
Using Intel® oneAPI
Toolkits with FPGAs

Copyright © 2021 Intel Corporation.

This document is intended for personal use only.

Unauthorized distribution, modification, public performance,
public display, or copying of this material via any medium is strictly prohibited.

Copyright © 2021 Intel Corporation 2

Course Objectives

▪ Understand the development flow for FPGAs with the Intel® oneAPI
toolkits

▪ Gain an understanding of common optimization methods for FPGAs

Copyright © 2021 Intel Corporation 3

Course Agenda

▪ Using FPGAs with the Intel®
oneAPI Toolkits

• Recap: Introduction to DPC++

• What are FPGAs and Why Should I
Care About Programming Them?

• Development Flow for Using FPGAs
with the Intel® oneAPI Toolkits

• Lab: Practice the FPGA
Development Flow

▪ Optimizing Your Code for
FPGAs

• Introduction to Optimizing FPGAs
with the Intel oneAPI Toolkits

• Lab: Optimizing the Hough
Transform Kernel

Copyright © 2021 Intel Corporation 4

Timeline

Section Time

Slides: Using FPGAs with the Intel® oneAPI Toolkits 14:00 -14:30

Lab: Practice the FPGA Development Flow 14:30 -15:30

Break 15:30 - 16:00

Slides: Optimizing Your Code for FPGAs 16:00 -16:30

Lab: Optimizing the Hough Transform Kernel 16:30 - 17:30

5Copyright © 2021 Intel Corporation

▪ Introduction to oneAPI

▪ Introduction to DPC++

▪ What are FPGAs and Why
Should I Care About
Programming Them?

▪ Development Flow for Using
FPGAs with the Intel® oneAPI
Toolkits

Section:
Using FPGAs with
the Intel® oneAPI
Toolkits

Sub-Topics:

Copyright © 2021 Intel Corporation 9

The oneAPI product delivers a unified programming
model to simplify development across diverse
architectures.

It guarantees:

▪ Common developer experience across Scalar, Vector,
Matrix and Spatial architectures (CPU, GPU, AI and
FPGA)

▪ Uncompromised native high-level language
performance

▪ Industry standardization and open specifications

A Unified Programming Model

Copyright © 2021 Intel Corporation 10

Intel® oneAPI Product

Faster
Development

• Performance tuning and timing closure through
emulation and reports.

• Runtime analysis via VTune™ Profiler
• Complex hardware patterns implemented

through built-in language features: macros,
pragmas, headers

Extensible
Code

• Code re-use across architectures and
vendors.

• Compatible with existing high-
performance languages.

Reduced
Barrier of

Entry

• Leverage familiar sequential programming
languages: improved ramp-up and debug
time.

• IDE Integration: Eclipse, VS, VS Code

...

Available Now

software.intel.com/oneapi

Copyright © 2021 Intel Corporation 13

Intel® FPGAs + Intel® oneAPI Toolkits

Spatial
Architecture

• Data-dependent parallelism

• Streaming and graph processing
patterns

Rich I/O
• Low and deterministic latency

• Customizable network
interfaces and protocols

Memory
• Customizable memory architecture

• Distributed, high bandwidth, on-
chip memory topology

Direct Programming

Data Parallel C++

FPGA

Analysis &
Debug Tools

oneAPI Product

FPGA

15Copyright © 2021 Intel Corporation

▪ Introduction to oneAPI

▪ Introduction to DPC++

▪ What are FPGAs and Why
Should I Care About
Programming Them?

▪ Development Flow for Using
FPGAs with the Intel® oneAPI
Toolkits

Section:
Using FPGAs with
the Intel® oneAPI
Toolkits

Sub-Topics:

Copyright © 2021 Intel Corporation 16

Data Parallel C++ (DPC++)

▪ Based on C++ and SYCL

• SYCL is based on OpenCL

• Think of it as SYCL + extensions

▪ Allows for single-source
targeting of accelerators

• (Doesn’t require multiple files)

▪ Open specification

▪ Common language meant to
target all XPUs

• You do still need to “tune”

▪ Goal is for the language to
incorporate everything needed
to get the best performance out
of every architecture

Copyright © 2021 Intel Corporation 17

DPC++: Three Scopes
▪ DPC++ Programs consist of 3 scopes:

• Application scope - Normal host code

• Command group scope - Submitting data
and commands that are for the accelerator

• Kernel scope – Code executed on the
accelerator

▪ The full capabilities of C++ are
available at application and command
group scope

▪ At kernel scope there are limitations in
accepted C++

• Most important is no recursive code

• See SYCL specification for complete list

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Application
Scope

Command
Group
Scope

Kernel Scope

Copyright © 2021 Intel Corporation 18

The “Runtime”

▪ The DPC++/SYCL runtime is the program running in the background
to control the execution and data passing needs of the
heterogeneous compute execution

▪ It handles:

• Kernel and host execution in an order imposed by data dependency needs
(discussed later)

• Passing data back and forth between the host and device

• Querying the device

• Etc.

