Réseaux, Hyperviseurs, Stockages, relions-les tous !

Jérôme COLOMBET

https://homepages.lcc-toulouse.fr/colombet/journees_proxmox_et_ceph_juin2022.pdf

7 et 8 juin 2022

Contexte de cette présentation

- Proxmox est majoritairement utilisés dans nos structures de l'ESR
- Nos hyperviseurs sont généralement couplés
 - aux stockages centraux (liens dédiés ou mutualisés)
 - aux réseaux d'infrastructures (normés et propriétaires)
 - dans certains cas, aux cluster HPC (ipxe, diskless, ...)
- Mais toutes ces interconnexions :
 - comment construisez-vous ces réseaux?
 - In fonction des ressources (stagiaires, budgets, ...)?
 - 2 en fonction des projets (campus, recherche, ...)?
 - en fonction de vos envies de geek?
 - vous pensez bien sûr à les documenter (pour vos collègues, un audit, ...)
 - mais de toute façon vous allez les oublier après des années d'utilisation
- Quelques configurations réseaux, de type bridge, mesh, bond et openvswitch

C

- Laboratoire de Chimie de Coordination, UPR 8241 sur un campus propre CNRS
- Proche de la nouvelle attraction touristique, le Téléo : « Téléphérique Urbain Toulouse »
- Le service RICS, 3 informaticiens pour 300 personnes et un bâtiment de 11000m²
- Les solutions techniques
 - 3 salles serveurs reparties sur le campus 205
 - Backbone 10G sur l'ensemble des bâtiments, 600 prises
 - 3 cluster HA-PRA de 6 nœuds basé sur Proxmox VE 7
 - 2 cluster HPC via l'ordonnanceur OAR (Centos 6, Debian 10)
 - Multiples stockages ZFS accessibles via NFS, iSCSI et SMB (data, VMs, mails, ...)
- Quelques exemples de solution en place à la fin de présentation ...

Aran

CNIS

Clin d'oeil aux évolutions de Proxmox ...

me Logout			Proxm	Proxmox Virtual Environment 0.9				
M Manager		Prox	mox Virtual Enviro	nment				
 Virtual Machi Appliance Te 	nes mplates	Welco	me to the Proxmox Virtu	al Environm	entl			
infiguration		For mo	re information please vis	sit our home	page at <u>www.proxn</u>	tox.com		
System		Local	System Status ('proxmo>		Dnline			
Backup		Uptin	ne		0:20:54 up 03:32, lo	, 1.98		
ministration		CPU(s)		x Dual-Core AMD Op	oteron(tm) Processor 22	218	
annistration		Phys	cal Memory (7986MB/473	33MB)		9.27%		
Server Swap			wap Space (4095MB/7MB)		0.17%			
Cluster HD S		Space root (96761MB/587MB)		0.64%				
		HD S	HD Space data (364125MB/11238MB)			3.09%		
		Kern	on (package/version/buil Il Version	id) p	ve-manager/0.9/281 inux 2.6.24 #1 SMP I	.o PREEMPT Tue Apr 1 10:5	57:53 CEST 2008	
<u>«opoy</u>	Mo 🗙 Virtual Er	wironme	nt 7.2-4 Search		B Docu	mentation Create VM	1 🕞 Create CT 🔺 roots	toam y
orver View 🖂	Node Inicent				D Beboot d	Shutdown Shell	L Bulk Actions	h hisio
Datacenter	Nobe proste				0 110001			r rando
> 🚺 picsou	O Search		Package versions				Hour (average)	
	Summary		picsou (Uptime: 18 c	days 17:07:	28)			
	Notes		CPU usage		2.33% of 32 CPU(s)			
	>_ Shell		Load average		1.63.2.23.2.95	O IO delay	2	.79%
	og System	~	Loud droidge					
	■ Network		BB RAM usage	95.22% (29	78 GiB of 31.28 GiB)	KSM sharing	1.14	GB
	Certificate		⊖ / HD space 54	4.75% (189.5	4 GiB of 346.17 GiB)	C SWAP usage		N/A
	C Martin		CPU(s)			32 x AMD Ryzen 9 395	0X 16-Core Processor (1 So	cket)
	G Hosis		Kernel Version		Linux 5.15.35-1-pve #	1 SMP PVE 5.15.35-2 (Th	u, 05 May 2022 13:54:35 +0	200)
	Options		PVE Manager Version			•	pve-manager/7.2-4/ca9d	43cc
	Ø Time		repository Status		S Proximox VE	uppares 😲 Non produc	con-ready repository enable	a! 🕽
	Syslog							
	-		CDULUMENT				CONTRACTOR - 10 datas	

