Compiling Circuits with Polyhedra A geometric perspective for HLS

Christophe Alias

INRIA, CNRS, ENS de Lyon, Université de Lyon, France

Scientific Computing Accelerated on FPGAs Saclay, July 7, 2022

XtremLogic

Research interests:

- High-level compilation, focused on automatic parallelization
- Application to HLS for FPGA

Non-academic interests:

Proud co-founder of the XtremLogic start-up (part of this talk)

!!!Job offering on compilers and/or HLS (Lyon)!!!

- PhD, postdocs
- Faculty positions (MCF/CR)

Contact: christophe.alias@inria.fr

Outline

Introduction

- Target: FPGA
- HLS: the mainstream approach

2 Integrated Approach: Data-Aware Process Networks

- Data-aware process networks
- Back-end
- Experimental results

3 Source-to-Source: Affine Multibanking

- Motivations
- Our approach
- Experimental results

Target: FPGA accelerators (1/2)

Field-Programmable Gate Array:

- Look-up tables (LUT), multiplexers, registers
- DSPs
- BRAMs

- Programming an FPGA = designing a circuit!
- Existing C-to-circuit compilers, not out-of-the-box!

Target: FPGA accelerators (2/2)

Promises:

- Teraflops, with a better energy efficiency than GPUs
- Flexible programming model (not limited to data parallelism)

Challenges:

- Few local memory (tens of MB)
- No OS, no parallel runtime. Everything must be compiled!
- High-level translation required!

High-Level Synthesis at a glance

High-Level Synthesis (HLS): $\mathsf{Program} \to \mathsf{Hardware}$

- Typically: compute-intensive kernel \rightarrow hardware accelerator IP
- Target: ASIC or FPGA

Typical flow:
$$C \xrightarrow{HLS} RTL \xrightarrow{synthesis} Hardware$$

Architecture model:

- Von-Neumann (VivadoHLS)
- Synchronous dataflow (e.g. systolic networks) (AlphaZ)
- Asynchronous dataflow (e.g. KPN, RPN partitioning) (Dcc)

HLS tool: C program \rightarrow specialized von-Neumann architecture

Translation schemes: undocumented, but based on J. Cong's Autopilot HLS tool: loop/array transformations, then classical CFG-based C-to-Hardware.

Code optimizations: triggered with user-defined pragmas, and through GUI configuration options.

Low-level and conservative, as the dependence analysis!

Loop transformations: back to the 80s

Loop unroll: exposes cross-iteration parallelism

- Decrease loop overhead, increase parallelism
- More operations \Rightarrow area and power.

Loop transformations: back to the 80s

Loop unroll: exposes cross-iteration parallelism

- Decrease loop overhead, increase parallelism
- More operations \Rightarrow area and power.

Loop pipelining: Consecutive iterations executed in a pipelined fashion. *Key metric:* initiation interval, II.

- Controlled parallelism and footprint, through II
- Spoilt by conservative dependence analysis!

```
for(i=0; i<N; i++)
#pragma HLS PIPELINE II=1
C[i] = A[i]*B[i];</pre>
```


Multibanking: Partition data across memory banks readable in parallel

 \longrightarrow

Vivado HLS: language-level array partitioning

- Array dimension(s) to be partitioned
- Array partitioning:
 - (cyclic or block) + factor
 - complete

$$0 \quad 1 \quad \dots \quad N-1$$

block(2)

0	1		N/2 - 1
N/2		N-2	N-1

cyclic(2)

0 2			<i>N</i> – 2		
1		<i>N</i> – 3	N-1		

complete


```
#pragma HLS ARRAY_PARTITION
variable=y complete dim=1
#pragma HLS ARRAY_PARTITION
variable=A complete dim=1
for(i=0; i<N; i++)
#pragma HLS PIPELINE
for(j=0; j<N; j++)
y[i] += A[i][j]*x[j];</pre>
```


Synthesis results: (VivadoHLS 2019.1, Kintex 7 FPGA)

Kernel	Version	Latency	Speed-up	Period (ns)	DSP	FF	LUT
matvec	Baseline	532	10.2	6.9	320	4799	4423
	With banking	52		6.3	320	67618	13518