Copyright © 2021 Intel Corporation 28

DPC++ Simple Program
Walk-Through

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Step 1: Create a device selector targeting the FPGA

Copyright © 2021 Intel Corporation 29

DPC++ Simple Program
Walk-Through

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

Copyright © 2021 Intel Corporation 30

DPC++ Simple Program
Walk-Through

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

Step 3: Create buffers

Copyright © 2021 Intel Corporation 31

DPC++ Simple Program
Walk-Through

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

Step 3: Create buffers

Step 4: Submit a command group for execution

Copyright © 2021 Intel Corporation 32

DPC++ Simple Program
Walk-Through

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

Step 3: Create buffers

Step 4: Submit a command for execution

Step 5: Create buffer accessors so the FPGA can access the data

Copyright © 2021 Intel Corporation 33

DPC++ Simple Program
Walk-Through

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

Step 3: Create buffers

Step 4: Submit a command for execution

Step 5: Create buffer accessors so the FPGA can access the data

Step 6: Send a kernel for execution

Copyright © 2021 Intel Corporation 34

DPC++ Simple Program
Walk-Through

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

Step 3: Create buffers

Step 4: Submit a command for execution

Step 5: Create buffer accessors so the FPGA can access the data

Step 6: Send a kernel for execution

Done!

The contents of buf_c are copied to *c when the
function finishes

(because of the buffer destruction of buf_c)

40Copyright © 2021 Intel Corporation

▪ Introduction to oneAPI

▪ Introduction to DPC++

▪ What are FPGAs and Why
Should I Care About
Programming Them?

▪ Development Flow for Using
FPGAs with the Intel® oneAPI
Toolkits

Section:
Using FPGAs with
the Intel® oneAPI
Toolkits

Sub-Topics:

Copyright © 2021 Intel Corporation 41

What is an FPGA?

FPGA stands for Field Programmable Gate Array

Gate refers to logic gates

• The basic building blocks for all the hardware on the chip

Array means there are many of them manufactured on the chip

• Many = billions

• Arranged into larger structures (more on this later)

Field Programmable means the internal components of the device and the connections
between them are programmable after deployment

• Programmable = configurable

FPGA = Configurable Hardware

41

Copyright © 2021 Intel Corporation 42

Programming an FPGA

The FPGA is made up of small building
blocks of logic and other functions

Programming it means choosing:

42

Copyright © 2021 Intel Corporation 43

Programming an FPGA

The FPGA is made up of small building
blocks of logic and other functions

Programming it means choosing:

• The building blocks to use

43

Copyright © 2021 Intel Corporation 44

Programming an FPGA

The FPGA is made up of small building
blocks of logic and other functions

Programming it means choosing:

• The building blocks to use

• How to configure them

44

Copyright © 2021 Intel Corporation 45

Programming an FPGA

The FPGA is made up of small building
blocks of logic and other functions

Programming it means choosing:

• The building blocks to use

• How to configure them

• And how to connect them

45

Copyright © 2021 Intel Corporation 46

Programming an FPGA

The FPGA is made up of small building
blocks of logic and other functions

Programming it means choosing:

• The building blocks to use

• How to configure them

• And how to connect them

Programming determines the
processing architecture implemented
in the FPGA

=> what function the FPGA performs

46

Copyright © 2021 Intel Corporation 47

FPGA basic building blocks -ALMs

47

Custom

XOR

Custom 64-bit

bit-shuffle and encode

Custom state
machine

Look-up Tables
and Registers

Copyright © 2021 Intel Corporation 4848

FPGA basic building blocks - RAM

Small

memories

Larger

memories

Memory

Block

20 Kb

addr

data_in

data_out

On-chip RAM
blocks

Copyright © 2021 Intel Corporation 4949

FPGA basic building blocks - DSP blocks

Custom

Math

Functions
DSP Blocks

Copyright © 2021 Intel Corporation 61

What About Connecting to the Host?

Accelerated functions run on a
PCIe attached FPGA card

The host interface is also “baked
in” to the FPGA design.

This portion of the design is pre-
built and not dependent on your

source code.

Copyright © 2021 Intel Corporation 63

Program Implementation in FPGA

Pipelined hardware is implemented for:

• Computation (operators, ...)

• Memory loads and stores

• Control and scheduling (loops, conditionals, ...)

for (int i = 0; i < LIMIT; i++) {
c[i] = a[i] + b[i];

}

+

Load Load

Store

Loop
Control

Data Path

Control Path

Custom on-chip memory structures are implemented for:

• Array variables declared within kernel scope

• Memory accessors with local target

Copyright © 2021 Intel Corporation 64

Program execution on FPGA

opn 1

opn 2

opn 3

opn 4

opn 5

opn 6

opn 7

...

data input

data output

opn 1 opn 2 opn 3 opn 4

opn 1 opn 2 opn 3 opn 4

opn 1 opn 2 opn 3 opn 4

opn 1 opn 2 opn 3 opn 4

opn 1 opn 2 opn 3 opn 4

opn 1 opn 2 opn 3 opn 4

opn 5 opn 6 opn 7 opn 8

opn 5 opn 6 opn 7 opn 8

opn 5 opn 6 opn 7

opn 9

opn 5 opn 6

opn 5

opn 1 opn 2 opn 3

opn 1 opn 2

opn 1

Different from CPUs and GPUs

• No instruction fetched, decoded or executed

• Data flow through hardware pipelines matching the operations in the
source code

• No control overhead (the dataflow hardware matches the software)

• In optimal implementations, a new instruction stream operating on
new data starts executing every clock cycle

• Pipeline parallelism - the deeper the pipeline, the higher the
parallelism

Copyright © 2021 Intel Corporation 65

Orthogonal Implementation Approaches

CPUs/GPUs (ISA-based
architectures)

