iemn Institut d'Electronique, de Microélectronique et de Nanotechnologie

Principle of Electrostatic Force Microscopy and Applications

Thierry Mélin

thierry.melin@univ-lille1.fr

ANF-DFRT– CEA Leti, Dec 1st 2016

Université Uni Lille1 de Sterens et Techniques et du

- I Introduction
- II Electrostatic Force Microscopy (EFM)
- III Kelvin Probe Force Microscopy (KPFM)

I – Introduction

A few motivations

EX 1 : Imaging the operation of CNT-FETs as charge sensors

[D. Brunel et al., ACS Nano 2010]

EX 2 : coupled CNTFETs and nanocrystals

A few motivations

EX 3 : photovoltaic materials

P3HT:PCBM blend molecular D/A junction

cf Ł. Borowik / B. Grévin

EFM

Electrostatic Force Microscopy

Measurement of electrostatic force gradients

Units : Hz or N/m

KPFM

Kelvin Probe Force Microscopy

Compensation of electrostatic forces

Units : V

Charge detection

Probing local surface potentials

Basics

Charge detection

charges in vacuum → charges in a capacitor

Charge {≡ capacitance}

Energy stored in a capacitor $\frac{1}{2}$ C V²

Attractive force between capacitor plates

$$F_{z} = + \frac{1}{2} \frac{dC}{dz} V^{2} (<0)$$

Electrostatic Force { Electrostatic Force

Force gradient detection

$$F_z = F_z(z_0) + (z-z_0) \cdot F'_z(z_0)$$

frequency shift : df= - $f_0/2k$. $F'_z(z_0)$

- Here: long-range forces [ambient air / UHV]
- Short-range electrostatic forces disregarded here

Force gradient {= capacitance 2nd derivative}

We could almost stop the presentation now ...

- due to tip apex size → sensitivity to few or single charge events provided the signal to noise ratio is sufficient
- typically sub-pN forces or 10⁻⁵ N/m force gradients (z=100nm)
- force gradients at the tip apex can exceed force gradients at the cantilever

Frequency Modulation (FM) modes already appear better than Amplitude Modulation (AM) modes with this respect

II - Electrostatic Force Microscopy

capacitive forces

Capacitive forces 1/2

Capacitive signals associated with topgraphic features

EFM (frequency shift) image

Topography image

z scale

50 nm

freq. scale 40 Hz

Capacitive forces 2/2

Capacitive signals associated with sub-surface nanostructures

Fig. 4.6. (a) Schematic illustration of the polymer/SWCNT sample and EFM operation. (b) Topography image of the 60 nm-thick film of PMMA/SWCNT composite. Because of the polymer, the tubes cannot be observed. (c) Corresponding EFM image (tip-substrate distance h = 35 nm, tip biased at +7 V), in which individual SWCNTs are clearly seen as dark lines (negative phase shifts). Adapted from [23]

Institut d'Electronique, de Microélectronique et de Nanotechnologie UMR CNRS 8520

J. Nygard et al. Appl. Phys. Lett. 90 183108 (2007)

charge manipulation

Charge manipulation

AFM Image 2500 x 2500 nm²

Contact force : a few nN Charge retention time : of few 10 min (dry N₂)

Imaging charged nanocrystals

Appl. Phys. Lett., 78 5054 (2002)

electrostatic force analysis

Electrostatic forces

Isopotential map of a charged dielectric sphere with grounded substrate and tip

Electrostatic forces

Electrostatic forces

Charge screening

Two opposite situations

Electrostatic forces without energy diagrams

charged nanoparticle (V=0)

dipole-dipole interaction $\,\,\alpha\,\,Q^2$

Electrostatic forces without energy diagrams

 $+Q_{c}$

charged nanoparticle (V=0)

uncharged nanoparticle ($V \neq 0$)

dipole-dipole interaction αQ^2

capacitive interaction α V²

Electrostatic forces without energy diagrams

charged nanoparticle (V=0) charged nanoparticle (V \neq 0V) uncharged nanoparticle (V \neq 0)

dipole-dipole interaction αQ^2 dipole-charge interaction $\alpha Q.V$ capacitive interaction αV^2

Experimental spectroscopic analysis [here : screened charges above a conducting plane]

Spectroscopic analysis of charge signals

dipole-dipole interactions

2z

Charges or dipoles ?

Probing a charge or a dipole ?

tut d'Electronique, de Microélectronique et de Nanotechnologie

Probing a charge or a dipole ?

Probing a charge or a dipole ?

Probing a charge or a dipole ?

[MWCNT with 18 nm diameter, V_{inj} =-7V (3 min) detection V_{EFM} =-3V]

image force contributions

Apparent topography due to image forces

Figure 3.2: Charging of ion implanted samples-unetched.

E. Boer et al. - APL (2002)

Apparent topography due to image forces

Charge injection in a 7nm thick SiO₂ layer

R. Dianoux, PhD (2004)

Missing points

- sensitivity
- spatial resolution
- time resolution
- quantitative charge measurements ?