2008

Logo Proxmox - Source Wikipedia

2022

SiarsV2 2018 : Protection infrastructure Linux Mise en place d'une infrastructure virtualisée

Jérôme COLOMBET (LCC - UPR 8241)

- enoX, ensX : interface physique qui écoute tout ce qui se passe via systemd
 - en ethernet, sl serial line IP (slip), wl wlan, ww wwan, ib Infiniband
 - o on-board device index number, s hotplug slot index number
- vlan : interface virtuelle associée à une interface physique séparée par un point (eno1.50, bond1.30)
- bond : agrégation de plusieurs interfaces physiques en une interface logique
- vmbr : interface faisant jonction (pont) entre les ethX, vethX, tapX (vmbr0 vmbr4094)
- ovs bond, bridge, intport : identique aux autres mais via le logiciel OpenvSwitch
- tap : interface virtuelle pour les machines de type KVM
- veth : interface virtuelle pour les conteneurs de type LXC, OpenVZ

Conseil, ne pas utiliser la technique ci dessous pour revenir à l'ancien nommage ensX \Rightarrow ethX GRUB_CMDLINE_LINUX="net.ifnames=0 biosdevname=0"

Configuration en mode bridge (par défaut)

more /etc/network/interfaces

auto lo iface lo inet loopback iface eno1 inet manual

auto vmbr0
iface vmbr0 inet static
 address 192.168.131.1/24
 gateway 192.168.131.254
 bridge_ports eno1 # physical netcard
 bridge_stp off # spanning tree off

Configuration en mode routage (typique en VPS)

more /etc/network/interfaces	more /etc/network/interfaces				
iface vmbr0 inet static address 213.45.67.8/25 # provider ip gateway 213.45.67.1 bridge_ports eno1	post-up echo 1 > /proc/sys/net/ipv4/ip.forward post-up iptables -t nat -A POSTROUTING -s '192.168.131.0/24' -o vmbr0 -j MASQUERADE post-down iptables -t nat -D POSTROUTING -s '192.168.131.0/24' -o vmbr0 -j MASQUERADE post-up iptables -t nat -A PREROUTING -i vmbr0 -p tcp -dport 443 -j DNAT -to 192.168.131.200 :443 post-up intables -t nat -A PREROUTING -i vmbr0 -p tcp -dport 443 -j DNAT -to 192.168.131.200 :443				
iface vmbr1 inet static address 192.168.131.1 netmask 255.255.255.0 bridge_ports none	post-down iptables -t nat -D PREROUTING -i vmbr0 - post-up iptables -t nat -A PREROUTING -i vmbr0 -p t post-down iptables -t nat -D PREROUTING -i vmbr0 -	p tcp-dport 25 -j DNAT -to 192.168.131. 201 :25 cp -dport 143 -j DNAT -to 192.168.131. 202 :143 p tcp -dport 143 -j DNAT -to 192.168.131. 202 :143			
Jérôme COLOMBET (LCC - UPR 8241)	Journées Proxmox & Ceph	7 et 8 juin 2022 7 / 20			

L'agrégation de lien regroupe plusieurs interfaces physiques sous une même interface virtuelle :

- Mode0 : Round Robin ou équilibrage de charge, la transmission des paquets se fait de façon séquentielle sur chacune des cartes actives dans l'agrégat. Ce mode augmente la bande passante et gère la tolérance de panne
- Mode1 : Active ou Passive, ce mode gère uniquement la tolérance de panne. Si une des interfaces est désactivée, une autre du pool prend le relais
- Mode2 : Balance XOR, une interface est affectée à l'envoi vers une même adresse MAC
- Mode3 : Broadcast, tout le trafic est envoyé par toutes les interfaces
- Modes : Broadcast, tout le trait est envoye par toutes les interfaces
 Mode4 : LACP ou norme IEEE 802.3ad, toutes les interfaces du groupe sont agrégées de façon dynamique, ce qui augmente la bande passante et gère la tolérance de panne. Le commutateur doit gérer la norme 802.ad et les interfaces doivent être compatibles mii-tool / ethtool.
- Mode5 : balance-tlb pour transmit load balancing : seule la bande passante en sortie est load balancée selon la charge calculée en fonction de la vitesse, ceci pour chaque interface. Alors, le flux entrant est affecté à l'interface courante. Si celle-ci devient inactive, une autre prend alors l'adresse MAC et devient l'interface courante.
- **Mode6** : balance-alb pour adaptive load balancing, ce mode inclut en plus du tlb un load balancing sur le flux entrant et seulement pour un trafic.