• Program => sequence of
instructions

• Every Execution Unit executes one
instruction at a time (some if
superscalar)

• Fixed architecture

• Shared hardware

FPGA (spatial architecture)

• Program => pipelined datapath

• All program instructions can
execute in parallel on different data

• Flexible architecture

• Dedicated hardware

Copyright © 2021 Intel Corporation 66

FPGA parallelism

Pipeline parallelism

• All hardware components execute in parallel on different data sets

Data parallelism

• Each pipeline stage can operate on multiple data on the same clock cycle

Task parallelism

• Multiple pipelines implementing different tasks can operate in parallel in the same FPGA image

Superscalar execution

• Multiple independent instructions in pipelines execute on the same clock cycle

70Copyright © 2021 Intel Corporation

▪ Introduction to oneAPI

▪ Introduction to DPC++

▪ What are FPGAs and Why
Should I Care About
Programming Them?

▪ Development Flow for Using
FPGAs with the Intel® oneAPI
Toolkits

Section:
Using FPGAs with
the Intel® oneAPI
Toolkits

Sub-Topics:

Copyright © 2021 Intel Corporation 74

FPGA Development Flow for oneAPI Projects

• FPGA Emulator target (Emulation)

• Compiles in seconds

• Runs completely on the host

• Optimization report generation

• Compiles in seconds to minutes

• Identify bottlenecks

• FPGA bitstream compilation

• Compiles in hours

• Enable profiler to get runtime analysis

Copyright © 2021 Intel Corporation 75

Anatomy of a dpcpp Command Targeting FPGAs

dpcpp –fintelfpga *.cpp/*.o [device link options] [-Xs arguments]

Language

DPCPP = Data
Parallel C++

Target Platform

Input Files

source or object

Link Options FPGA-Specific
Arguments

Copyright © 2021 Intel Corporation 76

Emulation

Quickly generate code that runs on the x86 host to emulate the FPGA

Developers can:

▪ Verify functionality of design through CPU compile and emulation.

▪ Identify quickly syntax and pointer implementation errors for
iterative design/algorithm development.

▪ Enable deep, system-wide debug with Intel® Distribution for GDB.

▪ Functional debug of SYCL code with FPGA extensions.

Seconds of Compilation

Does my code give me the
correct answers?

Copyright © 2021 Intel Corporation 77

Emulation Command

dpcpp

Compiler

./mycode.emu

…

Running …

mycode.cpp

dpcpp -fintelfpga <source_file>.cpp –DFPGA_EMULATOR

#ifdef FPGA_EMULATOR

intel::fpga_emulator_selector device_selector;

#else

intel::fpga_selector device_selector;

#endif Include this construct in
your code

Copyright © 2021 Intel Corporation 78

Report Generation

Quickly generate a report to guide optimization efforts

Developers can:

▪ Identify any memory, performance, data-flow bottlenecks in their
design.

▪ Receive suggestions for optimization techniques to resolve said
bottlenecks.

▪ Get area and timing estimates of their designs for the desired FPGA.

Minutes of Compilation

Where are the bottlenecks?

Copyright © 2021 Intel Corporation 79

Command to Produce an Optimization Report

▪ A report showing optimization, area, and architectural information
will be produced in <file_name>.prj/reports/

• We will discuss more about the report later

dpcpp -fintelfpga <source_file>.cpp -c -o <file_name>.o

dpcpp -fintelfpga <file_name>.o -fsycl-link -Xshardware

Two Step Method:

dpcpp -fintelfpga <source_file>.cpp -fsycl-link -Xshardware

One Step Method:

The default value for –fsycl-link is -fsycl-link=early
which produces an early image object file and
report

Copyright © 2021 Intel Corporation 80

Bitstream Compilation

Developers can:

▪ Compile FPGA bitstream for their design and run it on an FPGA.

▪ Attain automated timing closure.

▪ Obtain In-hardware verification.

▪ Take advantage of Intel® VTune™ Profiler for real-time analysis of
design.

Runs Intel Quartus Prime Software “under the hood”
(no licensing required)

Copyright © 2021 Intel Corporation 81

Compile to FPGA Executable with Profiler

The profiler will be instrumented within the image and you will be able to run
the executable to return information to import into Intel® Vtune Amplifier.

To compile to FPGA executable without profiler, leave off –Xsprofile.

dpcpp -fintelfpga <source_file>.cpp -c -o <file_name>.o

dpcpp -fintelfpga <file_name>.o –Xshardware -Xsprofile

Two Step Method:

dpcpp -fintelfpga <source_file>.cpp –Xshardware -Xsprofile

One Step Method:

Copyright © 2021 Intel Corporation 82

Compiling FPGA Device Separately and Linking

▪ In the default case, the DPC++ Compiler handles generating the host
executable, device image, and final executable

▪ It is sometimes desirable to compile the host and device separately
so changes in the host code do not trigger a long compile

host_only.cpp

has_kernel.cpp
dpcpp -fintelfpga has_kernel.cpp –fsycl-link=image –o has_kernel.o –Xshardware

Partition code

Then run this command to compile the FPGA image:

dpcpp -fintelfpga host_only.cpp –c –o host_only.o
This command to produce an object file out of the host only code:

dpcpp -fintelfpga has_kernel.o host_only.o –o a.out –Xshardware

This command to put the object files together into an executable:

