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Context

Field Programmable Gate Array (FPGA)

Reconfigurable circuit

With thousands of memory blocks and DSPs

Millions of logic resources (FF, LUT, ...)

I/O Blocks

Switch

Interconnects

Configurable
Logic Blocks

Matrix
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Context

FPGA Design with HDL languages

FPGAs build architectures

Complex to program

Through hardware description languages (HDL)

FPGA design through HDL language is time-consuming

HLS tools

The two main FPGAs manufacturors have proposed their HLS tools :

OneAPI and OpenCL SDK for Intel.

Vitis and Vivado HLS for Xilinx.
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Context

Problematic

2003 2005 2007 2009 2011 2013 2015 2017 2019

GPU 10 17 18 9 13 20 30
Nvidia 10 14 17 7 10 20
AMD 1 1 1

Intel(Larabee,Xeon phi) 2 2 2
multi-GPU 3 3 3 1

CNN 2 13

Other processors 2 3 10 7 3 2 1 2
CPU (MPI/OpenMP) 2 3 5 6 3 2 1 2

Cell (IBM) 3
DSP 2 1

FPGA 4 1 1

Table – Accelerators used in Fully3D conference.

FPGAs resurgence

More built-in floating-point units (DSPs)

Maturity of High-Level Synthesis (HLS)

Can FPGAs compete with GPUs for HPC applications ?

https://kuleuvencongres.be/fully3d-2021/home
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Tomography reconstruction

Tomographic reconstruction
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Figure – X-RAY CT Projection

Applications

Non-Destructive testing

Medical imaging
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Tomography reconstruction

Iterative reconstruction algorithm

Inverse problem definition

g = Hf + ε

The object f is obtained by minimizing the quadratic criterion :

f̂ = arg minJMC = arg min
1

2
||g − Hf ||2

Then iteratively : f (n+1) = f (n) − α.∇JMC (f (n))

Problem size in tomography

10243 or 20483 volume cube to reconstruct.

The size of system matrix is even larger (for 20483 H = 1 Exa Bytes).

Operators

Matrix H and Ht are huge to be stored.

Approach by operators : The forward and backward projections
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Tomography reconstruction

Back-projector

The operators are the forward and the backward projectors.

In this presentation, we will only focus on the backward projection operator.

3D Back-projector

f (c) =

∫
g(u(ϕ, c), v(ϕ, c), ϕ).w(ϕ, c)2dϕ

u(ϕ, c) = x ∗ cos(ϕ) + y ∗ sin(ϕ)

v(ϕ, c) = x ∗ sin(sinϕ) − y ∗ cos(ϕ) + z

c = (x, y, z) is voxel coordinates, u(ϕ, c), v(ϕ, c) detector cell



11

Scientific Computing Accelerated on FPGA

Tomography reconstruction

Back-projection algorithm

for all Voxeli do
voxelsum ← 0
for all ϕj do

Compute(u, v)
voxelsum+ = projection[u, v , ϕj ]

end for
volume[Voxeli ] = voxelsum

end for
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Tomography reconstruction

How to improve performance ?

We need an algorithm architecture adequacy approach to better leverage the FPGA.

Algorithm side

Perform an offline memory access analysis to make access pattern regular.

Maximize the data reuse rate to reduce external memory access.

Architecture side

Alleviate the memory bottleneck by maximizing local memory usage.

Express high parallelism by using more DSP units.

Use of Berkeley roofline model to characterize the algorithm.
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Hardware acceleration of X-ray tomography

Berkeley Roofline [Williams2009 ]

Peak computational performance

Pe
ak

DD
R
ba
nd
wi
dth

Computational intensity CI (FLOP/Byte)

Algorithm 2

A
tt
ai
n
ab
le
p
er
fo
rm

an
ce

(F
L
O
P
/s
)

Algorithm 1

Memory-bound zone Compute-bound zone

The roofline is a tool for visually and quickly observing the possible limitations
of an algorithm.

The model is based on two keys parameters :

The device computational peak performance

The attainable bandwidth

Attainable Performance(FLOP/s) = min(CP,AI × BW ).
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Hardware acceleration of X-ray tomography

Roofline for FPGAs [Silva2013 ]

Considerations in the extended model

Operations : On FPGAs, we cannot only consider floating-point operations because there are other
alternative such as fixed point operations.

