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Course Objectives

▪ Understand the development flow for FPGAs with the Intel® oneAPI
toolkits

▪ Gain an understanding of common optimization methods for FPGAs
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Course Agenda

▪ Using FPGAs with the Intel® 
oneAPI Toolkits

• Recap: Introduction to DPC++

• What are FPGAs and Why Should I 
Care About Programming Them?

• Development Flow for Using FPGAs 
with the Intel® oneAPI Toolkits

• Lab: Practice the FPGA 
Development Flow

▪ Optimizing Your Code for 
FPGAs

• Introduction to Optimizing FPGAs 
with the Intel oneAPI Toolkits

• Lab: Optimizing the Hough 
Transform Kernel
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Timeline

Section Time

Slides: Using FPGAs with the Intel® oneAPI Toolkits 14:00 -14:30

Lab: Practice the FPGA Development Flow 14:30 -15:30

Break 15:30 - 16:00

Slides: Optimizing Your Code for FPGAs 16:00 -16:30

Lab: Optimizing the Hough Transform Kernel 16:30 - 17:30
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▪ Introduction to oneAPI

▪ Introduction to DPC++

▪ What are FPGAs and Why 
Should I Care About 
Programming Them?

▪ Development Flow for Using 
FPGAs with the Intel® oneAPI
Toolkits

Section:
Using FPGAs with 
the Intel® oneAPI
Toolkits

Sub-Topics:
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The oneAPI product delivers a unified programming 
model to simplify development across diverse 
architectures. 

It guarantees:

▪ Common developer experience across Scalar, Vector, 
Matrix and Spatial architectures (CPU, GPU, AI and 
FPGA)

▪ Uncompromised native high-level language 
performance

▪ Industry standardization and open specifications

A Unified Programming Model
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Intel® oneAPI Product 

Faster 
Development

• Performance tuning and timing closure through 
emulation and reports.

• Runtime analysis via VTune™ Profiler
• Complex hardware patterns implemented 

through built-in language features: macros, 
pragmas, headers

Extensible 
Code

• Code re-use across architectures and 
vendors.

• Compatible with existing high-
performance languages.

Reduced 
Barrier of 

Entry

• Leverage familiar sequential programming 
languages: improved ramp-up and debug
time.

• IDE Integration: Eclipse, VS, VS Code

...

Available Now

software.intel.com/oneapi
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Intel® FPGAs + Intel® oneAPI Toolkits

Spatial 
Architecture

• Data-dependent parallelism

• Streaming and graph processing 
patterns

Rich I/O
• Low and deterministic latency 

• Customizable network 
interfaces and protocols

Memory
• Customizable memory architecture

• Distributed, high bandwidth, on-
chip memory topology 

Direct Programming

Data Parallel C++

FPGA

Analysis & 
Debug Tools

oneAPI Product

FPGA
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▪ Introduction to oneAPI

▪ Introduction to DPC++

▪ What are FPGAs and Why 
Should I Care About 
Programming Them?

▪ Development Flow for Using 
FPGAs with the Intel® oneAPI
Toolkits

Section:
Using FPGAs with 
the Intel® oneAPI
Toolkits

Sub-Topics:
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Data Parallel C++ (DPC++)

▪ Based on C++ and SYCL

• SYCL is based on OpenCL

• Think of it as SYCL + extensions

▪ Allows for single-source 
targeting of accelerators

• (Doesn’t require multiple files)

▪ Open specification

▪ Common language meant to 
target all XPUs

• You do still need to “tune”

▪ Goal is for the language to 
incorporate everything needed 
to get the best performance out 
of every architecture
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DPC++: Three Scopes
▪ DPC++ Programs consist of 3 scopes:

• Application scope - Normal host code

• Command group scope - Submitting data 
and commands that are for the accelerator

• Kernel scope – Code executed on the 
accelerator

▪ The full capabilities of C++ are 
available at application and command 
group scope

▪ At kernel scope there are limitations in 
accepted C++

• Most important is no recursive code

• See SYCL specification for complete list

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Application
Scope

Command
Group
Scope

Kernel Scope
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The “Runtime”

▪ The DPC++/SYCL runtime is the program running in the background 
to control the execution and data passing needs of the 
heterogeneous compute execution

▪ It handles:

• Kernel and host execution in an order imposed by data dependency needs 
(discussed later)

• Passing data back and forth between the host and device

• Querying the device

• Etc.
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DPC++ Simple Program 
Walk-Through

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Step 1: Create a device selector targeting the FPGA
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DPC++ Simple Program 
Walk-Through

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector
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DPC++ Simple Program 
Walk-Through