This is the long
compile

83Copyright © 2021 Intel Corporation

Lab: Practice the FPGA Development
Flow

Copyright © 2021 Intel Corporation 84

Lab instructions

▪ 1. Create a DevCloud account

• Open this link: https://devcloud.intel.com/oneapi/

• Click on the “Get Free Access” button

https://devcloud.intel.com/oneapi/

Copyright © 2021 Intel Corporation 85

Lab instructions

▪ 1. Create a DevCloud account

• Enter required information

• Read and accept terms of use

• Check your email for the verification link and click on it

• Sign in

• Click on “Working with oneAPI”

• Provision your account, read and accept T&C for oneAPI

Copyright © 2021 Intel Corporation 86

Lab instructions

▪ In a different browser page navigate to
https://github.com/intel/fpga-training/tree/main/fpga_oneapi_lab

▪ Follow the instructions at the bottom of the page

https://github.com/intel/fpga-training/tree/main/fpga_oneapi_lab

Copyright © 2021 Intel Corporation 87

Lab instructions

▪ If the Jupyter notebook errors out:
“dpcpp: command not found”

▪ Download the two provided files “bashrc” and “bash_profile” to your
DevCloud home directory

Copyright © 2021 Intel Corporation 88

Lab instructions

▪ Rename the two files to .bashrc and .bash_profile (can be done in a
terminal)

▪ Log out from the Jupyter server

▪ Log in again

89Copyright © 2021 Intel Corporation

▪ Code to Hardware: An
Introduction

▪ Loop Optimization

▪ Memory Optimization

▪ Reports

▪ Other Optimization
Techniques

Section:
Introduction to
Optimizing FPGAs
with the Intel oneAPI
Toolkits

Sub-Topics:

Copyright © 2021 Intel Corporation 90

90

▪Implementing Optimized
Custom Compute
Pipelines (CCPs)

synthesized from
compiled code

Intel® FPGAs
Pre-Compiled BSP

Memory InterfaceHost Link I/O

CCP
On-chip
Memory

CCP
On-chip Memory

CCP

On-chip
Memory

CCP

On-chip
Memory

CCP

On-chip
Memory

CCP
On-chip
Memory

Custom Compute Pipeline

Copyright © 2021 Intel Corporation 91

91

▪Hardware is added for

•Computation

•Memory Loads and Stores

•Control and scheduling

•Loops & Conditionals

How Is a Pipeline Built?

for (int i=0; i<LIMIT; i++) {
c[i] = a[i] + b[i];

}

+

Load Load

Store

Loop

Control

Data Path

Control Path

Copyright © 2021 Intel Corporation 92

92

• Handshaking signals for variable
latency paths

• Operations with a fixed latency
are clustered together

• Fixed latency operations
improve

• Area: no handshaking signals
required

• Performance: no potential stalling
due to variable latencies

Connecting the Pipeline Together

a b

c

d

Copyright © 2021 Intel Corporation 93

93

• The compiler automatically
identifies independent operations

• Simultaneous hardware is built to
increase performance

• This achieves data parallelism in a
manner similar to a superscalar
processor

• Number of independent operations
only bounded by the amount of
hardware

Simultaneous Independent Operations

c = a + b;
f = d * e;

+

a b

c
*

d e

f

Copyright © 2021 Intel Corporation 94

94

• Custom on-chip memory
structures are built for the
variables declared with the
kernel scope

• Or, for memory accessors with a
target of local

• Load and store units to the on-
chip memory will be built within
the pipeline

On-Chip Memories Built for Kernel Variables
//kernel scope
cgh.single_task<>([=]() {

int arr[1024];
…
arr[i] = …; //store to memory
…
… = arr[j] //load from memory
…

} //end kernel scope

Pipeline

.

.

.

.

.

.

.

.

.

On-chip

memory

structure

for array

arr

32-bits

1024

Store

Load

Copyright © 2021 Intel Corporation 95

95

• Single work-item kernels almost
always contain an outer loop

• Work executing in multiple stages
of the pipeline is called “pipeline
parallelism”

• Pipelines from real-world code
are normally hundreds of stages
long

•Your job is to keep the
data flowing efficiently

Pipeline Parallelism for Single Work-Item
Kernels

handle.single_task<>([=]() {
… //accessor setup
for (int i=0; i<LIMIT; i++) {

c[i] += a[i] + b[i];
}

});

+

Load Load

Store

i=2

i=0

i=1

Copyright © 2021 Intel Corporation 96

96

When a dependency in a single
work-item kernel can be resolved by
creating a path within the pipeline,
the compiler will build that in.

Dependencies Within the
Single Work-Item Kernel

handle.single_task<>([=]() {
int b = 0;
for (int i=0; i<LIMIT; i++) {
b += a[i];

}
});

+

Reg Load i=2

i=1

i=0

Key Concept

Custom built-in dependencies

make FPGAs powerful for

many algorithms

Copyright © 2021 Intel Corporation 97

97

How Do I Use Tasks and Still Get Data
Parallelism?