Configuration en mode Linux Bonding LACP

more /etc/network/interfaces

iface enp1s0f0 inet manual iface enp1s0f1 inet manual auto bond0 iface bond0 inet manual bond-slaves enp1s0f0 enp1s0f1 bond-mode **802.3ad** auto vmbr0

iface vmbr0 inet static address 192.168.131.1/24 gateway 192.168.131.254 bridge-ports bond0

more /proc/net/bonding/bond0

Ethernet Channel Bonding Driver : v5.15.35-1-pve Bonding Mode : IEEE 802.3ad Dynamic link aggregation Transmit Hash Policy : layer3+4 (1) MII Status : up 802.3ad info LACP active : on LACP rate : slow Min links : 0

Jérôme COLOMBET (LCC - UPR 8241)

Configuration en mode mesh (réseau du pauvre)

3 méthodes pour un réseau mesh (RSTP, Routed, Broadcast)

Exemple en mode Broadcast

iface eno1 inet manual iface eno3 inet manual iface eno4 inet manual auto bond1 iface bond1 inet static address 172.16.0.1/24 slaves eno3 eno4 bond_mode **broadcast** auto vmbr0 iface vmbr0 inet static address 192.168.131.1/24 gateway 192.168.1.254 bridge_ports eno1

 \Rightarrow Attention si vous utilisez un STP propriétaire de type Juniper, Cisco, HP pensé à vérifier la compatibilité et la cohérence du protocole.

Synchroniser le temps et nommer vos nœuds

timedatectl
more /etc/hosts
172.16.0.1 proxmox1
172.16.0.2 proxmox2
172.16.0.3 proxmox3

Sur proxmox1 créer et nommer le cluster

pvecm create starwars -link0 172.16.0.1, priority=20 -link1 192.168.131.1, priority=15

Intégrer les 2 autres nœuds

pvecm add proxmox1 -link0 172.16.0.x, priority=20 -link1 192.168.131.x, priority=15

OpenvSwitch - définition¹

Logo OpenvSwitch - Source Wikipedia

OpenvSwitch, c'est un commutateur :

- virtuel logiciel multicouche open source (Apache2)
- qui travail au niveau 2 OSI et 3 via iptable
- disponible sous BSD, Linux, Windows
- idéal pour les environnements VMs
- majeure partie du code écrit en C

 \Rightarrow *pour résumer*, une de ses fonctions principales est de créer des ports pour le système comme des interfaces réseau ou bien de lui attribuer une interface réseau réelle comme port.

Jérôme COLOMBET (LCC - UPR 8241)

^{1.} https://docs.openvswitch.org/en/latest/intro/what-is-ovs/

OpenvSwitch supporte les fonctions suivantes :

- Standard 802.1Q Vlan (Ports Trunk & Access)
- Interconnexion en bonding avec/sans LACP
- QoS avec des règles type traffic shaping
- Sondes de monitoring (Netflow, sFlow, ...)

Sur Proxmox VE 7.2-4

ovs-vswitchd -version
ovs-vswitchd (Open vSwitch) 2.15.0

Fonctionnalités OVS - Source openvswitch.org

OpenvSwitch - les commandes principales

Ajouter un bridge

ovs-vsctl add-br vmbrX

Supprimer un bridge

ovs-vsctl del-br vmbrX

Ajouter un port

ovs-vsctl add-port vmbrX enoX tag=X

Supprimer un port

ovs-vsctl del-port vmbrX enoX

Modifier un port pour en faire un trunk

ovs-vsctl set port enoX trunks=3,4,5

Supprimer un des VLANs du trunk

ovs-vsctl set port enoX trunks=3,4 Jérôme COLOMBET (LCC - UPR 8241)

Supprimer un VLAN d'un port

ovs-vsctl remove port enoX tag X

Afficher un récapitulatif du bridge : ovs-vsctl show bridge vmbr0 port vmbr0 interface vmbr0 type : internal port bond0 interface eno1 interface eno2 port veth100i0 tag:4 interface veth100i0 port veth200i0 tag:3

interface veth200i0 ovs_version : "2.15.0"

OpenvSwitch - remplacer son commutateur physique

Pour créer un commutateur OpenvSwitch comme le dessin ci-contre, nous utiliserons 5 cartes réseau physiques du serveur et la série de commandes suivantes :

Switch virtuel
ovs-vsctl add-br vmbr0
ovs-vsctl add-port vmbr0 eno1 tag=3 ovs-vsctl add-port vmbr0 eno2 tag=3
ovs-vsctl add-port vmbr0 eno3 tag=4
ovs-vsctl add-port vmbr0 eno4 tag=5 ovs-vsctl add-port vmbr0 eno5 trunks=2,3,4

Les PC n'ayant accès qu'à un seul vlan sont en mode access. Idéal sur des mini pc avec un firewall applicatif.