Use case 2: 2D convolution

$$\begin{array}{l} & \text{for } (i=1; \ i < \mathbb{N} - 1; \ i + +) \\ & \text{for } (j=1; \ j < \mathbb{N} - 1; \ j + +) \\ & \text{out } [i,j] = \\ & \text{in } [i-1,j-1] + \text{in } [i-1,j] + \text{in } [i-1,j+1] + \\ & \text{in } [i,j-1] + \text{in } [i,j] + \text{in } [i,j+1] + \\ & \text{in } [i+1,j-1] + \text{in } [i+1,j] + \text{in } [i+1,j+1]; \ //S \end{array}$$

 $BANK_{in}(i,j) = i + 3j \mod 9$ OFFSET_{in} $(i,j) = j \mod N$

Methodology

- $in[u(\vec{i})] \mapsto \hat{in}[BANK_{in}(u(\vec{i}))][OFFSET_{in}(u(\vec{i}))]$
- Add pragmas to partition the bank dimensions: option cyclic, factor=9
- Automation and results: later on the talk!

(Negative) conclusion on mainstream HLS

Promises:

- Full fledge C-to-circuit: programming FPGA as any HA.
- No circuit skills required

Reality:

- Lack of high-level parallelization algorithms: 80's code optimizations, triggered by hand.
- Undocumented compilation scheme: hard to tune
- Poor performances

How to improve the HLS process?

Towards Higher-Level Synthesis

Approaches:

- **integrated:** throw away mainstream HLS tools, write our own.
- **source-to-source:** consider HLS tools as assemblers, recycle source-level code transformations

Challenges:

- all-static: parallelisation decisions at compile time
- (very large) scalability: thousands of parallel units must be considered.

Outline

Introduction

- Target: FPGA
- HLS: the mainstream approach

2 Integrated Approach: Data-Aware Process Networks

- Data-aware process networks
- Back-end
- Experimental results

3 Source-to-Source: Affine Multibanking

- Motivations
- Our approach
- Experimental results

4 Conclusion and Perspectives

Contributions

A complete, fully automated, C-to-FPGA approach:

- Data-aware Process Networks (DPN), a dataflow intermediate representation for high-level synthesis of HPC kernels.
- Explicit data spilling, tunable parallelism and arithmetic intensity.
- A front-end $C \rightarrow DPN$, and a back-end $DPN \rightarrow FPGA$.
- Regular Process Networks (RPN), a generalization of DPN inducing a general HLS methodology.

• Loop nests manipulating arrays, all-affine

2 3

4 5

- Loop nests manipulating arrays, all-affine
- All-affine world:

 $\phi(i,j) = (i,j)$

- Loop nests manipulating arrays, all-affine
- All-affine world:

 $\phi(i,j) = (i,j) \qquad \theta(I,J,i,j) = (I+J,i,j)$

step 1

step 2

step 3

step 1

step 2

step 3

Dataflow representation of polyhedral programs

for
$$i := 0$$
 to $2N$
S: $c[i] := 0;$
for $i := 0$ to N
for $j := 0$ to N
T: $c[i+j] := c[i+j] + a[i]*b[j];$

Exact dataflow is computable:

$$\sigma(\langle T, i, j \rangle, 1) = \begin{cases} \langle T, i-1, j+1 \rangle & 0 \le i-1, j+1 \le N \\ \langle S, i+j \rangle & \text{otherwise} \end{cases}$$

Dataflow representation of polyhedral programs

for
$$i := 0$$
 to $2N$
S: $c[i] := 0;$
for $i := 0$ to N
for $j := 0$ to N
T: $c[i+j] := c[i+j] + a[i]*b[j];$

Exact dataflow is computable:

$$\sigma(\langle T, i, j \rangle, 1) = \begin{cases} \langle T, i-1, j+1 \rangle & 0 \le i-1, j+1 \le N \\ \langle S, i+j \rangle & \text{otherwise} \end{cases}$$

Polyhedral programs might be translated to a dataflow compliant equational representation (SARE):

$$\left\{ \begin{array}{ll} S[i] = 0 & 0 \le i \le 2N \\ T[i,j] = T[i-1,j+1] + a[i] * b[j] & 0 \le i-1, j+1 \le N \\ T[i,j] = S[i+j] + a[i] * b[j] & \text{otherwise} \end{array} \right.$$

1) Regular process networks: We combine that representation with partitionings computation \mapsto processes and data \mapsto channels

2) Data-aware process network: We define DPN as a RPN partitioning induced by a loop tiling

for
$$i := 0$$
 to N
• $a[i] = f(i);$
for $i := 1$ to N
• $b[i] := a[i-1] + a[i];$