The most common technique is to unroll your loops

handle.single_task<>([=]() {
… //accessor setup
#pragma unroll
for (int i=1; i<=3; i++) {

c[i] += a[i] + b[i];
}

});

Stage 1 Stage 2 Stage 3

Time

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration

3

Iteration

2

Iteration

1

Copyright © 2021 Intel Corporation 98

98

The compiler will still pipeline an
unrolled loop, combining the two
techniques

• A fully unrolled loop will not be pipelined
since all iterations will kick off at once

Unrolled Loops Still
Get Pipelined Stage 1 Stage 2 Stage 3

Time

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration

3

Iteration

2

Iteration

1

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration

6

Iteration

5

Iteration

4

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration

9

Iteration

8

Iteration

7

handle.single_task<>([=]() {
… //accessor setup
#pragma unroll 3
for (int i=1; i<=9; i++) {
c[i] += a[i] + b[i];

}
});

Copyright © 2021 Intel Corporation 99

99

▪ FPGAs can run more than one
kernel at a time

• The limit to how many independent kernels
can run is the amount of resources available
to build the kernels

▪ Data can be passed between
kernels using pipes

• Another great FPGA feature explained in the
Intel® oneAPI DPC++ FPGA Optimization
Guide

What About Task Parallelism?

Representation of Gzip FPGA example

included with the Intel oneAPI Base Toolkit

Copyright © 2021 Intel Corporation 100

100

• Kernels launched using parallel_for() or
parallel_for_work_group()

So, Can We Build These? Parallel Kernels

…//application scope

queue.submit([&](handler &cgh) {
auto A = A_buf.get_access<access::mode::read>(cgh);
auto B = B_buf.get_access<access::mode::read>(cgh);
auto C = C_buf.get_access<access::mode::write>(cgh);

cgh.parallel_for<class VectorAdd>(num_items, [=](id<1> wiID) {
c[wiID] = a[wiID] + b[wiID];

});

});

…//application scope

Yes,

but, single_tasks

are recommended

for FPGAs.

Also, warning: the

loop optimizations

we talk about do

not all apply for

parallel kernels

10
1Copyright © 2021 Intel Corporation

▪ Code to Hardware: An
Introduction

▪ Loop Optimization

▪ Memory Optimization

▪ Reports

▪ Other Optimization
Techniques

Section:
Introduction to
Optimizing FPGAs
with the Intel oneAPI
Toolkits

Sub-Topics:

Copyright © 2021 Intel Corporation 102

Single Work-Item Kernels

▪ Single work items kernels are
kernels that contain no
reference to the work item ID

▪ Usually launched with the
group handler member function
single_task()

• Or, launched with other functions
without a reference to the work
item ID (implying a work group size
of 1)

▪ Contain an outer loop

…//application scope

queue.submit([&](handler &cgh) {
auto A =

A_buf.get_access<access::mode::read>(cgh);
auto B =

B_buf.get_access<access::mode::read>(cgh);
auto C =

C_buf.get_access<access::mode::write>(cgh);

cgh.single_task<class swi_add>([=]() {
for (unsigned i = 0; i < 128; i++) {
c[i] = a[i] + b[i];

}
});

});

…//application scope

Copyright © 2021 Intel Corporation 104

c = a + b

load a load b 11

104

Understanding Initiation Interval

• dpcpp will infer pipelined parallel
execution across loop iterations

• Different stages of pipeline will ideally
contain different loop iterations

• Best case is that a new piece of data
enters the pipeline each clock cycle

store c

n - Iteration number

…

cgh.single_task<class swi_add>([=]() {
for (unsigned i = 0; i < 128; i++) {
c[i] = a[i] + b[i];

}
});

…

Copyright © 2021 Intel Corporation 105

c = a + b 1

load a load b 11

105

Understanding Initiation Interval

• dpcpp will infer pipelined parallel
execution across loop iterations

• Different stages of pipeline will ideally
contain different loop iterations

• Best case is that a new piece of data
enters the pipeline each clock cycle

store c

n - Iteration number

2 2

…

cgh.single_task<class swi_add>([=]() {
for (unsigned i = 0; i < 128; i++) {
c[i] = a[i] + b[i];

}
});

…

Copyright © 2021 Intel Corporation 106

c = a + b 1

load a load b 11

106

Understanding Initiation Interval

• dpcpp will infer pipelined parallel
execution across loop iterations

• Different stages of pipeline will ideally
contain different loop iterations

• Best case is that a new piece of data
enters the pipeline each clock cycle

store c

2

1

n - Iteration number

2 23 3

…

cgh.single_task<class swi_add>([=]() {
for (unsigned i = 0; i < 128; i++) {
c[i] = a[i] + b[i];

}
});

…

Copyright © 2021 Intel Corporation 107

107

Loop Pipelining vs Serial Execution

Serial execution is the worst case. One loop iteration needs to
complete fully before a new piece of data enters the pipeline.

For Begin

For End

Op 2

Op 3

Op 1

Op 2

Op 3

Op 1

i0

i1

i2

i2i2i3

i0

i1

Worst Case Best Case

Copyright © 2021 Intel Corporation 108

In-Between Scenario

▪ Sometimes you must wait more
than one clock cycle to input
more data

▪ Because dependencies can’t
resolve fast enough

▪ How long you have to wait is
called Initiation Interval or II

▪ Total number of cycles to run
kernel is about (loop iterations)*II

• (neglects initial latency)

▪ Minimizing II is key to
performance

0

…
v

…

…

…

…

1

II = 6

6 cycles later,
next iteration
enter the loop
body

Copyright © 2021 Intel Corporation 109

Why Could This Happen?

