61 0A 32 37 4D 81 01
14	:26:43		0		
. 14	:26:43	×	×	historical	payload: 02 8A 00 80 01 83 Bat: 3.87 Dist: 128 Temp: 6.5
14	:26:43	0	3 (retry confirmed	payload: 02 8A 00 80 01 83 Bat: 3.87 Dist: 128 Temp: 6.5
14	:26:32				dev addr: 26 01 63 BD app eui: 70 B3 D5 7E D0 02 E6 08 dev eui: A8 61 0A 32 37 4D 81 01


```
uint16_t temperature = valeurTemp * 100;
// uint16 t distanceSR04T = Distance1;
uint16 t distanceSR04T = m;
uint16 t Vbatterie = TensionBat * 100;
// ENVOI DES DONNEES SUR RESEAU LORAWAN
int err;
byte payload[6];
payload[0] = highByte(temperature);
payload[1] = lowByte(temperature);
payload[2] = highByte(distanceSR04T);
payload[3] = lowByte(distanceSR04T);
payload[4] = highByte(Vbatterie);
payload[5] = lowByte(Vbatterie);
modem.setPort(3);
modem.beginPacket();
modem.write(payload, sizeof(payload));
err = modem.endPacket(true);
modem.sleep();
```

Transfert des données sur google sheet

Résultat

Mesure effectuée le 2 octobre 2020 lors du passage de la tempête Alex

Conclusions

- Le prototype avec le nano timer est plus fiable dans son fonctionnement que celui qui n'en n'est pas équipé.
- L'autonomie électrique sans panneau solaire, est de 3 semaines pour le prototype avec nano timer contre 4 jours pour le prototype qui n'en est pas équipé.
- Les résultats de mesure restent proche des mesures réalisées avec du matériel professionnel, mais il y a quelques aberrations à corriger.
- La connexion via lorawan vers le cloud TTN donne de bon résultat, mais il y a quelques pertes de données et l'intégration http vers google sheet (provisoire) fonctionne bien.
- Dans le futur, on pourrait envisager d'utiliser l'outil Node Red pour faire transiter nos données sur un serveur local.

CHEAP'EAU

SOLUTIONS INNOVANTES A BAS COUT POUR LE SUIVI DES SYSTEMES DE GESTION DES EAUX URBAINES

Merci pour votre attention!

Des questions?