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

Step 3: Create buffers



Copyright © 2021 Intel Corporation 31

DPC++ Simple Program 
Walk-Through

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

Step 3: Create buffers

Step 4: Submit a command group for execution
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DPC++ Simple Program 
Walk-Through

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

Step 3: Create buffers

Step 4: Submit a command for execution

Step 5: Create buffer accessors so the FPGA can access the data
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DPC++ Simple Program 
Walk-Through

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

Step 3: Create buffers

Step 4: Submit a command for execution

Step 5: Create buffer accessors so the FPGA can access the data

Step 6: Send a kernel for execution
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DPC++ Simple Program 
Walk-Through

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

Step 3: Create buffers

Step 4: Submit a command for execution

Step 5: Create buffer accessors so the FPGA can access the data

Step 6: Send a kernel for execution

Done!

The contents of buf_c are copied to *c when the 
function finishes

(because of the buffer destruction of buf_c)
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▪ Introduction to oneAPI

▪ Introduction to DPC++

▪ What are FPGAs and Why 
Should I Care About 
Programming Them?

▪ Development Flow for Using 
FPGAs with the Intel® oneAPI
Toolkits

Section:
Using FPGAs with 
the Intel® oneAPI
Toolkits

Sub-Topics:
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What is an FPGA?

FPGA stands for Field Programmable Gate Array

Gate refers to logic gates

• The basic building blocks for all the hardware on the chip

Array means there are many of them manufactured on the chip

• Many = billions

• Arranged into larger structures (more on this later)

Field Programmable means the internal components of the device and the connections 
between them are programmable after deployment

• Programmable = configurable

FPGA = Configurable Hardware

41
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Programming an FPGA

The FPGA is made up of small building 
blocks of logic and other functions

Programming it means choosing:

42
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Programming an FPGA

The FPGA is made up of small building 
blocks of logic and other functions

Programming it means choosing:

• The building blocks to use

43
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Programming an FPGA

The FPGA is made up of small building 
blocks of logic and other functions

Programming it means choosing:

• The building blocks to use

• How to configure them

44
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Programming an FPGA

The FPGA is made up of small building 
blocks of logic and other functions

Programming it means choosing:

• The building blocks to use

• How to configure them

• And how to connect them

45
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Programming an FPGA

The FPGA is made up of small building 
blocks of logic and other functions

Programming it means choosing:

• The building blocks to use

• How to configure them

• And how to connect them

Programming determines the 
processing architecture implemented 
in the FPGA

=> what function the FPGA performs

46
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FPGA basic building blocks -ALMs

47

Custom

XOR

Custom 64-bit 

bit-shuffle and encode

Custom state 
machine

Look-up Tables 
and Registers
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FPGA basic building blocks - RAM

Small

memories

Larger 

memories

Memory

Block

20 Kb

addr

data_in

data_out

On-chip RAM 
blocks
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FPGA basic building blocks - DSP blocks

Custom

Math

Functions
DSP Blocks
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What About Connecting to the Host?

Accelerated functions run on a 
PCIe attached FPGA card

The host interface is also “baked 
in” to the FPGA design.

This portion of the design is pre-
built and not dependent on your 

source code.



Copyright © 2021 Intel Corporation 63

Program Implementation in FPGA

Pipelined hardware is implemented for:

• Computation (operators, ... )

• Memory loads and stores

• Control and scheduling (loops, conditionals, ... )

for (int i = 0; i < LIMIT; i++) {
c[i] = a[i] + b[i];

}

+

Load Load

Store

Loop
Control

Data Path

Control Path

Custom on-chip memory structures are implemented for:

• Array variables declared within kernel scope

• Memory accessors with local target
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Program execution on FPGA

opn 1

opn 2

opn 3

opn 4

opn 5

opn 6

opn 7

...

data input

data output

opn 1 opn 2 opn 3 opn 4

opn 1 opn 2 opn 3 opn 4

opn 1 opn 2 opn 3 opn 4

opn 1 opn 2 opn 3 opn 4

opn 1 opn 2 opn 3 opn 4

opn 1 opn 2 opn 3 opn 4

opn 5 opn 6 opn 7 opn 8

opn 5 opn 6 opn 7 opn 8

opn 5 opn 6 opn 7

opn 9

opn 5 opn 6

opn 5

opn 1 opn 2 opn 3

opn 1 opn 2

opn 1

Different from CPUs and GPUs

• No instruction fetched, decoded or executed

• Data flow through hardware pipelines matching the operations in the 
source code

• No control overhead (the dataflow hardware matches the software)

• In optimal implementations, a new instruction stream operating on 
new data starts executing every clock cycle

• Pipeline parallelism - the deeper the pipeline, the higher the 
parallelism
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Orthogonal Implementation Approaches