▪ Memory Dependency

• Kernel cannot retrieve
data fast enough from
memory

_accumulators[(THETAS*(rho+RHOS))+theta] += increment;

Value must be retrieved from global
memory and incremented

Copyright © 2021 Intel Corporation 110

What Can You Do? Use Local Memory

▪ Transfer global memory
contents to local memory
before operating on the data

…

constexpr int N = 128;
queue.submit([&](handler &cgh) {

auto A =

A_buf.get_access<access::mode::read_write>(cgh);

cgh.single_task<class unoptimized>([=]() {
for (unsigned i = 0; i < N; i++)

A[N-i] = A[i];
}

});

});
…

Non-optimized

…

constexpr int N = 128;
queue.submit([&](handler &cgh) {

auto A =

A_buf.get_access<access::mode::read_write>(cgh);

cgh.single_task<class optimized>([=]() {
int B[N];

for (unsigned i = 0; i < N; i++)
B[i] = A[i];

for (unsigned i = 0; i < N; i++)
B[N-i] = B[i];

for (unsigned i = 0; i < N; i++)
A[i] = B[i];

});

});
…

Optimized

Copyright © 2021 Intel Corporation 111

What Can You Do? Tell the Compiler About
Independence
▪ [[intelfpga::ivdep]]

• Dependencies ignored for all accesses to memory arrays

▪ [[intelfpga::ivdep(array_name)]]

• Dependency ignored for only array_name accesses

[[intelfpga::ivdep]]

for (unsigned i = 1; i < N; i++) {

A[i] = A[i – X[i]];

B[i] = B[i – Y[i]];

}

Dependency ignored for A and B array

[[intelfpga::ivdep(A)]]

for (unsigned i = 1; i < N; i++) {

A[i] = A[i – X[i]];

B[i] = B[i – Y[i]];

}

Dependency ignored for A array

Dependency for B still enforced

Copyright © 2021 Intel Corporation 112

Why Else Could This Happen?

▪ Data Dependency

• Kernel cannot
complete a calculation
fast enough

r_int[k] = ((a_int[k] / b_int[k]) / a_int[1]) / r_int[k-1];

Difficult double precision floating point
operation must be completed

Copyright © 2021 Intel Corporation 113

What Can You Do?

▪Do a simpler calculation

▪Pre-calculate some of the operations on the host

▪Use a simpler type

▪Use floating point optimizations (discussed later)

▪Advanced technique: Increase time (pipeline stages)
between start of calculation and when you use answer

• See the “Relax Loop-Carried Dependency” in the Optimization
Guide for more information

Copyright © 2021 Intel Corporation 114

114

▪ The compiler will still pipeline
an unrolled loop, combining the
two techniques

• A fully unrolled loop will not be pipelined
since all iterations will kick off at once

How Else to Optimize a
Loop? Loop Unrolling Stage 1 Stage 2 Stage 3

Time

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration

3

Iteration

2

Iteration

1

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration

6

Iteration

5

Iteration

4

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3

Stage 1 Stage 2 Stage 3Iteration

9

Iteration

8

Iteration

7

handle.single_task<>([=]() {
… //accessor setup
#pragma unroll 3
for (int i=1; i<9; i++) {
c[i] += a[i] + b[i];

}
});

Copyright © 2021 Intel Corporation 115

Maximum Clock Frequency (Fmax)

▪ The clock frequency the FPGA will be clocked at depends on what
hardware your kernel compiles into

▪ More complicated hardware cannot run as fast

▪ The whole kernel will have one clock

▪ The compiler’s heuristic is to get a lower II, sacrificing a higher Fmax

A slow operation can slow down your entire kernel by lowering the
clock frequency

Copyright © 2021 Intel Corporation 116

How Can You Tell This Is a Problem?

▪ Optimization report
tells you the target
frequency for each
loop in your code

cgh.single_task<example>([=]() {
int res = N;
#pragma unroll 8
for (int i = 0; i < N; i++) {

res += 1;
res ^= i;

}
acc_data[0] = res;

});

Copyright © 2021 Intel Corporation 117

What Can You Do?

▪Make the calculation simpler

▪Tell the compiler you’d like to change the trade off
between II and Fmax

• Attribute placed on the line before the loop

• Set to a higher II than what the loop currently has

[[intelfpga::ii(n)]]

Copyright © 2021 Intel Corporation 118

Area

▪ The compiler sacrifices area in order to improve loop performance.
What if you would like to save on the area in some parts of your
design?

• Give up II for less area

• Set the II higher than what compiler result is

• Give up loop throughput for area

• Compiler increases loop concurrency to achieve greater throughput

• Set the max_concurrency value lower than what the compiler result is

[[intelfpga::ii(n)]]

[[intelfpga::max_concurrency(n)]]

11
9Copyright © 2021 Intel Corporation

▪ Code to Hardware: An
Introduction

▪ Loop Optimization

▪ Memory Optimization

▪ Reports

▪ Other Optimization
Techniques

Section:
Introduction to
Optimizing FPGAs
with the Intel oneAPI
Toolkits

Sub-Topics:

Copyright © 2021 Intel Corporation 120

Understanding Board Memory Resources

Memory Type Physical
Implementation

Latency
for random access

(clock cycles)

Throughput
(GB/s)

Capacity
(MB)

Global DDR 240 34.133 8000

Local
On-chip RAM 2 ~8000 66

Registers 2/1 ~240 0.2

Key takeaway: many times, the solution for a bottleneck caused by slow
memory access will be to use local memory instead of global

Copyright © 2021 Intel Corporation 121

Global Memory Access is Slow – What to Do?

