Mechanical characterization of human oocytes

Joel Abadie, Emmanuel Piat, Christophe Roux, Sophie Frontczak, Salma Amensag

FEMTO-ST CNRS UBFC ENSMM Centre d'Investigation Clinique CIC 1431 INSERMM SATT Sayens

October 19th, 2021

Infertility

 In France : 10 - 16 % of couples have conceiving difficulty

Assisted reproductive technology ART

- In the world : 1.5×10^{6} ART per year
- ART represents in France 1 birth / 34

ICSI

- France 2013 : 40 006 ICSI attempts
- Success rate 21.8 %

ICSI procedure

- Ovarian stimulation
- Ovarian puncture within 36 hours

- Selection of oocytes on morphological criteria
- In vitro fertilisation and culture of embryos for 2-5 days

Transfer to the uterus

Cause of miscarrying

- Technical problem
- Spermatozoon quality
- Oocyte quality

Oocyte choice criteria

Morphological (classical)

Cause of miscarrying

- Technical problem
- Spermatozoon quality
- Oocyte quality

Oocyte choice criteria

Morphological (classical)

Platform EGG

Produce objective mechanical criterion to help physicians determine which oocyte should be inseminated and transferred

Morphological selection criteria

Mechanical selection criteria

Mechanical selection criteria

A mechanical test

Our first Time

Outline

Concept of Magnetic spring
Simplest configuration
First force sensor design
Oocyte characterisation platform
Active magnetic springs

Capteur EGG

Global design Magnetic springs design

3 Conclusion and perspectives

Outline

Concept of Magnetic spring Simplest configuration First force sensor design Oocyte characterisation platform Active magnetic springs

- Capteur EGG Global design
 - Magnetic springs design
- 3 Conclusion and perspectives

Magnetic levitation

Quite simple

Magnetic levitation

Basics

Magnetic levitation

Horizontal behavior

 $K_x \approx 0.01 \text{ N/m}$

Displacement of 1 μ m \Longrightarrow force of 10 nN

First force sensor design

Design modification

First force sensor design

Final design

First force sensor design

Application to oocyte characterisation

Problem of surface tension

Force instrumented Petri dish

Special Petri dish

Entire platform

Entire platform

Problem of surface tension remains

3 DOF active control

Active magnetic springs Basics

Active magnetic springs Basics

Active magnetic springs Basics

 $F_{elec} = K_{elec}(x) \, . \, i \implies \hat{F}_{oo} = K_{elec} \, . \, i_{measured} + K_{mag} \, . \, x_{measured}$

Position active control

Position active control

Position active control

Position active control

VIRCO : Virtual Input Rejection COntrol

Outline

Concept of Magnetic spring
Simplest configuration
First force sensor design
Oocyte characterisation platform
Active magnetic springs

Capteur EGG Global design Magnetic springs design

Capteur EGG

Design

- Magnetic levitation
- Magnetic springs
- Buoyancy
- Active magnetic springs
- Unknown input observer (Kalman or GELESO filters)
- Advanced robust control law (VIRCO)
- Medical and biological requirements
- habits of ART centers

In ART center of Besançon hospital

In ART center of Besançon hospital

1. W02018172688 - DISPOSITIF POUR LA CARACTERISATION MECANIQUE D'UN ELEMENT D'INTERET PAR EXEMPLE UN OVOCYTE

Magnetic springs inside the Petri dish

Magnetic springs inside the Petri dish

Single use magnetic glass indenter of 16 mm length and 0.8 mm diameter

Negative stiffness magnetic spring

Negative stiffness magnetic spring

Negative stiffness magnetic spring

 $K_x \approx -0.001 \text{ N/m}$

Unstable behavior along \vec{x}

Displacement of 1 μ m \implies force of 1 nN

Conducting experiments on oocytes

Oocytes mechanical properties

Loading and unloading tests

Oocytes mechanical properties

Relaxation tests with flat or sharp tip

Oocytes mechanical properties

Oocyte constitution

Outline

Concept of Magnetic spring
Simplest configuration
First force sensor design
Oocyte characterisation platform
Active magnetic springs

Capteur EGG
Global design
Magnetic springs design

3 Conclusion and perspectives

Conclusion and perspectives

- Approximately 80 supernumerary oocytes already tested
- Each oocyte exhibit a particular mechanical profile

Next steps

- · Fine modelling of the different oocyte parts
- Clinical trial on 20 patients...

Thank you for your attention...

Contributors

Mehdi Boukallel, Ali Cherry, Stéphane Oster, Racha Gana, Juan Antonio Escareno, Margot Billod, Reda El Hirech, Fadoua Nana Najim, Jorge Andres Perez, Francois Vuillemin, David Purwins, Mickael Ohruh, Fawzia Amokrane, Mélanie Béduer, Romain Merillo, Danielle Lyne Cambou, Benjamin Heinzman, Ferdinand Shäffer, David Grams, Zhuldyzay Temirzhanova, Rachid Laydi, Adrien Drouot, ...