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Abstract

With the Hight Luminosity LHC run at CERN, the amount of data-
generation will increase even further than in its current iteration. In
order to keep the statistical significance of new measurement, the
amount of simulated data will have to increase accordingly . The
3DGAN model performs fast simulation considering particle energy and
trajectory angle achieving state-of-the-art results in terms of physics
accuracy.

We used the Intel Neural Compressor (INC) software tool for graph
optimization and quantization of the 3D-Conv Generative Adversarial
Network (GAN) with INT8. We show that INT8 can be used without the
loss of accuracy for the complex 3DGAN. We show a 20% improvement
with INC graph optimization. We demonstrate that 4™ Gen Xeon
Sapphire Rapids with HBM and AMX/TMUL achieves improvement of
4.8X over 39 Gen Xeon® Ice Lake. We also show that the quantized INT8
model accuracy matches baseline FP32 accuracy.
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Summary
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Geant4 is a toolkit for the simulation
of the passage of particles through
matter for CERN'’s High Energy
Physics

Uses compute intensive Monte Carlo
extensively in the simulation

3D-GAN Al Model replaces Monte
Carlo with high degree of accuracy

Thereduced precision quantized
Al model on 4t Gen Intel® Xeon®
Processor achieves > 8500X
Improvement over Geant4

=1, CERN
1= openlab




Introduction

» HPC-Al Workload at
Large Hadron Collider

®» 3D-Generative

Adversarial Networks
(3D-GANS)
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Monte Carlo paths

High Energy Physics Simulation

e Understand how detector design

affects measurements and physics
o Correct for inefficiencies, inaccuracies,

20

unknowns
o Compare theory models to data

e Complex physics and geometry
modeling

o Monte Carlo Simulations

o >50% of Worldwide LHC Computmg
Grid (WLCG) power today

o Increase by 100x by 2028! -
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Al Models for High Energy Physics

e All venues of science are benefitting
from Al for problems where:
o Underlying processes are difficult to
model
o Require high computational sources
o Time consuming
o Noisydata
® High Energy Physics
O  Applications
m Data Processing and Analysis

m Realtime selection
m Simulation
® Al crucial for HEP experiments
o HPC hardware
m Maximize performance
m Fast time-to-model

=%, CERN

10 “iys openlab

Layer
O 0 =

Run: 273158, W: 0.0, St: 2.0, Sec: 12.0

1]

——

T30

;401 i

A 4 s A l
50 60
Channel

N

8

counts




Ep = 197.50 GeV 6 =63.71°

Dataset

Single particles depositing energy in a N
detector via electromagnetic
interactions (calorimeter detector)

e Monte Carlo (Geant4) generated data set developed for ML applications
e Futuredetector geometry demonstrator
e Highly granular sensors = critical for particle identification and energy determination
e Single electrons with energies in the range 2-500 GeV
e Realistic trajectories (parametrized using one angle)
e Detector responseinterpreted as 3D grid images
o 400,000 events > eacha 51x51x 25image - 65,025 cells
o Highly sparse
= only ~20% cells with energy deposition
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Why Use GANs for HEP Simulations

HEP detectors take 3D pictures of energy showers

* Each pixel = the energy value

GANs excel at image generation

GANSs can simulate new data

Motivation
* Significantly faster than Monte Carlo during INFERENCE mode
* Highly accurate
* Flexible
* Architecture optimization

* High level of transfer
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Generative Adversarial Networks 0: Detectve

e Simultaneously train two networks that compete
and cooperate with each other
o Discriminator
o Generator

-
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3D-GANSs Architecture
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* @Generator .

e 7 Layer Network .

*  Concatenate random vector with
energy and angle data .

*  Up-sampling operations .
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CU"}'U“U"“ o Flattening

Discriminator

Outputs a sigmoid neuron and a
linear neuron

Lambda functions

https://github.com/svalleco/3Dgan/
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3 Anghe bom GAN

Physics Performance: Geant4 vs 3D-GAN (FP32)
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Shower Shapes

Energy deposited Along x, y

and z axis

20 Histogram for predicted angles from G4 and GAN images
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Inference Performance

Time to Create an Electron Shower on Intel Xeon®

“ -

Classical Monte Carlo (Geant4) 5000 1.0
Intel Xeon® /
3D-GAN (BS=256) 2.3 1988X

2-stream, Intel® Xeon® 8360
(FP32 Précision)

CAN WE DO BETTER WITH REDUCED PRECISION?
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Quantization with Intel Neural Compressor

17

Quantization Tool: Intel Neural
Compressor

Intel® Neural Compressor performs model
compression to reduce the model size and
increase the speed of deep learning inference
for deployment on CPUs or GPUs

Converge quickly on quantized models though
automatic accuracy-driven tuning strategies.