CPUs/GPUs (ISA-based 
architectures)

• Program => sequence of 
instructions

• Every Execution Unit executes one 
instruction at a time (some if 
superscalar)

• Fixed architecture

• Shared hardware

FPGA (spatial architecture)

• Program => pipelined datapath

• All program instructions can 
execute in parallel on different data

• Flexible architecture

• Dedicated hardware



Copyright © 2021 Intel Corporation 66

FPGA parallelism

Pipeline parallelism

• All hardware components execute in parallel on different data sets

Data parallelism

• Each pipeline stage can operate on multiple data on the same clock cycle

Task parallelism

• Multiple pipelines implementing different tasks can operate in parallel in the same FPGA image

Superscalar execution

• Multiple independent instructions in pipelines execute on the same clock cycle
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▪ Introduction to oneAPI

▪ Introduction to DPC++

▪ What are FPGAs and Why 
Should I Care About 
Programming Them?

▪ Development Flow for Using 
FPGAs with the Intel® oneAPI
Toolkits

Section:
Using FPGAs with 
the Intel® oneAPI
Toolkits

Sub-Topics:
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FPGA Development Flow for oneAPI Projects 

• FPGA Emulator target (Emulation)

• Compiles in seconds

• Runs completely on the host

• Optimization report generation

• Compiles in seconds to minutes

• Identify bottlenecks

• FPGA bitstream compilation

• Compiles in hours

• Enable profiler to get runtime analysis
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Anatomy of a dpcpp Command Targeting FPGAs

dpcpp –fintelfpga *.cpp/*.o [device link options] [-Xs arguments]

Language

DPCPP = Data 
Parallel C++

Target Platform

Input Files

source or object

Link Options FPGA-Specific 
Arguments



Copyright © 2021 Intel Corporation 76

Emulation

Quickly generate code that runs on the x86 host to emulate the FPGA

Developers can:

▪ Verify functionality of design through CPU compile and emulation.

▪ Identify quickly syntax and pointer implementation errors for 
iterative design/algorithm development. 

▪ Enable deep, system-wide debug with Intel® Distribution for GDB.

▪ Functional debug of SYCL code with FPGA extensions.

Seconds of Compilation

Does my code give me the 
correct answers?
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Emulation Command

dpcpp

Compiler

./mycode.emu

…

Running …

mycode.cpp

dpcpp -fintelfpga <source_file>.cpp –DFPGA_EMULATOR

#ifdef FPGA_EMULATOR

intel::fpga_emulator_selector device_selector;

#else

intel::fpga_selector device_selector;

#endif Include this construct in 
your code
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Report Generation

Quickly generate a report to guide optimization efforts

Developers can:

▪ Identify any memory, performance, data-flow bottlenecks in their
design.

▪ Receive suggestions for optimization techniques to resolve said
bottlenecks.

▪ Get area and timing estimates of their designs for the desired FPGA.

Minutes of Compilation

Where are the bottlenecks?
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Command to Produce an Optimization Report

▪ A report showing optimization, area, and architectural information 
will be produced in <file_name>.prj/reports/

• We will discuss more about the report later

dpcpp -fintelfpga <source_file>.cpp -c -o <file_name>.o

dpcpp -fintelfpga <file_name>.o -fsycl-link -Xshardware

Two Step Method:

dpcpp -fintelfpga <source_file>.cpp -fsycl-link -Xshardware

One Step Method:

The default value for –fsycl-link is  -fsycl-link=early 
which produces an early image object file and 
report
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Bitstream Compilation

Developers can:

▪ Compile FPGA bitstream for their design and run it on an FPGA.

▪ Attain automated timing closure.

▪ Obtain In-hardware verification.

▪ Take advantage of Intel® VTune™ Profiler for real-time analysis of 
design.

Runs Intel Quartus Prime Software “under the hood”
(no licensing required)



Copyright © 2021 Intel Corporation 81

Compile to FPGA Executable with Profiler

The profiler will be instrumented within the image and you will be able to run 
the executable to return information to import into Intel® Vtune Amplifier.