Computational ceiling : The architecture of an FPGA design is not fixed, so the computational roof is
influenced by the resource consumption.

Bandwidth : multiple bandwidths (PCIe, Network, ...) to take into account.

Scalability : This is defined by the level of parallelism introduced by loop unrolling or replication of the
kernel.

1 Silva et al., “Performance modeling for FPGAs : Extending the roofline model with high-level synthesis tools”, in

International Journal of Reconfigurable Computing, 2013.
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Hardware acceleration of X-ray tomography

Memory access strategy

Block size choice

One should choose a size of block that :

Maximize the data reuse rate.

Optimize the BRAM usage.

Reduce access to global memory.



17

Scientific Computing Accelerated on FPGA

Hardware acceleration of X-ray tomography

Data reuse rate
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Data reuse rate graph

(Bx, By)=16x16

(Bx, By)=32x32
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(Bx, By)=256x256

Block shape

Size = 1 MB

Size = 2 MB

Size = 4 MB

Size = 8 MB

BRAM consumption

Method advantage

We have two important parameters : Data reuse rate and BRAM consumption.

For the same BRAM consumption, the less the block is thick the more the reuse.
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Roofline model for back-projector

Bz #Operations #Memory CI
(GBOP) accesses (GB)

BP-cache N/A 236 17.2 13.7

BP-prefetch

64× 64× 1 253 1.1 236
32× 32× 16 253 0.67 377
64× 64× 8 253 0.6 419

128× 128× 4 253 0.57 443
256× 256× 2 253 0.55 456

Architecture on FPGA

The BP-Prefetch architecture on
Arria 10 device.

Pipeline with N=64 PEs.
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Hardware acceleration of X-ray tomography

Roofline model for back-projector
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FPGA Arria 10 device

Reference 322 × 16 642 × 8 1282 × 4 2562 × 2
Stall 0.2 0.06 0.56 0.06

Occupancy 74.7 84.1 90.2 94
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Hardware acceleration of X-ray tomography

Results on Arria 10

Reference Platform Volume Acc. Time Freq (Mhz)
/voxel (s)

BP-cache Arria 10 2563 256 3.62 150
BP-prefetch

Arria 10 2563 256 0.396 180
2562 × 2

Table – Performance comparison of our work and other works

Resources consumption

BP-cache BP-prefetch
DSP 406 (27%) 949 (62%)

BRAM 1758 (65%) 1952 (73%)

Table – Arria 10
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Hardware acceleration of X-ray tomography

Scalability to Stratix 10

To achieve even more throughput, we port our design on Intel Stratix 10 device.

The Stratix 10 provides more compute capability than the Arria 10 device.

For our pipeline architecture, we are able to scale up 256 PEs on the Stratix 10.

Parallelism

Two strategy to implement on Stratix 10 :

Single kernel

Multikernel
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Hardware acceleration of X-ray tomography

Scalability to Stratix 10
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Single vs. multikernel

Single kernel : N = 256 PEs with one kernel

Multikernel : : N = 64 PEs with 4 kernels
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Hardware acceleration of X-ray tomography

Stratix 10 results

Design Block size BRAM DSP Freq (MHz) Time (s)

Single kernel 2562 × 2 5881 2845 117 0.24
(50%) (49%)

Multikernel 642 × 8 3898 3282 172.5 0.12
(33%) (57%)

Table – Single kernel versus multikernel on Stratix 10

Design efficiency

The occupancy of the single kernel version was not very high due to memory
latency and the kernel low frequency.

The multikernel version has considerably reduced the BRAM consumption.

Kernel replication introduces extra logic utilization.
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Comparison CPU, GPU, FPGA

Comparison with CPU and GPU

CPU, GPU, FPGA

Device Power(W) Energy(mWh) Execution time(s)
CPU E5-2667 47 862 66

Titan X Pascal 237 0,92 0.014
Jetson TX2 12,9 0,91 0,253

Arria 10 14,9 1.7 0.42
Stratix 10 27 0.9 0.12

Tomography acceleration

FPGA Stratix 10 is more efficient than embedded GPU.

The HPC GPU is 10× faster than Stratix 10.

The energies consumed are equivalent for the Stratix and the HPC GPU.

