
Hands-on Liger: containers
● Pierre-Emmanuel Guérin
● Davide Rovelli
● Hugues Digonnet

supercomputing.ec-nantes.fr / @cnscfr

http://supercomputing.ec-nantes.fr/

Hands-on Liger 2

Containers overview

Hands-on Liger 3

What are containers?
● Containers are executable units of software in

which application code is packaged, along with its
libraries and dependencies

● Think of it as an isolated box where you can install
everything you need for your application

● Containers are portable: if it runs on your
computer, it runs (almost) everywhere

Resources:
● https://www.ibm.com/cloud/learn/containers
● https://apptainer.org/docs/user/main/introduction.html

Confusing
terminology:
● Docker
● Singularity
● Apptainer
● PodMan
● microservices
● etc.
are all technologies
involving containers,
often used to indicate
containers themselves.

https://www.ibm.com/cloud/learn/containers
https://apptainer.org/docs/user/main/introduction.html

Hands-on Liger 4

What are containers?
Example: python application

● Python3.9

● meshio

● numpy

● application.py

● my_module_v20.py

server

laptop

VM
my_python_app

container
image

CentOS

Windows*

Ubuntu

Hands-on Liger 5

Container vs. Virtual Machine
Containers are a partial
abstraction on top of the
operating system kernel,
managed by a container
engine.

Kernel

Hardware

Apps Services

OS

Container

Apps Services

Container

Apps Services

Kernel

Apps Services

OS Kernel

Apps Services

OS

Hardware

Virtual Machine

Virtual machines are a full
operating system
abstraction on top of the
hardware, managed by an
hypervisor.

Hands-on Liger 6

Container vs. Virtual Machine
Differences

● Containers are application oriented, VMs are system oriented
● Containers are lightweight, VMs are heavy but isolate more
● Containers are easier to manage, start, stop: you can forget it is a

container and think of it as a portable application

Resources:
● https://www.docker.com/blog/docker-hearts-wsl-2/
● https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm

https://www.docker.com/blog/docker-hearts-wsl-2/
https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/containers-vs-vm

Hands-on Liger 7

Typical applications
● Cloud, microservices, DevOps
● Containers are used extensively for web application within orchestrators

such as Kubernetes and Docker Swarm
● This configuration allows for fast scalability and high avalaibility that

leverage on the reproducibility of the container
● Application development and deployment because of the compatibility

and portability of containers
● Jupyter, Redis, DB synamic redundancy

Hands-on Liger 8

Container engines
● Container lifecycle is managed by a container engine

– Only dependency of containers
– Several: Docker, Singularity(now apptainer), PodMan, Saurus, LXC, etc.

● Docker: most popular, most resources, mostly used
● Supercomputer do NOT support docker

– Priviledge excalation: docker needs root/super user access.
– Not suitable for multiuser systems as HPC clusters

● Liger and most HPC use Singularity (now Apptainer)
– Compatible with Docker! Can use interchangeably

Hands-on Liger 9

Container registries
● Containers live in registries: online repositories with thousands of

images built by companies, application developers, researchers,
community

● A container registry is easily accessible by the container engine.

docker pull ubuntu

singularity pull library://davide/myapp

docker push ecn-mech/solver1b

singularity push docker://ecn-mech/solver1b

Pull (download)
from registry

Push custom
images from
registry

Hands-on Liger 10

Containers in HPC

Hands-on Liger 11

HPC software: traditional approach
● Admin installs HPC software and libraries on the supercomputer
● User can load and user a specific version of a software with

module

● Submit job via slurm, running or compiling the application with
the selected modules

● No Module? Missing version? Compiling/execution error? Ask
admin

module load python/3.8.1/gcc/4.8.5-c7

Hands-on Liger 12

HPC software with containers
● Requirement: supercomputer must have a container engine

– Liger has Singularity
● Use available containers or

– Pull an existing container with the software environment needed. It can be provided by admins or
in an official registry

– Copy your application inside and run
● Build your own container

– Build a container with all the required dependencies and programs in your machine
– Move it to the supercomputer and run it wih

● Submit job via slurm as usual
● Incompatibilities? Ask admin or rebuild it yourself

Hands-on Liger 13

Performance
● Literature shows that modern containers add negligible computing

overhead to applications
– https://sc19.supercomputing.org/proceedings/tech_poster/poster_files/rpost227s2-file3.

pdf

● Often built and optimised by the framework / OS / programming
language developer therefore likely better than custom installation

● For the same reason: more likely to be bug-free
● Suggested standard for AI workflows

https://sc19.supercomputing.org/proceedings/tech_poster/poster_files/rpost227s2-file3.pdf
https://sc19.supercomputing.org/proceedings/tech_poster/poster_files/rpost227s2-file3.pdf

Hands-on Liger 14

Why should I bother?
● Learning how to use containers is an overhead, why should I do it?