To compile to FPGA executable without profiler, leave off –Xsprofile.

dpcpp -fintelfpga <source_file>.cpp -c -o <file_name>.o

dpcpp -fintelfpga <file_name>.o –Xshardware -Xsprofile

Two Step Method:

dpcpp -fintelfpga <source_file>.cpp –Xshardware -Xsprofile

One Step Method:
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Compiling FPGA Device Separately and Linking

▪ In the default case, the DPC++ Compiler handles generating the host 
executable, device image, and final executable

▪ It is sometimes desirable to compile the host and device separately 
so changes in the host code do not trigger a long compile

host_only.cpp

has_kernel.cpp
dpcpp -fintelfpga has_kernel.cpp –fsycl-link=image –o has_kernel.o –Xshardware

Partition code

Then run this command to compile the FPGA image:

dpcpp -fintelfpga host_only.cpp –c –o host_only.o
This command to produce an object file out of the host only code:

dpcpp -fintelfpga has_kernel.o host_only.o –o a.out –Xshardware

This command to put the object files together into an executable:

This is the long 
compile
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Lab: Practice the FPGA Development 
Flow
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Lab instructions

▪ 1. Create a DevCloud account

• Open this link: https://devcloud.intel.com/oneapi/

• Click on the “Get Free Access” button

https://devcloud.intel.com/oneapi/
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Lab instructions

▪ 1. Create a DevCloud account

• Enter required information

• Read and accept terms of use

• Check your email for the verification link and click on it

• Sign in

• Click on “Working with oneAPI”

• Provision your account, read and accept T&C for oneAPI
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Lab instructions

▪ In a different browser page navigate to 
https://github.com/intel/fpga-training/tree/main/fpga_oneapi_lab

▪ Follow the instructions at the bottom of the page

https://github.com/intel/fpga-training/tree/main/fpga_oneapi_lab
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Lab instructions

▪ If the Jupyter notebook errors out:
“dpcpp: command not found”

▪ Download the two provided files “bashrc” and “bash_profile” to your
DevCloud home directory
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Lab instructions

▪ Rename the two files to .bashrc and .bash_profile (can be done in a 
terminal)

▪ Log out from the Jupyter server

▪ Log in again
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▪ Code to Hardware: An 
Introduction

▪ Loop Optimization

▪ Memory Optimization

▪ Reports

▪ Other Optimization 
Techniques

Section:
Introduction to 
Optimizing FPGAs 
with the Intel oneAPI
Toolkits

Sub-Topics:
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90

▪Implementing Optimized 
Custom Compute 
Pipelines (CCPs) 

synthesized from 
compiled code

Intel® FPGAs
Pre-Compiled BSP

Memory InterfaceHost Link I/O

CCP
On-chip 
Memory

CCP
On-chip Memory

CCP

On-chip 
Memory

CCP

On-chip 
Memory

CCP

On-chip 
Memory

CCP
On-chip 
Memory

Custom Compute Pipeline
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91

▪Hardware is added for 

•Computation

•Memory Loads and Stores

•Control and scheduling

•Loops & Conditionals

How Is a Pipeline Built?

for (int i=0; i<LIMIT; i++) {
c[i] = a[i] + b[i];

}

+

Load Load

Store

Loop

Control

Data Path

Control Path
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92

• Handshaking signals for variable 
latency paths

• Operations with a fixed latency 
are clustered together

• Fixed latency operations 
improve

• Area: no handshaking signals 
required

• Performance: no potential stalling 
due to variable latencies

Connecting the Pipeline Together

a b

c

d
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93

• The compiler automatically 
identifies independent operations

• Simultaneous hardware is built to 
increase performance

• This achieves data parallelism in a 
manner similar to a superscalar 
processor

• Number of independent operations 
only bounded by the amount of 
hardware

Simultaneous Independent Operations

c = a + b;
f = d * e;

+

a b

c
*

d e

f
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94

• Custom on-chip memory 
structures are built for the 
variables declared with the 
kernel scope

• Or, for memory accessors with a 
target of local

• Load and store units to the on-
chip memory will be built within 
the pipeline

On-Chip Memories Built for Kernel Variables
//kernel scope
cgh.single_task<>([=]() {

int arr[1024];
…
arr[i] = …; //store to memory
…
… = arr[j] //load from memory
…

} //end kernel scope

Pipeline

.

.

.

.

.

.

.

.

.

On-chip 

memory 

structure 

for array

arr

32-bits

1024

Store

Load
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95

• Single work-item kernels almost 
always contain an outer loop

• Work executing in multiple stages 
of the pipeline is called “pipeline 
parallelism”

• Pipelines from real-world code 
are normally hundreds of stages 
long

•Your job is to keep the 
data flowing efficiently

Pipeline Parallelism for Single Work-Item 
Kernels

handle.single_task<>([=]() {
… //accessor setup
for (int i=0; i<LIMIT; i++) {

c[i] += a[i] + b[i];
}

});

+

Load Load

Store

i=2

i=0

i=1
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96

When a dependency in a single 
work-item kernel can be resolved by 
creating a path within the pipeline, 
the compiler will build that in.