- Partition of the computation: processes
- Partition of \rightarrow_{pc} : channels $\{\rightarrow_1, \rightarrow_2, \ldots\}$
- A schedule θ_P for each process P

•
$$b[i] := a[i-1] + a[i];$$

- Partition of the computation: processes
- Partition of \rightarrow_{pc} : channels $\{\rightarrow_1, \rightarrow_2, \ldots\}$
- A schedule θ_P for each process P

•
$$b[i] := a[i-1] + a[i];$$

- Partition of the computation: processes
- Partition of \rightarrow_{pc} : channels $\{\rightarrow_1, \rightarrow_2, \ldots\}$
- A schedule θ_P for each process P

for
$$i := 0$$
 to N
• $a[i] = f(i);$
for $i := 1$ to N
• $b[i] := a[i-1] + a[i]$

- Partition of the computation: processes
- Partition of \rightarrow_{pc} : channels $\{\rightarrow_1, \rightarrow_2, \ldots\}$
- A schedule θ_P for each process P

for
$$i := 0$$
 to N
• $a[i] = f(i);$
for $i := 1$ to N
• $b[i] := a[i-1] + a[i];$

Locally sequential Globally dataflow

- Partition of the computation: processes
- Partition of \rightarrow_{pc} : channels $\{\rightarrow_1, \rightarrow_2, \ldots\}$
- A schedule θ_P for each process P

for
$$i := 0$$
 to N
• $a[i] = f(i);$
for $i := 1$ to N
• $b[i] := a[i-1] + a[i]$

Locally sequential Globally dataflow

- Process and channel implementation abstracted away
- Bridge polyhedral model \leftrightarrow dataflow models

- RPN partitioning induced by a loop tiling
- Communications: consider tile bands as reuse units
 →Pipeline: Load(T) → C(T) → Store(T)

- RPN partitioning induced by a loop tiling
- Communications: consider tile bands as reuse units
 →Pipeline: Load(T) → C(T) → Store(T)

- RPN partitioning induced by a loop tiling
- Communications: consider tile bands as reuse units
 →Pipeline: Load(T) → C(T) → Store(T)

Parallelism: split tile band with outer tiling hyperplanes

Data-aware process networks (DPN) [CC21]

Software: dcc (DPN C Compiler) Transferred to XtremLogic under an Inria license

Focus: channel typing

Goals

- Compile DPN channels
- Preferably with FIFO
 - \rightsquigarrow light silicon surface, less synchronization overhead

Challenge

DPN relies on loop tiling, which breaks most FIFO patterns

Approach

- Restructure the channels so most FIFO patterns are recovered
- Theorem: the recovery is complete on DPN

Communication patterns

A channel might be implemented by a FIFO iff

- the values are read in the production order (in-order)
- each value is read exactly once (unicity)

How loop tiling breaks FIFO channels

Solution: channel restructuring

SPLIT
$$(\rightarrow_c, \theta_P, \theta_C)$$

for $k := 1$ to n
ADD $(\rightarrow_c \cap \{(x, y), \theta_P(x) \ll^k \theta_C(y)\});$
ADD $(\rightarrow_c \cap \{(x, y), \theta_P(x) \approx^n \theta_C(y)\});$

FIFOIZE($(\mathcal{P}, \mathcal{C})$) **for each** channel c $\{\rightarrow_c^1, \ldots, \rightarrow_c^{n+1}\} := \text{SPLIT}(\rightarrow_c, \theta_{P_c}, \theta_{C_c});$ **if** fifo $(\rightarrow_c^k, \prec_{\theta_{P_c}}, \prec_{\theta_{C_c}}) \forall k$ REMOVE $(\rightarrow_c);$ INSERT $(\rightarrow_c^k) \forall k;$