Sensitivity

Optical beam deflection EFM with soft cantilevers (k=3N/m;f₀=60kHz)

	in air	in vacuum, 300K	
	limited by thermal noise		
F' _{min}	~10⁻⁵ N/m B=100Hz, Q=200 A=25nm	a few 10⁻⁶ N/m B=50Hz, Q=20000 A=15nm	
<z></z>	50-100nm	10-20nm	

$$F'_{min} = \sqrt{\frac{4 \text{ k} \cdot \text{k}_{\text{B}} \text{T} \cdot \text{B}}{\pi \text{ f}_{0} \cdot \text{A}^{2} \cdot \text{Q}}}$$

[F. Giessibl et al., Phys. Rev. B 2011 + references therein]

Sensitivity

Optical beam deflection EFM with soft cantilevers (k=3N/m;f₀=60kHz)

Qplus, LER

	in air	in vacuum, 300K	vacuum, 1-5 K
	limited by thermal noise		deflection noise, thermal noise,
F' _{min}	~10⁻⁵ N/m B=100Hz, Q=200 A=25nm	a few 10⁻⁶ N/m B=50Hz, Q=20000 A=15nm	~ 10⁻³ N/m B=25Hz, Q=20000 A=200pm
<z></z>	50-100nm	10-20nm	< 1 nm
	Long-range (LR)	LR + SR	Short-range (SR)

single charge detection in air

ω/2ω EFM

three force
components
$$\begin{cases}
static & F'_{0\omega} = \frac{1}{2} d^2 C/dz^2 \left[(V_{dc} - V_s)^2 + V_{ac}^2/2 \right] & \text{not desired here} \\
\omega & F'_{\omega} = d^2 C/dz^2 \left(V_{cc} V_s \right) V_{ac} \cos(\omega t) & zero \text{ if } V_{dc} = V_s \\
2\omega & F'_{2\omega} = \frac{1}{4} d^2 C/dz^2 V_{ac}^2 \cos(2\omega t) & capacitive interaction
\end{cases}$$

ω/2ω EFM

For $V_{ds}=V_s$, a surface charge Q will :

- interact with its image charges
- interact with ac charges at the tip

Separation of charge and dielectric images

three force
components
$$\begin{cases}
static & F'_{0\omega} = \frac{1}{2} d^2 C/dz^2 \left[(V_{dc} - V_s)^2 + V_{ac}^2/2 \right] + \text{image force contributions} \\
\omega & F'_{\omega} = d^2 C/dz^2 \left(\sqrt{V_{cc}} V_s \right) V_{ac} \cos(\omega t) + K(z) \cdot Q \cdot CV_{ac} \cos(\omega t) \\
2\omega & F'_{2\omega} = \frac{1}{4} d^2 C/dz^2 V_{ac}^2 \cos(2\omega t) \quad \text{(no change)}
\end{cases}$$

Single charge detection in ambient air

Single-charge sensitivity with sub-nm resolution

2009

Δz

[4K AFM]

1999 Columbia Univ., *Phys. Rev. Lett.*

[ac-modulated EFM in air]

Single charge fluctuations in CdSe nanocrystals

resolution 25nm

etric image

Single charge state of Au adatoms

IBM Zürich, Science

0.0

-0.5

-1.0

-1.5

-2.0

Au⁰

20

10

∆f (Hz)

resolution < 1nm [UHV et 4K] **Figure 1:** (from [2]) Left: schematics of nc-AFM with sub-nm tip oscillation, here on Au adatoms on an ultra-thin NaCl layer. Right: tuning-fork frequency shifts above two adatoms (5K). The contrast difference between the Au0 and Au-adatoms corresponds to a single charge.

Au

40

30

Lateral Distance (Å)

50

Time resolution

- in general, limited by the phase demodulation of the cantilever oscillation
- better resolution possible :
 - fast frequency shift demodulation,
 - oscillation transients (sub-µs see D. Ginger et al. Nanoletters 2012)
 - response under modulated illumination (see Ł. Borowik)

Quantitative charge measurements ?

- in general, semi-quantitative models only
- difficult due to the large variety of dielectric environments
- numerical simulations in most situations
- single charge events as calibration

III - Kelvin Probe Force Microscopy

surface potential and charge detection

Principle ...

different metals

Measuring surface potentials from forces

- Lord Kelvin (1898)
- Zisman (1932) : vibrating Kelvin probe (down to mm size)
- Nonnenmacher (1991) : Kelvin probe force microscopy

Energy diagrams

Energy diagrams

- The sign of V_{dc} is user-dependent (V_{dc} at the tip, or at the sample)
- V_{dc} at the tip (and V_s at the surface)

'electrostatics-friendly' convention :

- The sign of V_{dc} is user-dependent (V_{dc} at the tip, or at the sample)
- V_{dc} at the tip (and V_s at the surface)