Dependencies Within the 
Single Work-Item Kernel

handle.single_task<>([=]() {
int b = 0;
for (int i=0; i<LIMIT; i++) {
b += a[i];

}
});

+

Reg Load i=2

i=1

i=0

Key Concept

Custom built-in dependencies 

make FPGAs powerful for 

many algorithms
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97

How Do I Use Tasks and Still Get Data 
Parallelism?

The most common technique is to unroll your loops

handle.single_task<>([=]() {
… //accessor setup
#pragma unroll
for (int i=1; i<=3; i++) {

c[i] += a[i] + b[i];
}

});

Stage 1 Stage 2 Stage 3

Time

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration 

3

Iteration 

2

Iteration 

1
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The compiler will still pipeline an 
unrolled loop, combining the two 
techniques

• A fully unrolled loop will not be pipelined 
since all iterations will kick off at once

Unrolled Loops Still 
Get Pipelined Stage 1 Stage 2 Stage 3

Time

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration 

3

Iteration 

2

Iteration 

1

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration 

6

Iteration 

5

Iteration 

4

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration 

9

Iteration 

8

Iteration 

7

handle.single_task<>([=]() {
… //accessor setup
#pragma unroll 3
for (int i=1; i<=9; i++) {
c[i] += a[i] + b[i];

}
});
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99

▪ FPGAs can run more than one 
kernel at a time

• The limit to how many independent kernels 
can run is the amount of resources available 
to build the kernels

▪ Data can be passed between 
kernels using pipes

• Another great FPGA feature explained in the 
Intel® oneAPI DPC++ FPGA Optimization 
Guide

What About Task Parallelism?

Representation of Gzip FPGA example 

included with the Intel oneAPI Base Toolkit
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• Kernels launched using parallel_for() or 
parallel_for_work_group()

So, Can We Build These? Parallel Kernels

…//application scope

queue.submit([&](handler &cgh) {
auto A = A_buf.get_access<access::mode::read>(cgh);
auto B = B_buf.get_access<access::mode::read>(cgh);
auto C = C_buf.get_access<access::mode::write>(cgh);

cgh.parallel_for<class VectorAdd>(num_items, [=](id<1> wiID) {
c[wiID] = a[wiID] + b[wiID];

});

});

…//application scope

Yes,

but, single_tasks 

are recommended 

for FPGAs.

Also, warning: the 

loop optimizations 

we talk about do 

not all apply for 

parallel kernels
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Single Work-Item Kernels

▪ Single work items kernels are 
kernels that contain no 
reference to the work item ID

▪ Usually launched with the 
group handler member function 
single_task()

• Or, launched with other functions 
without a reference to the work 
item ID (implying a work group size 
of 1)

▪ Contain an outer loop

…//application scope

queue.submit([&](handler &cgh) {
auto A = 

A_buf.get_access<access::mode::read>(cgh);
auto B = 

B_buf.get_access<access::mode::read>(cgh);
auto C = 

C_buf.get_access<access::mode::write>(cgh);

cgh.single_task<class swi_add>([=]() {
for (unsigned i = 0; i < 128; i++) {
c[i] = a[i] + b[i];

}
});

});

…//application scope
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c = a + b

load a load b 11

104

Understanding Initiation Interval

• dpcpp will infer pipelined parallel 
execution across loop iterations

• Different stages of pipeline will ideally 
contain different loop iterations

• Best case is that a new piece of data 
enters the pipeline each clock cycle

store c

n - Iteration number

…

cgh.single_task<class swi_add>([=]() {
for (unsigned i = 0; i < 128; i++) {
c[i] = a[i] + b[i];

}
});

…
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c = a + b 1

load a load b 11

105

Understanding Initiation Interval

• dpcpp will infer pipelined parallel 
execution across loop iterations

• Different stages of pipeline will ideally 
contain different loop iterations

• Best case is that a new piece of data 
enters the pipeline each clock cycle

store c

n - Iteration number

2 2

…

cgh.single_task<class swi_add>([=]() {
for (unsigned i = 0; i < 128; i++) {
c[i] = a[i] + b[i];

}
});

…
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c = a + b 1

load a load b 11

106

Understanding Initiation Interval

• dpcpp will infer pipelined parallel 
execution across loop iterations

• Different stages of pipeline will ideally 
contain different loop iterations

• Best case is that a new piece of data 
enters the pipeline each clock cycle

store c

2

1

n - Iteration number

2 23 3

…

cgh.single_task<class swi_add>([=]() {
for (unsigned i = 0; i < 128; i++) {
c[i] = a[i] + b[i];

}
});

…
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Loop Pipelining vs Serial Execution

Serial execution is the worst case. One loop iteration needs to 
complete fully before a new piece of data enters the pipeline.