– Wider software library: no module? Can use containers on public registries
often provided directly by the software makers

– Do not rely completely on admins. Installing software is hard… and reaching
admins is even harder → long delay times.

● U: Can you install this new software please?

● A: *3 weeks and several build from source later* does it

● U: It misses a library

● A: *2 weeks later* reinstall with library

● Program: *crashes* because incompatible with centos…

– Make your app once, use it everywhere (different clusters, computers)
– Paper? Can reproduce the results much more easily

Hands-on Liger 15

Singularity + Docker
● Workflow:

– Build and test images with Docker locally
– Use Singularity on the supercomputer just for running and testing

● Advantage: more resources for Docker, well documented, more compatible
registries

● Disadvantages:
– Using 2 technologies → more to learn, impractical (?)
– Slight differences that sometime require some readjustement

● Just one way to do it, nothing against full Singularity

Hands-on Liger 16

Use and build containers

Hands-on Liger 17

Important resources
● Liger docs container info (AI):

https://ecn-collaborations.pages.in2p3.fr/liger-docs/artificial_intelligence/container_g
uide/

● Reference repository with useful tools:
https://gitlab.in2p3.fr/ecn-collaborations/liger-ai-tools

● Container registry:
https://gitlab.in2p3.fr/ecn-collaborations/liger-ai-tools/container_registry

● Singularity (Apptainer) docs:
https://apptainer.org/docs/user/main/index.html

https://ecn-collaborations.pages.in2p3.fr/liger-docs/artificial_intelligence/container_guide/
https://ecn-collaborations.pages.in2p3.fr/liger-docs/artificial_intelligence/container_guide/
https://gitlab.in2p3.fr/ecn-collaborations/liger-ai-tools
https://gitlab.in2p3.fr/ecn-collaborations/liger-ai-tools/container_registry
https://apptainer.org/docs/user/main/index.html

Hands-on Liger 18

Use: pulling containers
–

–

– Pull any container from any docker, singularity or OCI compliant registry!

– Remember the tag! Tags are used to specify image versions
● Format: registry.io/image:tag. If tag is not specified, defaults to latest

Example: Recent version of GCC

module load singularity

singularity pull docker://{registry/img}

singularity pull library://{registry/img}

most used

private singularity registry

singularity pull docker://{registry/img}

export SINGULARITY_CACHEDIR=/scratch/$USER Avoid overflowing /home quota

Load singularity

Hands-on Liger 19

Use: running containers
Still use singularity module but make sure to clear all previous modules

–

–

● Exec: run a command inside the container

●

● Shell: start a shell session inside the container

Example: Compile custom app in GCC container

module purge

singularity exec image.sif echo “hi from container”

singularity shell image.sif
Singularity>

module load singularity

Hands-on Liger 20

Use: running containers
Useful options:

–

singularity exec –help
...
 -B, --bind strings a user-bind path specification. spec has
 the format src[:dest[:opts]], where src and
 dest are outside and inside paths. If dest
 is not given, it is set equal to src.
 Mount options ('opts') may be specified as
 'ro' (read-only) or 'rw' (read/write, which
 is the default). Multiple bind paths can be
 given by a comma separated list.
 -e, --cleanenv clean environment before running container
 -c, --contain use minimal /dev and empty other
 directories (e.g. /tmp and $HOME) instead
 of sharing filesystems from your host
 -C, --containall contain not only file systems, but also
 PID, IPC, and environment
...
 --nv enable experimental Nvidia support
...