Experimental evaluation

Kernel	#buffers	#fifos	total fifo size	total size	#fifo basic	#fifo passed	#fifo fail	#fifo restored	%fail
trmm	12	12	516	516	2	1	1	1	0
gemm	12	12	352	352	2	1	1	1	0
syrk	12	12	8200	8200	2	1	1	1	0
symm	30	30	1644	1644	6	5	1	1	0
gemver	15	13	4180	4196	4	3	1	1	0
gesummv	12	12	96	96	6	6	0	0	0
syr2k	12	12	8200	8200	2	1	1	1	0
lu	45	22	540	1284	3	0	3	3	0
trisolv	12	9	23	47	4	3	1	1	0
cholesky	44	31	801	1129	6	4	2	2	0
doitgen	32	32	12296	12296	3	2	1	1	0
bicg	12	12	536	536	4	2	2	2	0
mvt	8	8	36	36	2	0	2	2	0
3mm	53	43	5024	5664	6	3	3	3	0
2mm	34	28	1108	1492	4	2	2	2	0
covariance	45	24	542	1662	7	4	3	3	0
correlation	71	38	822	2038	13	9	4	4	0
fdtd-2d	120	120	45696	45696	12	5	7	7	0
jacobi-2d	123	123	10328	10328	10	2	8	8	0
seidel-2d	102	102	60564	60564	9	2	7	7	0
jacobi-1d	23	23	1358	1358	6	2	4	4	0
heat-3d	95	95	184864	184864	20	2	18	18	0

• PolyBench/C v3.2 kernels

• Completeness of recovery on DPN partitioning

Kernels: PolyBench/C v3.2

Target:

- Xilinx VCU1525 board, Virtex Ultra Scale+ FPGA
- 64 GB DDR quad DIMM, maximum bandwidth: 76.8 GB/s

Synthesis: Xilinx Vivado version 18.3

Simulation: XSim (light) + SDAccel (complete)

Kernel	Cycles	Comms (MB)	Orig Comms (MB)	Period (ns)	LUT	RAMB36	RAMB18	URAM	DSP
gemm	484770	0.147	5.038	4.5	10275	97	13	0	41
gemm ×16	110044	-	-	5.2	74531	425	104	0	131
bicg	295224	0.132	0.375	3.4	13237	88	17	1	4
bicg ×16	20816	-	-	4.1	104992	538	168	0	64
jacobi-1d	45010	0.016	0.890	2.4	12987	112	11	0	0
jacobi-1d ×16	19328	-	-	2.9	94136	322	191	0	0

- Cycles ratio: bicg: 14, gemm: 4, jacobi-1d: 2 (tight schedule, process synchronization)
- Data reuse properly exploited
- Stable frequency
- \times 7 LUT, \times 4 6 BRAM (common MMU)

Conclusion (for this part)

Contributions:

- The data-aware process networks, a dataflow model for HLS in the polyhedral model
- A general HLS methodology based on regular process networks
- A complete front-end $C \rightarrow DPN$ and back-end $DPN \rightarrow circuit$
- Industrial transfer: XtremLogic

http://www.xtremlogic.com

Conclusion (for this part)

Contributions:

- The data-aware process networks, a dataflow model for HLS in the polyhedral model
- A general HLS methodology based on regular process networks
- A complete front-end $C \rightarrow DPN$ and back-end $DPN \rightarrow circuit$
- Industrial transfer: XtremLogic

Future work:

- Increase the abstraction of the input language
- Multibanking support to handle HBM memory
- RPN partionning strategies for heterogeneous systems

http://www.xtremlogic.com

Outline

Introduction

- Target: FPGA
- HLS: the mainstream approach

Integrated Approach: Data-Aware Process Networks

- Data-aware process networks
- Back-end
- Experimental results

3 Source-to-Source: Affine Multibanking

- Motivations
- Our approach
- Experimental results

4 Conclusion and Perspectives

Challenge: arrays are stored in memories with few read ports, this hinders parallelism

Approach:

- map memory cells accessed in parallel to distinct memory banks.
- automatically, as a source-to-source polyhedral code transformation

```
 \begin{array}{l} & \text{for} \left( \texttt{i=1; i < N-1; i++} \right) \\ & \text{for} \left( \texttt{j=1; j < N-1; j++} \right) \\ & \text{out} \left[ \texttt{i,j} \right] = \\ & \text{in} \left[ \texttt{i-1,j-1} \right] + \texttt{in} \left[ \texttt{i-1,j} \right] + \texttt{in} \left[ \texttt{i-1,j+1} \right] + \\ & \text{in} \left[ \texttt{i,j-1} \right] + \texttt{in} \left[ \texttt{i,j+1} \right] + \\ & \text{in} \left[ \texttt{i+1,j-1} \right] + \texttt{in} \left[ \texttt{i+1,j+1} \right] + \\ & \text{in} \left[ \texttt{i+1,j-1} \right] + \texttt{in} \left[ \texttt{i+1,j+1} \right]; \ //S \end{array}
```


BANK_{in} $(i,j) = 3i + j \mod 9$ OFFSET_{in} $(i,j) = i \mod N$

Global (inter-array) allocation:

- BANK_a(\vec{i}): bank number of $a[\vec{i}]$ (can be a vector)
- OFFSET_a(\vec{i}): offset of $a[\vec{i}]$ into his bank (can be a vector)

source-to-source transformation:

- $a[u(\vec{i})] \mapsto \hat{a}[\text{Bank}_a(u(\vec{i}))][\text{Offset}_a(u(\vec{i}))]$
- Add pragmas to partition the bank dimensions

Focus: affine transformations (easier to derive)

• BANK_a(
$$\vec{i}$$
) = $\phi_a(\vec{i}) \mod \sigma(\vec{N})$
• OFFSET_a(\vec{i}) = $\psi_a(\vec{i}) \mod \tau(\vec{N})$

Methodology: Write the correctness/efficiency constraints as affine constraints, then give to an ILP solver.

Banking contraints

Correctness: enforce distinct banks for concurrent access

 $a(\vec{i}) \parallel_{\theta} b(\vec{j}) \land (a, \vec{i}) \neq (b, \vec{j}) \Rightarrow \text{BANK}_{a}(\vec{i}) \neq \text{BANK}_{b}(\vec{j})$ Relaxed as:

$$a(\vec{i}) \parallel_{\theta} b(\vec{j}) \land (a, \vec{i}) \neq (b, \vec{j}) \Rightarrow \phi_a(\vec{i}) \ll \phi_b(\vec{j})$$

Efficiency: reduce bank numbers

$$\phi_b(\vec{j}) - \phi_a(\vec{i}) \leq \sigma(\vec{N})$$
 then minimize $\sigma(\vec{N})$

Analogous to affine scheduling:

operation	array cell
dependence	concurrent access
latency	number of banks

Banking algorithm

Input: Program (P, θ) **Output:** Bank mapping BANK_a : $(\vec{i}, \vec{N}) \mapsto \phi_a(\vec{i}) \mod \sigma(\vec{N})$, for each array *a*

Banking algorithm

Input: Program (P, θ) **Output:** Bank mapping BANK_a : $(\vec{i}, \vec{N}) \mapsto \phi_a(\vec{i}) \mod \sigma(\vec{N})$, for each array a

- $C \leftarrow \{ (a(\vec{i}), b(\vec{j})) \mid a(\vec{i}) \parallel_{\theta} b(\vec{j}) \land \vec{i} \ll \vec{j} \land \vec{i} \in \mathcal{D}_{a} \land \vec{j} \in \mathcal{D}_{b} \}$ $d \leftarrow 0$
- **③** while $C \neq \emptyset$
 - $\min_{\ll} \sigma^d$ coefficients s.t. CORRECT $(\mathcal{C}, \phi^d) \land \text{EFFICIENT}(\mathcal{C}, \phi^d, \sigma^d) \land \phi^d$ non-constant • $\mathcal{C} \leftarrow \mathcal{C} \cap \{(a(\vec{i}), b(\vec{j})) \mid \phi^d_a(\vec{i}) = \phi^d_b(\vec{j})\}$ • $d \leftarrow d + 1$

Interpretation of the second secon

 $\begin{aligned} &\text{CORRECT}(\mathcal{C},\phi): (\pmb{a}(\vec{i}),\pmb{b}(\vec{j})) \in \mathcal{C} \land \vec{i} \ll \vec{j} \Rightarrow \phi_{\pmb{a}}(\vec{i}) \leq \phi_{\pmb{b}}(\vec{j}) \\ &\text{EFFICIENT}(\mathcal{C},\phi,\sigma): (\pmb{a}(\vec{i}),\pmb{b}(\vec{j})) \in \mathcal{C} \land \vec{i} \ll \vec{j} \Rightarrow \phi_{\pmb{b}}(\vec{j}) - \phi_{\pmb{a}}(\vec{i}) \leq \sigma(\vec{N}) \end{aligned}$

Correctness: enforce distinct offsets for conflicting array cells

 $\operatorname{BANK}_{\mathfrak{a}}(\vec{i}) = \operatorname{BANK}_{b}(\vec{j}) \wedge \mathfrak{a}(\vec{i}) \bowtie_{\theta} b(\vec{j}) \wedge (\mathfrak{a}, \vec{i}) \neq (b, \vec{j}) \Rightarrow \operatorname{OFFSET}_{\mathfrak{a}}(\vec{i}) \neq \operatorname{OFFSET}_{b}(\vec{j})$ Relaxed as:

$$\phi_{\mathsf{a}}(ec{i}) = \phi_{\mathsf{b}}(ec{j}) \wedge \mathsf{a}(ec{i}) \Join_{ heta} \mathsf{b}(ec{j}) \wedge (\mathsf{a},ec{i})
eq (\mathsf{b},ec{j}) \Rightarrow \psi_{\mathsf{a}}(ec{i}) \ll \psi_{\mathsf{b}}(ec{j})$$