Prune model weights by specifying predefined
sparsity goals that drive pruning algorithms.

Distill knowledge from a larger network
(“teacher”) to train a smaller network
(“student”) to mimic its performance with
minimal precision loss.

https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html

Tunable Configurations

4

Quantization Pruning

float32 Dense Model

int8 Sparse Model

Evaluator
(Accuracy metrics, Performance etc.)

Next Config e
l l Solution

Tuning Strategy

Stop Criteria

-
S

https://github.com/intel/neural-compressor/releases/tag/v1.14.2
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Meeting Accuracy with Intel

®  Loss Function for INT8 Quantization
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D = dataset
I = prepare(D)

O = network([I)
Ex = mean(O, axis = 1)
Ey = mean(0, axis = y)
E; = mean(0, axis = z)

Ay = mean(D, axis = z)
Ay = mean(D, axis = y)

A, = mean(D, axis = z)

N

N
meanError = E[E“ — A+ Z{E

i=0 i=0
varError = ...
error = varError + meanError
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Physics Performance: Geant4 vs Quantized 3D-GAN INT8 Inference
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Perf Benefits from 4t Gen Intel® Xeon®: AMX and TMUL

Intel® Advanced Matrix Extensions (Intel® AMX)
Tiled Matrix Multiplication Accelerator - Data Center

AMX architecture has two components:

Intel® Advanced Matrix Extensions (Intel® AMX)

Architecture

TILES and
coprocessor
commands

I

TILECONFIG

Tiles
A new expandable 2D register file — 8 new registers, IKb
each: TO-T7
Register file supports basic data operators — load/store,
clear, set to constant, etc.
TILES declares the state and is OS-managed by XSAVE
architecture

TMUL

= Set of matrix multiplication instructions, the first
operatorson TILEs
AMAC computation grid calculates ‘tiles of data
TMUL - performs Matrix ADD-Multiplication (C=+A*C)
using three Tile registers (T2=+T1*T0O)
TMUL requires TILE to be present

tmmO

tmm]

tmm[n-1]

rk per instruction
h/d 00

Sapphire Rapids - Architected for Al

Al has become ubiquitous across usages — Al performance required in all tiers of computing

y 2048

Enable efficient usage of Al across all services deployed on
elastic general-purpose tier by delivering many times more
Al performance and lower CPU utilization

For Deep Learning :
Datatypes floatl6 with IEEE SP accumulation 1024 5

Acceleration at
the ISA Level

Available and integrated with
industry-relevant frameworks & libraries

© AVX-512 (2xFMA) FP32 [l Intel® AVX-512 (2xFMA) INT8
Wl AMX(TMUL) BFI6 Il AMX(TMUL)INT8
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Inference Performance:
Relative to Competition

e Used Intel Neural Compressor Graph
Optimization for Competitive and
Intel® Xeon®

e With Intel optimized TensorFlow 2.10
® Baseline: AMD Milan 7773X—FP32

® Intel 3"9Gen Xeon — FP32
® Intel 4t Gen Xeon with HBM — FP32

® Intel 4thGen Xeon with HBM —
AMX/TMUL INTS8

UPTO 2.1XIMPROVEMENT
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Inference Performance Relative to Geant4

3D-GANs Inference Scaling Performance vs GEANT4
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4™ GEN INTEL® XEON® ACHIEVES > 8500X IMPROVEMENT OVER GEANT4

=¥1. CERN

23 iy openlab




Conclusions

@ Results on 3D-GANs optimization on Intel® Xeon® are very promising

® |ntel Neural Compressor Tool enables quantize FP32 model to INT8 without much

effort /

= Showed that INT8 quantized Model meets FP32 accuracy and also Physics Accuracy /

= Demonstrated that 4t" Gen Intel® Xeon® accelerates > 8500X Improvement over
CERN’s Geant4 simulation

=1, CERN
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DeepGalaxy: Deducing the Physical
Properties of Galaxy Mergers using DNNs
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. . b .
Simulation ~ Observation

Predict

Astrophysical problem = Pattern recognition problem




Variational Auto Encoders (VAE)

\ /

neural network neural network
encoder decoder
X X =d(z)

loss = [|x-x]|]2= |[x-d()|? = || x-d(e()]]



DeepGalaxy HPC Results

Resulting Speedup over simulations ~ 100,000 X
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TensorFlow = 29K |mages; 192GB

= 256 Nodes (4W/node)
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= Bridges the gap between observational
and theoretical astrophysics

" Processing Images and running
simulations take about ~ 2 Days

= Replacing simulations with deep learning
Model takes < 2 seconds
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