For Begin

For End

Op 2

Op 3

Op 1

Op 2

Op 3

Op 1

i0

i1

i2

i2i2i3

i0

i1

Worst Case Best Case
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In-Between Scenario

▪ Sometimes you must wait more 
than one clock cycle to input 
more data

▪ Because dependencies can’t 
resolve fast enough

▪ How long you have to wait is 
called Initiation Interval or II

▪ Total number of cycles to run 
kernel is about (loop iterations)*II

• (neglects initial latency)

▪ Minimizing II is key to 
performance

0

…
v

…

…

…

…

1

II = 6

6 cycles later, 
next iteration 
enter the loop 
body



Copyright © 2021 Intel Corporation 109

Why Could This Happen?

▪ Memory Dependency

• Kernel cannot retrieve 
data fast enough from 
memory

_accumulators[(THETAS*(rho+RHOS))+theta] += increment;

Value must be retrieved from global 
memory and incremented
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What Can You Do? Use Local Memory

▪ Transfer global memory 
contents to local memory 
before operating on the data 

…

constexpr int N = 128;
queue.submit([&](handler &cgh) {

auto A =

A_buf.get_access<access::mode::read_write>(cgh);

cgh.single_task<class unoptimized>([=]() {
for (unsigned i = 0; i < N; i++)

A[N-i] = A[i];
}

});

}); 
…

Non-optimized

…

constexpr int N = 128;
queue.submit([&](handler &cgh) {

auto A =

A_buf.get_access<access::mode::read_write>(cgh);

cgh.single_task<class optimized>([=]() {
int B[N];

for (unsigned i = 0; i < N; i++)
B[i] = A[i];

for (unsigned i = 0; i < N; i++)
B[N-i] = B[i];

for (unsigned i = 0; i < N; i++)
A[i] = B[i];

});

}); 
…

Optimized
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What Can You Do? Tell the Compiler About 
Independence
▪ [[intelfpga::ivdep]]

• Dependencies ignored for all accesses to memory arrays

▪ [[intelfpga::ivdep(array_name)]]

• Dependency ignored for only array_name accesses

[[intelfpga::ivdep]]

for (unsigned i = 1; i < N; i++) {

A[i] = A[i – X[i]];

B[i] = B[i – Y[i]];

}

Dependency ignored for A and B array

[[intelfpga::ivdep(A)]]

for (unsigned i = 1; i < N; i++) {

A[i] = A[i – X[i]];

B[i] = B[i – Y[i]];

}

Dependency ignored for A array

Dependency for B still enforced
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Why Else Could This Happen?

▪ Data Dependency

• Kernel cannot 
complete a calculation 
fast enough

r_int[k] = ((a_int[k] / b_int[k]) / a_int[1]) / r_int[k-1];

Difficult double precision floating point 
operation must be completed
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What Can You Do?

▪Do a simpler calculation

▪Pre-calculate some of the operations on the host

▪Use a simpler type

▪Use floating point optimizations (discussed later)

▪Advanced technique: Increase time (pipeline stages) 
between start of calculation and when you use answer

• See the “Relax Loop-Carried Dependency” in the Optimization 
Guide for more information
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114

▪ The compiler will still pipeline 
an unrolled loop, combining the 
two techniques

• A fully unrolled loop will not be pipelined 
since all iterations will kick off at once

How Else to Optimize a 
Loop? Loop Unrolling Stage 1 Stage 2 Stage 3

Time

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration 

3

Iteration 

2

Iteration 

1

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration 

6

Iteration 

5

Iteration 

4

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration 

9

Iteration 

8

Iteration 

7

handle.single_task<>([=]() {
… //accessor setup
#pragma unroll 3
for (int i=1; i<9; i++) {
c[i] += a[i] + b[i];

}
});
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Maximum Clock Frequency (Fmax)

▪ The clock frequency the FPGA will be clocked at depends on what 
hardware your kernel compiles into

▪ More complicated hardware cannot run as fast

▪ The whole kernel will have one clock

▪ The compiler’s heuristic is to get a lower II, sacrificing a higher Fmax

A slow operation can slow down your entire kernel by lowering the 
clock frequency
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How Can You Tell This Is a Problem?

▪ Optimization report 
tells you the target 
frequency for each 
loop in your code

cgh.single_task<example>([=]() {
int res = N;
#pragma unroll 8
for (int i = 0; i < N; i++) {

res += 1;
res ^= i;

}
acc_data[0] = res;

}); 
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What Can You Do?

▪Make the calculation simpler

▪Tell the compiler you’d like to change the trade off 
between II and Fmax

• Attribute placed on the line before the loop

• Set to a higher II than what the loop currently has

[[intelfpga::ii(n)]] 
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Area

▪ The compiler sacrifices area in order to improve loop performance. 
What if you would like to save on the area in some parts of your 
design?