OpenvSwitch - Proxmox couplé à un switch HP

Syntaxe HP 5xxx

- $\begin{array}{l} \mathsf{HP}: \mathsf{interface}\ \mathsf{Bridge-Aggregation}\ 1\\ \mathsf{HP}\text{-}\mathsf{Bridge-Aggregation1}: \mathsf{link-aggregation}\ \mathsf{mode}\ \mathsf{dynamic}\\ \mathsf{HP}: \mathsf{interface}\ \mathsf{GigabitEthernet}\ 1/0/1 \end{array}$
- HP-GigabitEthernet1/0/1 : port link-aggregation group 1
- HP : interface GigabitEthernet 2/0/1
- HP-GigabitEthernet2/0/1: port link-aggregation group 1
- HP : interface Bridge-Aggregation1
- HP-Bridge-Aggregation1 : port link-type trunk
- HP-Bridge-Aggregation1 : port trunk permit vlan 2-4094

Name:	eth0		IPv4: Static DHCP		
MAC address:	D6:29:AF:23:29:2A		IPv4/CIDR:	193.54.213.111/24	
Bridge:	vmbr0	\sim	Gateway (IPv4):	193.54.213.254	
VLAN Tag:	10	0	IPv6: 🔘 Static	O DHCP O SLAAC	
Rate limit (MB/s):		0	IPv6/CIDR:	None	
Firewall:			Gateway (IPv6):		

Name 个	Туре	Active	Autostart	Ports/Slaves	Bond Mode	CIDR	Gateway
bond0	OVS Bond	Yes	Yes	eno1 eno2	LACP (balance-tcp)		
bond1	Linux Bond	Yes	Yes	eno3 eno4	broadcast	172.16.0.3/24	
eno1	Network Device	Yes	Yes				
eno2	Network Device	Yes	Yes				
eno3	Network Device	Yes	Yes				
eno4	Network Device	Yes	Yes				
enp7s0f0	Network Device	No	No				
enp7s0f1	Network Device	No	No				
internal	OVS IntPort	Yes	Yes			10.0.0.3/24	10.0.0.254
vmbr0	OVS Bridge	Yes	Yes	bond0 internal			

Ajouter une sonde sFlow

ovs-vsctl - -id=@s create sFlow agent=eth0
target="192.168.131.141 :6343" header=128
sampling=2000 polling=30 - set Bridge vmbr0 sflow=@s

Afficher le détail d'une sonde sFlow

ovs-vsctl list sflow uuid : 774d1bd9-a4d4-4c87-84b6-19c0203daaaa agent : eth0 header : 128 polling : 30 sampling : 2000 targets : ["192.168.131.141 :6343"]

Supprimer une sonde sFlow

ovs-vsctl - clear Bridge vmbr0 sflow

Copyright © 2015-2020 InMon Corp. ALL RIGHTS RESERVED

2. https://sflow-rt.com/download.php#applications

Jérôme COLOMBET (LCC - UPR 8241)

Les commandes suivantes configurent le bridge vmbr0 avec tap100i0 et tap200i0 comme ports trunk. Le trafic entrant/sortant sur vmbr0 ou tap100i0 est reflété sur tap200i0 et tout le trafic arrivant sur tap200i0 est supprimé.

Activer un mirror de port \$ ovs-vsctl add-br vmbr0 \$ ovs-vsctl add-port vmbr0 tap100i0 \$ ovs-vsctl add-port vmbr0 tap200i0 - -id=@p get port tap100i0 - -id=@m create mirror name=mirror0 select-all=true output-port=@p - set bridge vmbr0 mirrors=@m

Supprimer le mirror de port

\$ ovs-vsctl clear bridge vmbr0 mirrors

Jérôme COLOMBET (LCC - UPR 8241)

^{3.} https://docs.openvswitch.org/en/latest/faq/configuration/

Pour conclure

- Je n'ai pas parlé de MTU, de IPV6 (tetaneutral.net), et de toutes les options non utilisées
- Quelques surprises après migration de PVE6 à PVE7 (pas de réseau, ifupdown2, ethX...)
- OpenvSwitch du NAC ça roule (PacketFence ou des outils maison)
- OpenvSwitch : Freeradius et Eduroam (isolation des utilisateurs pour des accès ciblés)
- Dell EMC Virtual Edge Platform 4600 est une plate-forme permettant de virtualiser des appliances réseaux type Fortinet, Palo Alto, pFsense dans un chassis réseau

Cette présentation est sous : LICENCE ART LIBRE

http://artlibre.org/

 \square : jerome.colombet@lcc-toulouse.fr

S: https://homepages.lcc-toulouse.fr/colombet/

O: https://github.com/jeromecolombet

♥ : https://twitter.com/neoclimb

Jérôme COLOMBET (LCC - UPR 8241)

Journées Proxmox & Ceph

7 et 8 juin 2022 20 / 20