Hands-on Liger 21

Use: running containers
Focus on 2 options:

● Binding directories
– Inside the container is a separate environment from the host – different OS, filesystem, programs
– Therefore, directories that are on Liger are not visible by the container by default. They can be by a

mechanism called binding, that is like “inserting a USB to the container”
– Singularity binds the current folder by default. The rest needs to be bound explicitly with option -B

– Syntax is -B /source/folder:/container/folder

● Include NVIDIA libraries for GPU applications with --nv

$ singularity exec paraview_egl-py3-5.9.0.sif ls /Myscratch
ls: cannot access '/Myscratch': No such file or directory

$ singularity exec -B /scratch/drovelli:/Myscratch paraview_egl-py3-5.9.0.sif ls /Myscratch
sif singularity-cache visu-1204115.txt

Hands-on Liger 22

Build: Dockerfiles
Build using Docker in your local machine (choice, could use
Singularity directly)

● Build is specified in a Dockerfile: a list of instructions
● There are plenty of instructions, we will cover the basics
● https://docs.docker.com/engine/reference/builder/#usage

 docker build -t user/myapp:tag -f /path/to/a/Dockerfile .

Image name with tag Context
(start

folder)

https://docs.docker.com/engine/reference/builder/#usage

Hands-on Liger 23

Build: Dockerfiles instructions
● FROM image

– A very powerful feature is building images from existing ones.
– Allows for adding small changes to official established images (ex. Add a package)
– Images can be local or on a registry online, docker will pull them automatically

● RUN command
– Run shell commands inside the container
– Install, create directories, set system options, compile etc.

● COPY
– Copy a folder inside the container

Hands-on Liger 24

Build: Dockerfile example
FROM gcc:10.3.0

change directory

WORKDIR /workspace/

download library

RUN wget https://gitlab.com/libeigen/eigen/-/archive/3.4.0/eigen-3.4.0.tar.gz

extract library

RUN tar -xf eigen-3.4.0.tar.gz

copy file inside the container

COPY matrix_init.cxx .

RUN g++ -I/workspace/eigen-3.4.0 /workspace/matrix_init.cxx -o /workspace/matrix_init

Hands-on Liger 25

Build: manage images
● docker images

– View all images that were built with docker

● docker ps
– View all running containers

● docker rm/rmi
– Remove containers/images

● docker tag
– Rename existing images

Hands-on Liger 26

Build: move images to Liger
● Via the registry

– Docker push to the registry
– Singularity pull on Liger
– Liger has its own public registry that you can use (use/buy a

private one if need confidentiality)
● Export the image to a compressed archive with

– Move the image to Liger

 docker save ...

Hands-on Liger 27

Practical utils

Hands-on Liger 28

Container registries out there
● Liger GitLab registry
● Dockerhub
● NGC (NVIDIA GPU Cloud)
● quay.io
● SyLabs Cloud Library
● CSAN: initiative to create a registry for scientific containers

for french researchers
● ...many private and public ones

https://gitlab.in2p3.fr/ecn-collaborations/liger-ai-tools/container_registry
https://hub.docker.com/
https://catalog.ngc.nvidia.com/
http://quay.io/
https://cloud.sylabs.io/library

Hands-on Liger 29

Containerized apps ready-to-use
● AI: standard workflow has containers → plenty of resources

– Tensorflow, Pytorch, major DL/ML frameworks

– All sorts of packaged models for biology, chemistry
– Good place to look is NGC

● HPC: not as common – some major apps starting to provide
containers or recipes
– FeniCS, code Aster etc.

● Standard software, compilers, programming languages make regular
releases on official registies (often dockerhub)

Hands-on Liger 30

AI containers in Liger
● Jupyter with Python, TensorFlow and common AI libraries
● GPU resources are configured to host containerised

applications. The container engine on Liger is singularity
● Pre-build containers can be found on Liger and on the

liger-ai-tools repo. Container description here
● Pre-built containers available on Liger at:

/softs/singularity/containers/ai

https://gitlab.in2p3.fr/ecn-collaborations/liger-ai-tools/container_registry
https://gitlab.in2p3.fr/ecn-collaborations/liger-ai-tools/-/blob/master/README.md

Hands-on Liger 31

Containerised applications -
diagram

Hands-on Liger 32

Conclusions

Hands-on Liger 33

Pros and cons
To use or not to use containers?

● Performance is the same
● Several benefits but have to learn new workflow
● Depends on the type of work:

– One time use, maybe better to stick with your current
workflow

– Developers and frequent users: might be worth to invest the
time to save it in the future

Hands-on Liger 34

Pros and cons
● Why can I not use CONDA instead? Python venv?

