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Containers overview
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What are containers?
● Containers are executable units of software in 

which application code is packaged, along with its 
libraries and dependencies

● Think of it as an isolated box where you can install 
everything you need for your application

● Containers are portable: if it runs on your 
computer, it runs (almost) everywhere

Resources:
● https://www.ibm.com/cloud/learn/containers 
● https://apptainer.org/docs/user/main/introduction.html

Confusing 
terminology:
● Docker
● Singularity
● Apptainer
● PodMan
● microservices 
● etc.
are all technologies 
involving containers, 
often used to indicate 
containers themselves.

https://www.ibm.com/cloud/learn/containers
https://apptainer.org/docs/user/main/introduction.html
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What are containers?
Example: python application

● Python3.9

● meshio

● numpy

● application.py

● my_module_v20.py

server

laptop

VM
my_python_app 

container
image

CentOS

Windows*

Ubuntu
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Container vs. Virtual Machine
Containers are a partial 
abstraction on top of the 
operating system kernel, 
managed by a container 
engine.

Kernel

Hardware

Apps Services

OS

Container

Apps Services

Container

Apps Services

Kernel

Apps Services

OS Kernel

Apps Services

OS

Hardware

Virtual Machine

Virtual machines are a full 
operating system 
abstraction on top of the 
hardware, managed by an 
hypervisor.
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Container vs. Virtual Machine
Differences

● Containers are application oriented, VMs are system oriented
● Containers are lightweight, VMs are heavy but isolate more
● Containers are easier to manage, start, stop: you can forget it is a 

container and think of it as a portable application

Resources:
● https://www.docker.com/blog/docker-hearts-wsl-2/
● https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm

https://www.docker.com/blog/docker-hearts-wsl-2/
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm
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Typical applications
● Cloud, microservices, DevOps
● Containers are used extensively for web application within orchestrators 

such as Kubernetes and Docker Swarm
● This configuration allows for fast scalability and high avalaibility that 

leverage on the reproducibility of the container
● Application development and deployment because of the compatibility 

and portability of containers
● Jupyter, Redis, DB synamic redundancy
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Container engines
● Container lifecycle is managed by a container engine 

– Only dependency of containers
– Several: Docker, Singularity(now apptainer), PodMan, Saurus, LXC, etc. 

● Docker: most popular, most resources, mostly used
● Supercomputer do NOT support docker

– Priviledge excalation: docker needs root/super user access.
– Not suitable for multiuser systems as HPC clusters

● Liger and most HPC use Singularity (now Apptainer)
– Compatible with Docker! Can use interchangeably
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Container registries
● Containers live in registries: online repositories with thousands of 

images built by companies, application developers, researchers, 
community 

● A container registry is easily accessible by the container engine.

docker pull ubuntu

singularity pull library://davide/myapp

docker push ecn-mech/solver1b

singularity push docker://ecn-mech/solver1b

Pull (download) 
from registry

Push custom 
images from 
registry
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Containers in HPC
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HPC software: traditional approach
● Admin installs HPC software and libraries on the supercomputer
● User can load and user a specific version of a software with 

module

● Submit job via slurm, running or compiling the application with 
the selected modules

● No Module? Missing version? Compiling/execution error? Ask 
admin 

module load python/3.8.1/gcc/4.8.5-c7
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HPC software with containers
● Requirement: supercomputer must have a container engine

– Liger has Singularity
● Use available containers or

– Pull an existing container with the software environment needed. It can be provided by admins or 
in an official registry

– Copy your application inside and run
● Build your own container

– Build a container with all the required dependencies and programs in your machine
– Move it to the supercomputer and run it wih

● Submit job via slurm as usual
● Incompatibilities? Ask admin or rebuild it yourself
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Performance
● Literature shows that modern containers add negligible computing 

overhead to applications
– https://sc19.supercomputing.org/proceedings/tech_poster/poster_files/rpost227s2-file3.

pdf

● Often built and optimised by the framework / OS / programming 
language developer therefore likely better than custom installation

● For the same reason: more likely to be bug-free
● Suggested standard for AI workflows 

https://sc19.supercomputing.org/proceedings/tech_poster/poster_files/rpost227s2-file3.pdf
https://sc19.supercomputing.org/proceedings/tech_poster/poster_files/rpost227s2-file3.pdf
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Why should I bother?
● Learning how to use containers is an overhead, why should I do it?