▪ We’ve seen this before... This
will appear as a memory
dependency problem

▪ Transfer global memory
contents to local memory
before operating on the data

…

constexpr int N = 128;
queue.submit([&](handler &cgh) {

auto A =

A_buf.get_access<access::mode::read_write>(cgh);

cgh.single_task<class unoptimized>([=]() {
for (unsigned i = 0; i < N; i++)

A[N-i] = A[i];
}

});

});
…

Non-optimized

…

constexpr int N = 128;
queue.submit([&](handler &cgh) {

auto A =

A_buf.get_access<access::mode::read_write>(cgh);

cgh.single_task<class optimized>([=]() {
int B[N];

for (unsigned i = 0; i < N; i++)
B[i] = A[i];

for (unsigned i = 0; i < N; i++)
B[N-i] = B[i];

for (unsigned i = 0; i < N; i++)
A[i] = B[i];

});

});
…

Optimized

Copyright © 2021 Intel Corporation 122

Local Memory Bottlenecks

▪ If more load and store points want
to access the local memory than
there are ports available, arbiters
will be added

▪These can stall, so are a potential
bottleneck

▪Show up in red in the Memory
Viewer section of the optimization
report

Copyright © 2021 Intel Corporation 123

Local Memory Bottlenecks

Natively, the memory architecture has 2 ports

The compiler uses optimizations to minimize arbitration

Your job is to write code the compiler can optimize

Local Memory Interconnect

M20K

M20K

M20K

M20K

M20K

M20K

Kernel Pipeline

port 0

port 1

Copyright © 2021 Intel Corporation 124

Double-Pumped Memory Example

▪ Increase the clock rate to 2x

▪ Compiler can automatically
implement double-pumped memory
– turning 2 ports to 4//kernel scope

...
int array[1024];

array[ind1] = val;

array[ind1+1] = val;

calc = array[ind2] + array[ind2+1];
…

Copyright © 2021 Intel Corporation 125

//kernel scope
…

int array[1024];
int res = 0;

array[ind1] = val;
#pragma unroll
for (int i = 0; i < 9; i++)
res += array[ind2+i];

calc = res;
…

Local Memory Replication Example

ST

LD

Turn 4 ports of double-pumped memory to unlimited ports

Drawbacks: logic resources, stores must go to each replication

Copyright © 2021 Intel Corporation 126

Coalescing

//kernel scope
…
local int array[1024];
int res = 0;

#pragma unroll
for (int i = 0; i < 4; i++)

array[ind1*4 + i] = val;

#pragma unroll
for (int i = 0; i < 4; i++)

res += array[ind2*4 + i];

calc = res;
…

Continuous addresses can be
coalesced into wider accesses

Copyright © 2021 Intel Corporation 127

Banking

▪ Divide the memory into independent fractional
pieces (banks)

//kernel scope
…
int array[1024][2];

array[ind1][0] = val1;
array[ind2][1] = val2;

calc = (array[ind2][0] +
array[ind1][1]);

…

Copyright © 2021 Intel Corporation 128

Attributes for Local Memory Optimization

Attribute Usage

numbanks [[intelfpga::numbanks(N)]]

bankwidth [[intelfpga::bankwidth(N)]]

singlepump [[intelfpga::singlepump]]

doublepump [[intelfpga::doublepump]]

max_replicates [[intelfpga::max_replicates(N)]]

simple_dual_port [[intelfpga::simple_dual_port]]
Note: This is not a comprehensive list. Consult the Optimization Guide for more.

Note: Let the compiler try on it’s own first.
It’s very good at inferring an optimal structure!

Copyright © 2021 Intel Corporation 129

Pipes – Element the Need for Some Memory

Create custom direct point-to-point communication
between CCPs with Pipes

CCP 1 CCP 2 CCP 3Pipe Pipe

Global Memory

Copyright © 2021 Intel Corporation 130

Task Parallelism By Using Pipes

▪ Launch separate kernels simultaneously

▪ Achieve synchronization and data sharing using pipes

▪ Make better use of your hardware

13
1Copyright © 2021 Intel Corporation

▪ Code to Hardware: An
Introduction

▪ Loop Optimization

▪ Memory Optimization

▪ Reports

▪ Other Optimization
Techniques

Section:
Introduction to
Optimizing FPGAs
with the Intel oneAPI
Toolkits

Sub-Topics:

Copyright © 2021 Intel Corporation 132

HTML Optimization Report

▪Static report showing optimization, area, and architectural
information

•Automatically generated with the object file

• Located in <file_name>.prj\reports\report.html

•Dynamic reference information to original source code

Copyright © 2021 Intel Corporation 133

Optimization Report – Throughput Analysis

▪ Loops Analysis and Fmax II
sections

▪ Actionable feedback on
pipeline status of loops

▪ Show estimated Fmax of each
loop

Copyright © 2021 Intel Corporation 134

Optimization Report – Area Analysis

▪ Generate detailed estimated
area utilization report of kernel
scope code

• Detailed breakdown of resources by
system blocks

• Provides architectural details of HW

• Suggestions to resolve inefficiencies

Copyright © 2021 Intel Corporation 135

▪ The system view of the
Graph Viewer shows
following types of
connections

• Control

• Memory, if your design has
global or local memory

• Pipes, if your design uses
pipes

Optimization Report – Graph Viewer

Copyright © 2021 Intel Corporation 136

Optimization Report – Schedule Viewer

Schedule in clock
cycles for different
blocks in your
code

Copyright © 2021 Intel Corporation 137

HTML Kernel Memory Viewer

▪ Helps you identify data
movement bottlenecks in your
kernel design. Illustrates:

• Memory replication

• Banking

• Implemented arbitration

• Read/write capabilities of each
memory port

13
8Copyright © 2021 Intel Corporation

▪ Code to Hardware: An
Introduction

▪ Loop Optimization

▪ Memory Optimization

▪ Reports

▪ Other Optimization
Techniques

Section:
Introduction to
Optimizing FPGAs
with the Intel oneAPI
Toolkits

Sub-Topics:

Copyright © 2021 Intel Corporation 139

Avoid Expensive Functions

▪Expensive functions take a lot of hardware and run
slow

▪Examples

• Integer division and modulo (remainder) operators

•Most floating-point operations except addition,
multiplication, absolution, and comparison

•Atomic functions

Copyright © 2021 Intel Corporation 140

Inexpensive Functions

▪ Use instead of expensive functions whenever possible

• Minimal effects on kernel performance

• Consumes minimal hardware

▪ Examples

• Binary logic operations such as AND, NAND, OR, NOR, XOR, and XNOR

• Logical operations with one constant argument

• Shift by constant

• Integer multiplication and division by a constant that is to the power of 2

• Bit swapping (Endian adjustment)

Copyright © 2021 Intel Corporation 141

Use Least-“Expensive” Data Type

▪ Understand cost of each data type in latency and logic usage

• Logic usage may be > 4x for double vs. float operations

• Latency may be much larger for float and double operations compared to
fixed point types

▪ Measure or restrict the range and precision (if possible)

• Be familiar with the width, range and precision of data types

• Use half or single precision instead of double (default)

• Use fixed point instead of floating point

• Don’t use float if short is sufficient

Copyright © 2021 Intel Corporation 142

Floating-Point Optimizations

▪ Applies to half, float and double data types

▪ Optimizations will cause small differences in floating-point results

• Not IEEE Standard for Floating-Point Arithmetic (IEEE 754-2008) compliant

▪ Floating-point optimizations:

• Tree Balancing

• Reducing Rounding Operations

Copyright © 2021 Intel Corporation 143

Tree-Balancing

▪ Floating-point operations are not associative

• Rounding after each operation affects the outcome

• i.e. ((a+b) + c) != (a+(b+c))

▪ By default the compiler doesn’t reorder floating-point operations

• May creates an imbalance in a pipeline, costs latency and possibly area

▪ Manually enable compiler to balance operations

• For example, create a tree of floating-point additions in SGEMM, rather than
a chain

• Use -Xsfp-relaxed=true flag when calling dpcpp

Copyright © 2021 Intel Corporation 144

Rounding Operations

▪ For a series of floating-point operations, IEEE 754 require multiple
rounding operation

▪ Rounding can require significant amount of hardware resources

▪ Fused floating-point operation

• Perform only one round at the end of the tree of the floating-point
operations

• Other processor architectures support certain fused instructions such as
fused multiply and accumulate (FMAC)

• Any combination of floating-point operators can be fused

▪ Use dpcpp compiler switch -Xsfpc

14
5Copyright © 2021 Intel Corporation

References and Resources

Copyright © 2021 Intel Corporation 146

References and Resources

▪ Website hub for using FPGAs with oneAPI

• https://software.intel.com/content/www/us/en/develop/tools/oneapi/compo
nents/fpga.html

▪ Intel® oneAPI Programming Guide

• https://software.intel.com/content/www/us/en/develop/download/intel-
oneapi-programming-guide.html

▪ Intel® oneAPI DPC++ FPGA Optimization Guide

• https://software.intel.com/content/www/us/en/develop/download/oneapi-
fpga-optimization-guide.html

▪ FPGA Tutorials GitHub

• https://github.com/intel/BaseKit-code-samples/tree/master/FPGATutorials

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fpga.html
https://software.intel.com/content/www/us/en/develop/download/intel-oneapi-programming-guide.html
https://software.intel.com/content/www/us/en/develop/download/oneapi-fpga-optimization-guide.html
https://github.com/intel/BaseKit-code-samples/tree/master/FPGATutorials

14
7Copyright © 2021 Intel Corporation

Lab: Optimizing the Hough Transform
Kernel

Copyright © 2021 Intel Corporation 148

Lab instructions

▪ Download to DevCloud the provided event_labs.zip file

▪ Open a terminal in your Jupyter server

▪ Unzip the file

▪ In the Jupyter server, navigate to labs/lab3

▪ Open Hough_transform_lab.pdf and follow the instructions

Copyright © 2021 Intel Corporation 149

Legal Disclaimers/Acknowledgements

▪ Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

▪ Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of
that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

▪ Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates.
See backup for configuration details. No product or component can be absolutely secure.

▪ Your costs and results may vary.

▪ Intel technologies may require enabled hardware, software or service activation

▪ No product or component can be absolutely secure

▪ Your costs and results may vary

▪ Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may
be claimed as the property of others

▪ OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

▪ *Other names and brands may be claimed as the property of others

15
0Copyright © 2021 Intel Corporation

Copyright © 2021 Intel Corporation.

This document is intended for personal use only.

Unauthorized distribution, modification, public
performance, public display, or copying of this material via

any medium is strictly prohibited.

15
1

