Co-design for the SKA project

Shan Mignot Observatoire de la Côte d'Azur

Overview of SKA

- 2 phased-array radio-telescopes
 - Mid in South Africa:
 - 197 dishes
 - baselines up to 160 km
 - Low in Australia
 - 512*256 antennas
 - baselines up to 75 km

Supercomputing for SKA

Computing infrastructure (SKAO)

- Central Signal Processor (CSP)
 - Input: digitized waveforms
 - Outputs
 - Correlator: visibilities for interferometric imaging
 - Pulsar search: identify candidate pulsars in beams
 - Pulsar timing: measure pulsar timings
- Science Data Processor (SDP)
 - Input: data from CSP
 - Outputs
 - Science data products
 - Telescope/CSP feedback and calibration
 - Alert generation
 - First look

Computing infrastructure (SRCs)

- Science Regional Centers (SRC)
 - 5 interconnected SRCs
 - Distribution of data to scientist / archive
 - Science analysis software

The SDP challenge

- 2018 assessment at the Critical Design Review (per SDP)
 - Compute: ~125 Pflops peak > 10 Pflops average
 - IO
 - Ingestion: ~1 TB/s
 - Storage: ~40 PB
 - Data accesses: ~10 TB/s
 - Budget: 35 M€
 - Extrapolation to procurement deadline based on Moore's law
 - 50-year lifetime
- Comparable to Sunway Taihulight (6th rank in Top500) but SKA is NOT an HPC project
- Evolution since
 - Power

•	Mid	Peak (< 5s)	Average (> 30 min)
	- Servers:	2 MW	1.3 MW
	 Building and cooling 	$0.56 \; \mathrm{MW}$	$0.37 \ \mathrm{MW}$
•	Low		
	- Servers:	$2.2 \mathrm{MW}$	$1.6 \mathrm{MW}$
	 Building and cooling 	$0.45 \; \mathrm{MW}$	$0.32 \ \mathrm{MW}$
N .	1 1 1		

- Staged deployment (procurement schedule not final)
- Cost and availability of HW

SDP baseline

- 4 high level tasks
 - Receive and condition instrument data, including realtime processing
 - Buffer data
 - Batch processing of conditioned data
 - System management tasks
- Node architecture deriving from a single server model
 - Cores: latency, throughput
 - Storage: capacity, performance
 - NIC: throughput, latency, management
- Nodes configured to assume 4 "personalities" predefined or defined at run time
- Assumption
 - HW architecture defined by supplier after a call for tender
 - But... risks regarding performance, cost, feasibility (interfaces being pre-defined)

Co-design for the SDP

• Risk mitigation activity

- De-risk procurement of SDP
- Improve investment: performance/cost ratio
- SCOOP team in SKAO's SAFe framework
- ECLAT "laboratoire commun"
 - CNRS/Inria/Atos
 - R&D to feed co-design work
- What about FPGAs?
 - Baseline is a mix of CPU/GPU (ratio to be determined)
 - FPGAs considered as a possibility should need arise and benefit be established
 - Concern regarding maintainability

(contact Shan Mignot)

(contact Damien Gratadour)

FPGAs for the SDP

- Accelerators
 - Specialised logic for kernels
 - Pipelining and parallelisation: efficient use of resources
 - Adjust precision: resources
 - Fine-tune clock domains: energy
 - Reconfigurable depending on task
- "Real-time" processing
 - Not hard real-time or strong latency constraints
 - Process the stream of data
 - Pre-processing prior to buffering (reduce volume)
 - Feedback loops to telescope and CSP
- Data management
 - High-speed IOs
 - Offload management from computing units
 - Hide data movements

FPGAs for the CSP

- CSP has FPGAs
 - Key component for correlators
 - Also central for pulsar search (PSS)
 - Baseline architecture is a mix of CPU/FPGA/GPU
 - Set-based development strategy:
 - Developing multiple versions CPU/FPGA/GPU for most modules
 - Select HW as late as possible
 - CSP code assumed stable during survey (no maintenance)
- Developments for FPGAs
 - > 40 000 lines of VHDL (PSS)
 - Porting code to FPGA/GPU considered a similar effort (based on cost of subcontracting)
 - Issue with finding the risk skills
 - Evaluation of OpenCL: performance considered disappointing

Perspectives

- Performance: ability to exploit FPGAs efficiently
 - Parallelisation
 - Pipelining
 - Custom data types
 - Re-using resources
 - Clock domain management
 - Inspection of timing
 - Interfacing with VHDL (as Assembly with C)
- Integration in a HPC system
 - HW and SW interfaces
 - Re-configuring FPGAs during operations

- HLS for SDP: acceptability
 - Community of SW developers (although FPGAs require a different mindset)
 - Improve maintainability of code
 - Maturity of HLS and available expertise
- Evaluation activities to prove added value (as part of SCOOP/ECLAT)
 - Select SDP task/kernel
 - Prototype HLS port
 - Assess value: return on experience, performance, power, cost
- Contributions welcome!