– Wider software library: no module? Can use containers on public registries 
often provided directly by the software makers 

– Do not rely completely on admins. Installing software is hard… and reaching 
admins is even harder → long delay times.

● U: Can you install this new software please?

● A: *3 weeks and several build from source later* does it

● U: It misses a library

● A: *2 weeks later* reinstall with library

● Program: *crashes* because incompatible with centos…

– Make your app once, use it everywhere (different clusters, computers)
– Paper? Can reproduce the results much more easily
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Singularity + Docker
● Workflow: 

– Build and test images with Docker locally
– Use Singularity on the supercomputer just for running and testing

● Advantage: more resources for Docker, well documented, more compatible 
registries

● Disadvantages: 
– Using 2 technologies → more to learn, impractical (?)
– Slight differences that sometime require some readjustement

● Just one way to do it, nothing against full Singularity
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Use and build containers
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Important resources
● Liger docs container info (AI):

https://ecn-collaborations.pages.in2p3.fr/liger-docs/artificial_intelligence/container_g
uide/

● Reference repository with useful tools:
https://gitlab.in2p3.fr/ecn-collaborations/liger-ai-tools

● Container registry:
https://gitlab.in2p3.fr/ecn-collaborations/liger-ai-tools/container_registry

● Singularity (Apptainer) docs: 
https://apptainer.org/docs/user/main/index.html

https://ecn-collaborations.pages.in2p3.fr/liger-docs/artificial_intelligence/container_guide/
https://ecn-collaborations.pages.in2p3.fr/liger-docs/artificial_intelligence/container_guide/
https://gitlab.in2p3.fr/ecn-collaborations/liger-ai-tools
https://gitlab.in2p3.fr/ecn-collaborations/liger-ai-tools/container_registry
https://apptainer.org/docs/user/main/index.html
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Use: pulling containers 
–

–

– Pull any container from any docker, singularity or OCI compliant registry!

– Remember the tag! Tags are used to specify image versions
● Format: registry.io/image:tag. If tag is not specified, defaults to latest

Example: Recent version of GCC

module load singularity

singularity pull docker://{registry/img}

singularity pull library://{registry/img}

most used

private singularity registry

singularity pull docker://{registry/img}

export SINGULARITY_CACHEDIR=/scratch/$USER Avoid overflowing /home quota

Load singularity
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Use: running containers 
Still use singularity module but make sure to clear all previous modules

–

–

● Exec: run a command inside the container

●  

● Shell: start a shell session inside the container

Example: Compile custom app in GCC container 

module purge

singularity exec image.sif echo “hi from container”

singularity shell image.sif
Singularity>

module load singularity
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Use: running containers 
Useful options:

–

 

singularity exec –help
...
  -B, --bind strings           a user-bind path specification.  spec has
                               the format src[:dest[:opts]], where src and
                               dest are outside and inside paths.  If dest
                               is not given, it is set equal to src. 
                               Mount options ('opts') may be specified as
                               'ro' (read-only) or 'rw' (read/write, which
                               is the default). Multiple bind paths can be
                               given by a comma separated list.
  -e, --cleanenv               clean environment before running container
  -c, --contain                use minimal /dev and empty other
                               directories (e.g. /tmp and $HOME) instead
                               of sharing filesystems from your host
  -C, --containall             contain not only file systems, but also
                               PID, IPC, and environment
...
      --nv                     enable experimental Nvidia support
...
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Use: running containers 
Focus on 2 options:

● Binding directories 
– Inside the container is a separate environment from the host – different OS, filesystem, programs
– Therefore, directories that are on Liger are not visible by the container by default. They can be by a 

mechanism called binding, that is like “inserting a USB to the container”
– Singularity binds the current folder by default. The rest needs to be bound explicitly with option -B

