



INSTITUT ///////// DES SCIENCES ETIENNE DU MOUVEMENT JULES

# Articulations mécaniques inspirées du coude de mammifères quadrupèdes

Santiago Arroyave-Tobon, Kalenia Marquez-Florez, Jean-Marc Linares Aix Marseille Univ, CNRS, ISM, Marseille, France









# ISM laboratory





## **ISM UMR 7287**

Interdisciplinary laboratory



Aix\*Marseille





PSNM: Plasticity of Muscular and Nervous Systems
AdapJuste: Adaptations and Adjustments
DCI: Behavioral Dynamics and Immersion
ICS: Interactions between Cognitive and Sensorimotor Behaviors
CMC: Context, Motivation and Behaviors
P3M: Motor Performance and Multiscale Modelling
GIBOC: Interdisciplinary Group in Osteoarticular Biomechanics
BIOROB: Biorobotic

**CBI: Bio Inspired Design** 

INSTITUT //////// DES SCIENCES ETIENNI DU MOUVEMENT JULE



## **CBI Research team (2021-22)**





#### **Research activities (2021-22)**





## **Team research equipment**



INSTITUT ///////// DES SCIENCES ETIENNE DU MOUVEMENT JULES





## Articulations mécaniques inspirées du coude de mammifères quadrupèdes





## **Industrial issues**

Mechanical linkages are heavily tested, but in-service experience is showing sometimes the apparition of wear that requires significant maintenance burdens for the customer.







## Endoskeletons developed different morphologies for revolute joints

université

/////// MARFY



Collections from the Natural History Museum of Paris

#### Which are the **functional advantages** of these morphologies?

## \* Schedule: bio-inspiration at two levels

Camelus bactrianus



Bison bison







# Level 1: understand the relation structure-function



### From camel and bison bones to mechanical joints



INSTITUT ////////// DES SCIENCES ETIENNE DU MOUVEMENT JULES

université



### Contact simulations of bio-inspired joints



#### Camel-inspired joint

#### Bison-inspired joint



### Bearing performance to combined loads

université





////// MARE

#### Conclusions about level 1

- Asymmetrical response regarding load transmission.
- Preferential loading conditions not far from the physiological loading.
- Camel-inspired joint:
  - more suitable for supporting combined loads.
  - similar to back-to-back (DB) bearing arrangement.
- Bison-inspired joint:
  - more specialized for bearing turnover moments.
  - similar to a back-to-back and tandem (TBT) arrangement.









# Level 2: mimic morphological mechano-adaptation





////// MAREY

**Joint morphogenesis:** biochemical + mechanical factors

biochemical: molecular distribution (Turing, 1952), mechano-transduction

mechanical: mechano-adaptation (Wolff, 1892; Guilak, 1994), cartilage differentiation (Carter and Wong, 2003)



Giorgi M., Mechanobiological predictions of fetal joint morphogenesis, 2015, Phd Thesis, Imperial College.



Márquez-Flórez K., Mechanobiological computational model for the development and formation of synovial joints, 2019, Phd Thesis, Universidad Nacional de Colombia.

## Mimicking morphological mechano-adaptation

**Research hypothesis:** bone morphogenesis process can be mimicked in engineering to automate the design of mechanisms.







https://anr.fr/Project-ANR-20-CE10-0008







# Thanks for your attention



#### ★ UNIVERSITÉ Socialement engagé

#### **Preferential loading conditions**



INSTITUT ///////// DES SCIENCES ETIENNE DU MOUVEMENT JULES

## \* Extraction of morphological profiles



## \* Axial load bearing performance



## Tournover moment bearing performance