Efficiency: minimize the number of offsets (into a same bank)

$$\phi_{a}(\vec{i}) = \phi_{b}(\vec{j}) \Rightarrow \psi_{b}(\vec{j}) - \psi_{a}(\vec{i}) \leq \tau(\vec{N})$$

Again, analogous to affine scheduling:

operation	array cell			
dependence	liveness conflict			
latency	number of offsets			

Setup:

- VivadoHLS 2019.1
- Target: Kintex 7 FPGA (XC6K70T-FBV676-1)

Benchmarks:

- Linear algebra: matvec, matmul
- Stencils: jacobi2d, seidel2d
- Convolutions: conv2d, canny, gaussian, median, prewitt

Preliminary prototyping, using fkcc

Experimental results

Kernel	Version	Latency	Speed-up	Period (ns)	DSP	FF	LUT
matvec	Baseline	532	10.2	6.9	320	4799	4423
	With banking	52		6.3	320	67618	13518
matmul	Baseline	1555	29.9	6.8	10240	135581	123129
	With banking	52		6.3	10240	196648	152161
conv2d	Baseline	1442	29.4	6.1	0	923	4290
	With banking	49		6.9	0	65562	33043
jacobi2d	Baseline	11011	1.6	6.1	0	117140	96019
	With banking	6851		7.0	0	192295	137499
seidel2d	Baseline	6914	2.0	6.5	0	452	1280
	With banking	3458		6.6	0	574	2903
canny	Baseline	10194	4.3	6.8	0	669	1837
	With banking	2355		6.6	0	6616	6085
gaussian	Baseline	3922	1.7	5.8	0	449	1012
	With banking	2354		5.8	0	2367	2811
median	Baseline	3362	1.3	6.1	0	373	846
	With banking	2522		5.8	0	2367	2501
prewitt	Baseline	3846	2.0	6.1	0	371	906
	With banking	1924		6.9	0	2249	2142

• **Trade-off** surface \leftrightarrow performance still to be explored

Contributions:

- A general formalization & algorithm for affine multibanking
- Our approach reduces the number of banks and the maximal bank size, without hindering parallel accesses.
- Promising (but still preliminary) experimental validation

Perspectives:

- Common bank size, minimize each bank size
- Investigate the trade-off circuit size/latency (through tiling?)

Outline

Introduction

- Target: FPGA
- HLS: the mainstream approach

Integrated Approach: Data-Aware Process Networks

- Data-aware process networks
- Back-end
- Experimental results

3 Source-to-Source: Affine Multibanking

- Motivations
- Our approach
- Experimental results

Models and algorithms for polyhedral HLS:

• Integrated:

- DPN, a dataflow intermediate representation cross fertilizing dataflow models and partitioning
- Benefits: explicit data spilling, natural tuning of arithmetic intensity and parallelism

Source-to-source:

- Affine multibanking, as a VivadoHLS preprocessing
- Benefits: general, HLS independent

Major concepts:

- (affine) tiling, the key transformation
- dataflow models, the key representation

Partial compilation

- Let parameters (parallelism, local footprint) survive the compilation
- Application: HLS/FPGA: tune the parallelism of a circuit
- Challenges: How to parametrize a DPN? What would be a generic parallel process?

Partial compilation

- Let parameters (parallelism, local footprint) survive the compilation
- Application: HLS/FPGA: tune the parallelism of a circuit
- Challenges: How to parametrize a DPN? What would be a generic parallel process?

Lazy compilation

- Complexity: set subtraction, min/max of piecewise affine mappings
- Idea: hide complexity with lazy values, evaluated dynamically (e.g. $R := P \setminus Q$)
- Challenges: How to compose/simplify lazy values? How to rephrase compiler analysis with lazy values?

Questions?

for
$$i := 0$$
 to $N - 1$
 $y[i] := 0; //S$
for $j := 0$ to $N - 1$
 $y[i] := y[i] + a[i, j] * x[j] //T$