– Syntax is -B /source/folder:/container/folder

● Include NVIDIA libraries for GPU applications with --nv

$ singularity exec paraview_egl-py3-5.9.0.sif ls /Myscratch
ls: cannot access '/Myscratch': No such file or directory

$ singularity exec -B /scratch/drovelli:/Myscratch paraview_egl-py3-5.9.0.sif ls /Myscratch
sif  singularity-cache visu-1204115.txt
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Build: Dockerfiles
Build using Docker in your local machine (choice, could use 
Singularity directly)

● Build is specified in a Dockerfile: a list of instructions
● There are plenty of instructions, we will cover the basics
● https://docs.docker.com/engine/reference/builder/#usage

 docker build -t user/myapp:tag -f /path/to/a/Dockerfile .

Image name with tag Context
(start

folder)

https://docs.docker.com/engine/reference/builder/#usage
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Build: Dockerfiles instructions
● FROM image

– A very powerful feature is building images from existing ones. 
– Allows for adding small changes to official established images (ex. Add a package)
– Images can be local or on a registry online, docker will pull them automatically

● RUN command
– Run shell commands inside the container
– Install, create directories, set system options, compile etc.

● COPY
– Copy a folder inside the container
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Build: Dockerfile example
FROM gcc:10.3.0

# change directory

WORKDIR /workspace/

# download library

RUN wget https://gitlab.com/libeigen/eigen/-/archive/3.4.0/eigen-3.4.0.tar.gz

# extract library

RUN tar -xf eigen-3.4.0.tar.gz

# copy file inside the container

COPY matrix_init.cxx .

RUN g++ -I/workspace/eigen-3.4.0 /workspace/matrix_init.cxx -o /workspace/matrix_init
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Build: manage images
● docker images

– View all images that were built with docker

● docker ps
– View all running containers

● docker rm/rmi
– Remove containers/images

● docker tag
– Rename existing images
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Build: move images to Liger
● Via the registry

– Docker push to the registry
– Singularity pull on Liger
– Liger has its own public registry that you can use (use/buy a 

private one if need confidentiality)
● Export the image to a compressed archive with

– Move the image to Liger

 docker save ...
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Practical utils
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Container registries out there
● Liger GitLab registry
● Dockerhub
● NGC (NVIDIA GPU Cloud)
● quay.io
● SyLabs Cloud Library
● CSAN: initiative to create a registry for scientific containers 

for french researchers
● ...many private and public ones

https://gitlab.in2p3.fr/ecn-collaborations/liger-ai-tools/container_registry
https://hub.docker.com/
https://catalog.ngc.nvidia.com/
http://quay.io/
https://cloud.sylabs.io/library
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Containerized apps ready-to-use
● AI: standard workflow has containers → plenty of resources

– Tensorflow, Pytorch, major DL/ML frameworks

– All sorts of packaged models for biology, chemistry
– Good place to look is NGC 

● HPC: not as common – some major apps starting to provide 
containers or recipes 
– FeniCS, code Aster etc.

● Standard software, compilers, programming languages make regular 
releases on official registies (often dockerhub)
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AI containers in Liger
● Jupyter with Python, TensorFlow and common AI libraries 
● GPU resources are configured to host containerised 

applications. The container engine on Liger is singularity
● Pre-build containers can be found on Liger and on the 

liger-ai-tools repo. Container description here
● Pre-built containers available on Liger at:

/softs/singularity/containers/ai

https://gitlab.in2p3.fr/ecn-collaborations/liger-ai-tools/container_registry
https://gitlab.in2p3.fr/ecn-collaborations/liger-ai-tools/-/blob/master/README.md
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Containerised applications - 
diagram
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Conclusions
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Pros and cons
To use or not to use containers?

● Performance is the same
● Several benefits but have to learn new workflow
● Depends on the type of work:

– One time use, maybe better to stick with your current 
workflow

– Developers and frequent users: might be worth to invest the 
time to save it in the future
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Pros and cons
● Why can I not use CONDA instead? Python venv?