• Give up II for less area

• Set the II higher than what compiler result is

• Give up loop throughput for area

• Compiler increases loop concurrency to achieve greater throughput

• Set the max_concurrency value lower than what the compiler result is

[[intelfpga::ii(n)]] 

[[intelfpga::max_concurrency(n)]] 
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Understanding Board Memory Resources

Memory Type Physical 
Implementation

Latency
for random access

(clock cycles)

Throughput 
(GB/s)

Capacity
(MB)

Global DDR 240 34.133 8000

Local
On-chip RAM 2 ~8000 66

Registers 2/1 ~240 0.2

Key takeaway: many times, the solution for a bottleneck caused by slow 
memory access will be to use local memory instead of global 
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Global Memory Access is Slow – What to Do?

▪ We’ve seen this before... This 
will appear as a memory 
dependency problem

▪ Transfer global memory 
contents to local memory 
before operating on the data 

…

constexpr int N = 128;
queue.submit([&](handler &cgh) {

auto A =

A_buf.get_access<access::mode::read_write>(cgh);

cgh.single_task<class unoptimized>([=]() {
for (unsigned i = 0; i < N; i++)

A[N-i] = A[i];
}

});

}); 
…

Non-optimized

…

constexpr int N = 128;
queue.submit([&](handler &cgh) {

auto A =

A_buf.get_access<access::mode::read_write>(cgh);

cgh.single_task<class optimized>([=]() {
int B[N];

for (unsigned i = 0; i < N; i++)
B[i] = A[i];

for (unsigned i = 0; i < N; i++)
B[N-i] = B[i];

for (unsigned i = 0; i < N; i++)
A[i] = B[i];

});

}); 
…

Optimized
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Local Memory Bottlenecks

▪ If more load and store points want 
to access the local memory than 
there are ports available, arbiters 
will be added

▪These can stall, so are a potential 
bottleneck

▪Show up in red in the Memory 
Viewer section of the optimization 
report
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Local Memory Bottlenecks

Natively, the memory architecture has 2 ports

The compiler uses optimizations to minimize arbitration

Your job is to write code the compiler can optimize

Local Memory Interconnect

M20K

M20K

M20K

M20K

M20K

M20K

Kernel Pipeline

port 0

port 1
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Double-Pumped Memory Example

▪ Increase the clock rate to 2x

▪ Compiler can automatically 
implement double-pumped memory 
– turning 2 ports to 4//kernel scope

...
int array[1024];

array[ind1] = val;

array[ind1+1] = val;

calc = array[ind2] + array[ind2+1];
…
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//kernel scope
…

int array[1024];
int res = 0;

array[ind1] = val;
#pragma unroll
for (int i = 0; i < 9; i++)
res += array[ind2+i];

calc = res;
…

Local Memory Replication Example

ST

LD

Turn 4 ports of double-pumped memory to unlimited ports

Drawbacks: logic resources, stores must go to each replication
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Coalescing 

//kernel scope
…
local int array[1024];
int res = 0;

#pragma unroll
for (int i = 0; i < 4; i++)

array[ind1*4 + i] = val;

#pragma unroll
for (int i = 0; i < 4; i++)

res += array[ind2*4 + i];

calc = res;
…

Continuous addresses can be 
coalesced into wider accesses
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Banking

▪ Divide the memory into independent fractional 
pieces (banks)

//kernel scope
…
int array[1024][2];

array[ind1][0] = val1;
array[ind2][1] = val2;

calc =  (array[ind2][0] +
array[ind1][1]);

…
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Attributes for Local Memory Optimization

Attribute Usage

numbanks [[intelfpga::numbanks(N)]]

bankwidth [[intelfpga::bankwidth(N)]]

singlepump [[intelfpga::singlepump]]

doublepump [[intelfpga::doublepump]]

max_replicates [[intelfpga::max_replicates(N)]]

simple_dual_port [[intelfpga::simple_dual_port]]
Note: This is not a comprehensive list. Consult the Optimization Guide for more.

Note: Let the compiler try on it’s own first.
It’s very good at inferring an optimal structure!