In term of worst-case power consumption, FPGA Stratix 10 is more efficient
than HPC GPU.
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Comparison CPU, GPU, FPGA

Pipeline efficiency

We evaluated the pipeline efficiency for each device.

It represents the number of cycle needed to update one voxel for the pipeline or
the CUDA core.

η =
Time ∗ fmax ∗#PE

#Accumulations

where

Time is the kernel execution time (s)

fmax is the operating frequency

#PE is the number of CUDA cores or PEs

#Accumulations is the total number of voxel updates.
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Comparison CPU, GPU, FPGA

Pipeline efficiency

Pipeline efficiency

GPU Titan X FPGA Arria 10 FPGA Arria 10
BP-Cache BP-Prefetch

Operations (op) 2564 2564 2564

Cores 3584 (CUDA cores) 32 (PEs) 64 (PEs)

Frequency (MHz) 1481 150 189
Runtime (s) 0.014 5.34 0.42
cycle/op/core 17.3 5.97 1.18

Voxel update

FPGA OpenCL : 1.18 clock cycles per PE for Arria 10

FPGA OpenCL : 1.23 cycle per PE for Stratix 10

GPU : 17 cycles per CUDA core

FPGA VHDL : 1 cycle per PE [Gac2008 ]
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Comparison CPU, GPU, FPGA

Results comparison

Reference Platform Volume Acc. Time GUPS GUpdate
/voxel (s) /cycle

/MAC
Choi2016 4×Virtex-6 5122×372 831 3.7 20.4 0.156
Wen2020 ZCU102 10242×128 502 2.10 29.9 0.073

GPU Jetson TX2 2563 256 0.25 15.8 0.078
GPU Titan X Pascal 2563 256 0.014 285 0.071

Our work Stratix 10 2563 256 0.12 33.3 0.063

Table – Performance comparison of our work and other works

Comparison

Efficient DSP usage compared to other works

Use of OpenCL instead of Vivado HLS

[Choi2016] Y.-k. Choi et al., “Acceleration of EM-based 3D CT reconstruction using FPGA,” in IEEE TBioCAS,
vol. 10, no. 3, 2016, pp. 754–767.
[Wen2020] S. Wen et al., “FPGA-accelerated automatic alignment for three-dimensional tomography,” in 2020
IEEE 28th FCCM, 2020, pp. 172–176, ISSN : 2576-2621.
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Comparison with ONEAPI

Programming across different
architecture using one single
language DPC++

Easy to use for software and
hardware programmers

Use of FPGA specific pragmas and
attributes to optimize the design

Auto-detect accelerator architecture
during application runtime

Single file for kernel and host
applications. Image source : Intel
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Comparison CPU, GPU, FPGA

Comparison with ONEAPI

ONEAPI first results

We have implemented the BP-Cache and the BP-Prefetch designs using Intel
ONEAPI on Arria 10

Design Tool BRAM DSP Freq (MHz) Time (s)

BP-Cache
OpenCL

1758 406
150 5.34

(65%) (27%)

OneAPI
2088 374

163 6.43
(77%) (25%)

BP-Prefetch
OpenCL

1952 949
189 0.42

(71%) (63%)

OneAPI
1041 878

229 0.54
(38%) (58%)

About 20% of performance loss compared to OpenCL.

In term of development effort and number of lines of code oneAPI is way
advantageous.
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Conclusion

Conclusion for 3D back-projector

Conclusion

The 3D back-projection has been accelerate on FPGA using OpenCL. This
acceleration took advantage of FPGA on-chip BRAM to achieve better
performance.

To stand up in front of GPU, FPGA need some hardware improvement and
designer expertise for tomography acceleration.

However, HLS tools are still improving making more suitable for specific
optimization.

We also have hardware improvements for FPGAs as well :

The new memory HBM2 to respond to memory bottleneck for example.

The Intel Agilex family offering more computational power and more
energy efficiency than Stratix 10.
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Perspectives

Tools comparison

Perform tools comparison between Intel HLS tools.

Deepen the work on the Intel ONEAPI.

FPGA in tomography

Apply this methodology to the projection operator

FPGA in radioastronomy

FPGAs are widely used in radioastronomy instrument and correlator

FPGAs are being explored for imaging by ASTRON team

Veenboer2019, Corda2022

Data-flow processing and energy efficiency

Consideration of the deconvolution algorithm.
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Conclusion

Thanks !

Questions ?
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