– Conda doesn’t work well on Liger :D
– Resource consuming for HPC: every user has its own 

environment, no sharing
– Only for python

● Other tools: GUIX, SPACK...
– GUIX ensure higher reproducibility but less widespread
– Matter of preference?
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Questions?
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Appendix
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Liger basics
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Liger: system topology
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User Env : Filesystems & storage
● /scratch

– 815 TB, 1 000 000 files quota per user
– Your directory is $SCRATCHDIR
– Computations and temporary files

● /home
– 30 TB, 5GB quota soft per user
– Your directory is $HOME
– Sources files

● /data
– 45 TB, quota per group={100GB and 2 million files}
– Your project directory is $DATADIR
– Permanent projects data and group sharing data

User space

Project space
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Connect to Liger
● Client tool to connect on remote console:

– Windows : PowerShell, putty, cygwin, mobaxterm
– Mac/Linux : xterm, xquartz (only mac)

● Use a VPN to connect to Centrale Nantes network
● SSH secure protocol

$ ssh myUsername@liger.ec-nantes.fr
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Move files to Liger
● SCP (or WinSCP for Windows): secure copy

– Example: tranfer program to /home

– WinSCP: GUI, same principle
● Download directly on Liger: git, wget etc.

– Example: clone git repository on scratch
 

$ scp ./Desktop/program.c LIGER-ID@liger.ec-nantes.fr:~

$ git clone https://repo.git $SCRATCHDIR  

https://repo.git/
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Job submission
● Compute resources are managed by a scheduler:

– Liger uses SLURM
● Jobs are submitted to the scheduler

– The scheduler choose available nodes (job running)
– Or the computation is queued (job pending)
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Job submission
● With slurm commands you can run program on compute 

nodes. 
– Tell the SLURM what to run
– SLURM will find the available resources and run the 

program
$ srun PROGRAM # run a job in the foreground

$ sbatch SCRIPT # run a job in the background



Hands-on Liger 44

Liger : User environment

● You have 3 directories
● You can compile and test codes 

on login nodes
● You can use available 

softwares/libraries
● And you can submit jobs on 

nodes.

Personal
computer

Login
node

storage
Compute
nodes

user

user

connect

run

programs

data
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 Load programs: modules
● Your environment is initally empty: no programs installed
● Modules is a tool to load or unload software packages. 

– List available software

– Load python

$ module load python

$ module avail
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Linux shell basics



Hands-on Liger 47

The Linux shell - terminal
● No Graphical User Interface
● Issue commands through a CLI: command lone interface
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Issuing commands
● A command is a program that corresponds to a string of 

text. Use return to send a command, ctrl-C to interrupt it. 
● A command can have options, set through flags. 

● The “-h” flag shows a help guide for most commands

$ make -d -f Makefile

command

flag1

flag2
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Navigating directories
● pwd – shows which directory you are in
● ls – list the files in the current directory
● cd – change to another directory

The base folder (top of the tree) is represented by “/”

The current folder is represented by “.”

The parent folder is represented by “..” 
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Editing files
● cp – copy a file to another location
● mv – move the file to another location (used for renameing 

as well)
● rm – remove a file, -r flag for recursive and folders

General rule: all commands are executed in the current folder 
(pwd), to execute a command in another folder use its path:

/absolute/path/to/file    relative/path/to/file
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File operations
● Text editors: nano, vi, gedit (requires GUI)

– Relies on a lot of key combinations, can be hard at the beginning. 
Use an editor wherever possible

● View file content: cat, less etc
$ cat your_file.txt
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Run programs
● gcc – C / C++ compiler
● python3 – run a Python script
● Javac – run a Java program
● ...any installed program. Install with package manager:

– Ubuntu, Debian: apt
– RHEL: yum
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Useful resources
There’s much much more!

● https://supercomputing.ec-nantes.fr/publications/tutorials
● https://projects.ncsu.edu/hpc/Documents/unixtut/
● http://swcarpentry.github.io/shell-novice/

https://projects.ncsu.edu/hpc/Documents/unixtut/
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