A direct and at nanometer scale study of electrical charge distribution on membranes of alive cells.

Christian Marlière

christian.marlière@u-psud.fr

Outline :

✓ Introduction

✓ Principle of measurement

✓ Experimental

✓ Results #1: '*'fast*'' regime

✓ Results #2: "*slow*" regime

✓ Next future

 \checkmark Conclusion

Bacterial adhesion and formation of biofilms

84588 8.8 W 40.0K 2500

Bacterial adhesion and formation of biofilms

84588 8.8 W +48.8K 2586

AFM: Atomic Force Microscopy

AFM: Atomic Force Microscopy

<u>AFM: Atomic Force Microscopy</u>

AFM: Atomic Force Microscopy

AFM: Atomic Force Microscopy

Electrostatic forces

In air / under vacuum

$$F_{\text{DLVO}}(z) = -\frac{H_{\text{a}}R_{\text{glo}}}{6(z+R_{\text{loc}})^2}$$

Biophys_J_1999_Muller et al.

Electrostatic forces

Aqueous medium at *low* Ionic Strength

$$F_{DLVO}(z) = -\frac{H_a R_{glo}}{6(z + R_{loc})^2}$$

Biophys_J_1999_Muller et al.

Electrostatic forces

Aqueous medium with *higher* Ionic Strength

Principle of measurement

Nanoscale

Cite this: Nanoscale, 2015, 7, 8843

PAPER

An *in vivo* study of electrical charge distribution on the bacterial cell wall by atomic force microscopy in vibrating force mode[†]

Christian Marlière*^a and Samia Dhahri^b

C. Marlière et al., Nanoscale, (2015), 7, 8843

Principle of measurement

<u>Interface Stress:</u> Γ

Interface Tension : γ

$$\Gamma_{AB} = \frac{d\gamma_{AB}}{d\varepsilon_{\parallel}} + \gamma_{AB}$$

Shuttleworth's equation

Shuttleworth, R., Proc. Phys. Soc. Sect. A (1950)

Under some hypothesis :

$$\Gamma_{AB} \sim \gamma_{AB}$$

Interface Tension : γ

$$\Gamma_{AB} = \frac{d\gamma_{AB}}{d\varepsilon_{\parallel}} + \gamma_{AB}$$

Shuttleworth's equation

Shuttleworth, R., Proc. Phys. Soc. Sect. A (1950)

Under some hypothesis :

$$\Gamma_{AB} \sim \gamma_{AB}$$

• $-d\gamma = \sigma^{M} dE_{-} + \Gamma_{K^{+}} d\mu_{KCl} + \Gamma_{M} d\mu_{M}$ Electro-capillary equation

σ ≈ excess surface charge density

Bard et Faulkner (2000), Electrochemical Methods

Interface Tension : γ

$$\Gamma_{AB} = rac{d\gamma_{AB}}{d\varepsilon_{\parallel}} + \gamma_{AB}$$

Shuttleworth's equation

Shuttleworth, R., Proc. Phys. Soc. Sect. A (1950)

Under some hypothesis :

$$\Gamma_{AB} \sim \gamma_{AB}$$

•
$$-d\gamma = \sigma^{M} dE_{-}$$

Lippmann's equation

 $\sigma \approx excess surface charge density$

Bard et Faulkner (2000), Electrochemical Methods

Interface Tension : γ

$$\Gamma_{AB} = \frac{d\gamma_{AB}}{d\varepsilon_{\parallel}} + \gamma_{AB}$$

Shuttleworth's equation

Shuttleworth, R., Proc. Phys. Soc. Sect. A (1950)

Under some hypothesis :

$$\Gamma_{AB} \sim \gamma_{AB}$$

•
$$-d\gamma = \sigma^{\mathrm{M}} dE_{-}$$

Lippmann's equation

$$\Delta \sigma \rightrightarrows \Delta \gamma_{AB} \rightrightarrows \Delta \Gamma_{AB} \rightrightarrows \Delta \{"BL_Force"\}$$

$$\Delta \sigma \rightrightarrows \Delta \gamma_{AB} \ \rightrightarrows \Delta \Gamma_{AB} \ \rightrightarrows \ \Delta \{"BL_Force"\}$$

Experimental

Observation by AFM without

any immobilisation step

- In physiological medium
- Soft preparation of samples: no deshydratation, etc...
- Mode QI (Nanowizard 3 JPK)
 - ✓Approach-Retract Mode
 - ✓Lateral force strictly minimized
 - Minute control of vertical applied force at every pixel
- Cantilevers with metallic layer

Gliding movement of Anabaenopsis circularis: Secretion of slime

Experimental

Self-immobilizing bacterium: Rhodococcus. wratislaviensis

Height imaging Mechanical imaging

Adhesion imaging

Experimental

Nanoscale

Cite this: Nanoscale, 2015, 7, 8843

PAPER

An *in vivo* study of electrical charge distribution on the bacterial cell wall by atomic force microscopy in vibrating force mode⁺

Christian Marlière*^a and Samia Dhahri^b

C. Marlière et al., Nanoscale, (2015), 7, 8843

Results: 1. ''fast'' regime

Results: 1. ''fast'' regime

Results: 1. ''fast'' regime

REF: anneau Pt

 $4\mu m/64$ pixels

5µm/64 pixels

4µm/64 pixels

4µm/128 pixels

0

5µm/64 pixels

4µm/64 pixels

12

10

8

0 µm

0.40N/m

0

5µm/64 pixels

 $4\mu m/64$ pixels

ᡧᡘ᠋ᢩᡏᢪᢔᢔᡧᢩᢪ^ᢢᡙᡳ᠋᠋᠈ᢞᢪᡀᡧᢇᢩᢁᡩᡤ᠈᠉ᡁᠩ᠋᠋ᡁᢚᡗ^{ᠧᢁ}

20s

0mV

0.4

0.2

0.0

0.2

Time

Height (microns)

12

10

 $4\mu m/128$ pixels

1.2 µm

0 µm

0.40N/m

0

4µm/64pixels

O.**C**.

The so-called "slow" regime :

evidence of ionic currents through mechanosensitive channels

The so-called "slow" regime :

evidence of ionic currents through mechanosensitive channels

To resume:

What next?

Staphylococcus aureus

Sans antibiotique

(3µm)²

<u>What next?</u>

Staphylococcus aureus

Avec antibiotique (Daptomycine) : t = 0

(400nm)²

<u>What next?</u>

Staphylococcus aureus

Avec antibiotique (Daptomycine) : t = 25mn

(400nm)²

<u>What next?</u>

Staphylococcus aureus

Avec antibiotique (Daptomycine) : t = 50mn

(400nm)²

Home-made TIRF

Catherine Le Bris / Sandrine Lévêque-Fort (ISMO)

Acknowledgements

Funding:

ANR

Samia Dhahri, Center for Research in Microelectronics & Nanotechnology, Sousse, Tunisia

Fabienne Battaglia, Marie-Christine Dictor, Caroline Michel, Jean-Christophe Gourry, BRGM, Orléans, France

Serge Lallemand, Jean-Louis Bodinier, Philippe Pezard, Geosciences Montpellier, France

A direct and at nanometer scale study of electrical charge distribution on membranes of alive cells.

Thankyou for your attention

Christian Marlière

christian.marlière@u-psud.fr

Institut des sciences moléculaires d'Orsay