Copyright © 2021 Intel Corporation 129

Pipes – Element the Need for Some Memory

Create custom direct point-to-point communication 
between CCPs with Pipes

CCP 1 CCP 2 CCP 3Pipe Pipe

Global Memory
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Task Parallelism By Using Pipes

▪ Launch separate kernels simultaneously

▪ Achieve synchronization and data sharing using pipes

▪ Make better use of your hardware
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HTML Optimization Report

▪Static report showing optimization, area, and architectural 
information

•Automatically generated with the object file

• Located in <file_name>.prj\reports\report.html

•Dynamic reference information to original source code
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Optimization Report – Throughput Analysis

▪ Loops Analysis and Fmax II 
sections

▪ Actionable feedback on 
pipeline status of loops

▪ Show estimated Fmax of each 
loop
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Optimization Report – Area Analysis

▪ Generate detailed estimated 
area utilization report of kernel 
scope code

• Detailed breakdown of resources by 
system blocks

• Provides architectural details of HW

• Suggestions to resolve inefficiencies
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▪ The system view of the 
Graph Viewer shows 
following types of 
connections

• Control

• Memory, if your design has 
global or local memory

• Pipes, if your design uses 
pipes 

Optimization Report – Graph Viewer
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Optimization Report – Schedule Viewer

Schedule in clock 
cycles for different 
blocks in your 
code
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HTML Kernel Memory Viewer

▪ Helps you identify data 
movement bottlenecks in your 
kernel design. Illustrates:

• Memory replication

• Banking

• Implemented arbitration

• Read/write capabilities of each 
memory port
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Avoid Expensive Functions

▪Expensive functions take a lot of hardware and run 
slow

▪Examples

• Integer division and modulo (remainder) operators

•Most floating-point operations except addition, 
multiplication, absolution, and comparison

•Atomic functions 
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Inexpensive Functions

▪ Use instead of expensive functions whenever possible

• Minimal effects on kernel performance

• Consumes minimal hardware

▪ Examples

• Binary logic operations such as AND, NAND, OR, NOR, XOR, and XNOR

• Logical operations with one constant argument

• Shift by constant

• Integer multiplication and division by a constant that is to the power of 2

• Bit swapping (Endian adjustment)
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Use Least-“Expensive” Data Type 

▪ Understand cost of each data type in latency and logic usage

• Logic usage may be > 4x for double vs. float operations

• Latency may be much larger for float and double operations compared to 
fixed point types

▪ Measure or restrict the range and precision (if possible)

• Be familiar with the width, range and precision of data types 

• Use half or single precision instead of double (default)

• Use fixed point instead of floating point

• Don’t use float if short is sufficient
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Floating-Point Optimizations

▪ Applies to half, float and double data types

▪ Optimizations will cause small differences in floating-point results

• Not IEEE Standard for Floating-Point Arithmetic (IEEE 754-2008) compliant

▪ Floating-point optimizations:

• Tree Balancing

• Reducing Rounding Operations
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Tree-Balancing

▪ Floating-point operations are not associative

• Rounding after each operation affects the outcome

• i.e. ((a+b) + c) != (a+(b+c))

▪ By default the compiler doesn’t reorder floating-point operations

• May creates an imbalance in a pipeline, costs latency and possibly area

▪ Manually enable compiler to balance operations

• For example, create a tree of floating-point additions in SGEMM, rather than 
a chain

• Use -Xsfp-relaxed=true flag when calling dpcpp
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Rounding Operations

▪ For a series of floating-point operations, IEEE 754 require multiple 
rounding operation

▪ Rounding can require significant amount of hardware resources

▪ Fused floating-point operation

• Perform only one round at the end of the tree of the floating-point 
operations

• Other processor architectures support certain fused instructions such as 
fused multiply and accumulate (FMAC)

• Any combination of floating-point operators can be fused

▪ Use dpcpp compiler switch -Xsfpc
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References and Resources

▪ Website hub for using FPGAs with oneAPI

• https://software.intel.com/content/www/us/en/develop/tools/oneapi/compo
nents/fpga.html

▪ Intel® oneAPI Programming Guide 

• https://software.intel.com/content/www/us/en/develop/download/intel-
oneapi-programming-guide.html

▪ Intel® oneAPI DPC++ FPGA Optimization Guide

• https://software.intel.com/content/www/us/en/develop/download/oneapi-
fpga-optimization-guide.html

▪ FPGA Tutorials GitHub

• https://github.com/intel/BaseKit-code-samples/tree/master/FPGATutorials

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fpga.html
https://software.intel.com/content/www/us/en/develop/download/intel-oneapi-programming-guide.html
https://software.intel.com/content/www/us/en/develop/download/oneapi-fpga-optimization-guide.html
https://github.com/intel/BaseKit-code-samples/tree/master/FPGATutorials
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Lab: Optimizing the Hough Transform 
Kernel
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Lab instructions

▪ Download to DevCloud the provided event_labs.zip file

▪ Open a terminal in your Jupyter server

▪ Unzip the file

▪ In the Jupyter server, navigate to labs/lab3

▪ Open Hough_transform_lab.pdf and follow the instructions
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