– Conda doesn’t work well on Liger :D
– Resource consuming for HPC: every user has its own

environment, no sharing
– Only for python

● Other tools: GUIX, SPACK...
– GUIX ensure higher reproducibility but less widespread
– Matter of preference?

Hands-on Liger 35

Questions?

Hands-on Liger 36

Appendix

Hands-on Liger 37

Liger basics

Hands-on Liger 38

Liger: system topology

Hands-on Liger 39

User Env : Filesystems & storage
● /scratch

– 815 TB, 1 000 000 files quota per user
– Your directory is $SCRATCHDIR
– Computations and temporary files

● /home
– 30 TB, 5GB quota soft per user
– Your directory is $HOME
– Sources files

● /data
– 45 TB, quota per group={100GB and 2 million files}
– Your project directory is $DATADIR
– Permanent projects data and group sharing data

User space

Project space

Hands-on Liger 40

Connect to Liger
● Client tool to connect on remote console:

– Windows : PowerShell, putty, cygwin, mobaxterm
– Mac/Linux : xterm, xquartz (only mac)

● Use a VPN to connect to Centrale Nantes network
● SSH secure protocol

$ ssh myUsername@liger.ec-nantes.fr

Hands-on Liger 41

Move files to Liger
● SCP (or WinSCP for Windows): secure copy

– Example: tranfer program to /home

– WinSCP: GUI, same principle
● Download directly on Liger: git, wget etc.

– Example: clone git repository on scratch

$ scp ./Desktop/program.c LIGER-ID@liger.ec-nantes.fr:~

$ git clone https://repo.git $SCRATCHDIR

https://repo.git/

Hands-on Liger 42

Job submission
● Compute resources are managed by a scheduler:

– Liger uses SLURM
● Jobs are submitted to the scheduler

– The scheduler choose available nodes (job running)
– Or the computation is queued (job pending)

Hands-on Liger 43

Job submission
● With slurm commands you can run program on compute

nodes.
– Tell the SLURM what to run
– SLURM will find the available resources and run the

program
$ srun PROGRAM # run a job in the foreground

$ sbatch SCRIPT # run a job in the background

Hands-on Liger 44

Liger : User environment

● You have 3 directories
● You can compile and test codes

on login nodes
● You can use available

softwares/libraries
● And you can submit jobs on

nodes.

Personal
computer

Login
node

storage
Compute
nodes

user

user

connect

run

programs

data

Hands-on Liger 45

 Load programs: modules
● Your environment is initally empty: no programs installed
● Modules is a tool to load or unload software packages.

– List available software

– Load python

$ module load python

$ module avail

Hands-on Liger 46

Linux shell basics

Hands-on Liger 47

The Linux shell - terminal
● No Graphical User Interface
● Issue commands through a CLI: command lone interface

Hands-on Liger 48

Issuing commands
● A command is a program that corresponds to a string of

text. Use return to send a command, ctrl-C to interrupt it.
● A command can have options, set through flags.

● The “-h” flag shows a help guide for most commands

$ make -d -f Makefile

command

flag1

flag2

Hands-on Liger 49

Navigating directories
● pwd – shows which directory you are in
● ls – list the files in the current directory
● cd – change to another directory

The base folder (top of the tree) is represented by “/”

The current folder is represented by “.”

The parent folder is represented by “..”

Hands-on Liger 50

Editing files
● cp – copy a file to another location
● mv – move the file to another location (used for renameing

as well)
● rm – remove a file, -r flag for recursive and folders

General rule: all commands are executed in the current folder
(pwd), to execute a command in another folder use its path:

/absolute/path/to/file relative/path/to/file

Hands-on Liger 51

File operations
● Text editors: nano, vi, gedit (requires GUI)

– Relies on a lot of key combinations, can be hard at the beginning.
Use an editor wherever possible

● View file content: cat, less etc
$ cat your_file.txt

Hands-on Liger 52

Run programs
● gcc – C / C++ compiler
● python3 – run a Python script
● Javac – run a Java program
● ...any installed program. Install with package manager:

– Ubuntu, Debian: apt
– RHEL: yum

Hands-on Liger 53

Useful resources
There’s much much more!

● https://supercomputing.ec-nantes.fr/publications/tutorials
● https://projects.ncsu.edu/hpc/Documents/unixtut/
● http://swcarpentry.github.io/shell-novice/

https://projects.ncsu.edu/hpc/Documents/unixtut/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