'electrostatics-friendly' convention :

- The sign of V_{dc} is user-dependent (V_{dc} at the tip, or at the sample)
- V_{dc} at the tip (and V_s at the surface)

'electrostatics-friendly' convention :

- The sign of V_{dc} is user-dependent (V_{dc} at the tip, or at the sample)
- V_{dc} at the tip (and V_s at the surface)

'electrostatics-friendly' convention :

- The sign of V_{dc} is user-dependent (V_{dc} at the tip, or at the sample)
- V_{dc} at the tip (and V_s at the surface)

'electrostatics-friendly' convention :

- The sign of V_{dc} is user-dependent (V_{dc} at the tip, or at the sample)
- V_{dc} at the tip (and V_s at the surface)
 'electrostatics friendly' convention

 a positive charge or dipole (e.g. adsorbate) is 'seen' as a positive V_s
- V_{dc} at the sample

'work-function friendly' convention :

a material with a larger work-function will be imaged as « more positive » in KPFM images

Oscillating probe

A NEW METHOD OF MEASURING CONTACT POTENTIAL DIFFERENCES IN METALS

By W. A. ZISMAN

[Jefferson Physical Laboratory, Harvard University, Cambridge, Mass. Received March 5, 1932]

ABSTRACT

A new method is described for measuring the contact potential differences between dissimilar metals. It enables one to measure the p.d. to 1/1000 volt in a few seconds of manipulation. An apparatus is described for studying metals in air and another is described for high vacuum work.

Kelvin method

Response of the electrometer deflection as a function of $V_{\rm dc}$ to find the zero force

Zisman method

Rev. Sci. Instrum. 3, 367 (1932)

 $C = C_0 + \Delta C.\sin \omega t$ \downarrow $i(t) = \Delta C.\omega. [V_{dc} - V_s].\cos(\omega t)$

to a loud speaker (!) (ω in the audio range) : zero sound for V_{dc}= V_s

Frequency Modulation Kelvin Probe Force Microscopy (FM-KPFM)

FM-KPFM

regulating F'_{ω} to zero (df_{ω}=0) gives : V_{dc} = V_s + V_Q (z-dependent)

FM-KPFM

Imaging ...

Doped nanocrystals inducing charge transfers to the substrate

topo : *A_{pp}* = 20 *nm*, Δf = - 5 Hz ; 1,7 μm * 1,7 μm; 512 *512 pixels; tip-sample distance of 4-6 nm

FM-KPFM : $f_{ac} \sim 300$ Hz; $V_{ac} = 200$ mV

Amplitude Modulation Kelvin Probe Force Microscopy (AM-KPFM)

AM-KPFM

regulating F_{ω} to zero (i.e: $A_{\omega}=0$) gives : $V_{dc} = V_s + V_Q$ (z-dependent)

Example of a single-pass (UHV) AM-KPFM mode 1/2

Imaging ...

topo : $A_{pp} = 20 nm$, $\Delta f = -5 Hz$; 1,7 µm * 1,7 µm; 512 *512 pixels; tip-sample distance of 4-6 nm

AM-KPFM : V_{ac} = 200 mV; V_{dc} = 2 V; τ = 100 µs

Similar image as FM-KPFM

AM-KPFM

A [too] large variety of implementations ...

- $\blacktriangleright \omega$ can be chosen freely :
 - close to the cantilever resonance (increases the sensitivity by $Q^{1/2}$)
 - at a cantilever higher eigenmode (e.g. f_1 =6.2 f_0)
 - at low frequency or high frequency, but out of resonance
- in conjunction or separately from topography imaging (single-pass versus lift/linear modes)
- with feedback loop on ... or off.

AM-KPFM versus FM-KPFM

Side-capacitance effects in AM- and FM-KPFM – 1/5

Nullification of the ω force component (AM-KPFM)

 $dC'_{1}/dz V_{ac} (V_{dc}-V_{1}) + dC_{2}/dz V_{ac} (V_{dc}-V_{2})$ $+ dC_3/dz V_{ac} (V_{dc}-V_3) = 0$

 $V_{dc} = \frac{dC_{1}/dz \cdot V_{1} + dC_{2}/dz \cdot V_{2} + dC_{3}/dz \cdot V_{3}}{dC_{1}/dz + dC_{2}/dz + dC_{3}/dz}$

KPFM : averaging technique

H. O. Jacobs et al. JAP (1998)

Side-capacitance effects in AM- and FM-KPFM - 2/5

- intrinsic averaging effects in AM and FM modes
- dC_i/dz less 'peaked' at the tip than d^2C_i/dz^2 : less resolution in AM modes

Side-capacitance effects in AM- and FM-KPFM – 3/5

Both FM- and AM- modes are sensitive to side-capacitance effects at small size

Appl. Phys. Lett. 96 103119 (2010)

Side-capacitance effects in AM- and FM-KPFM – 4/5

KCI islands on Au 111 (topo)

boundaries

U. Zerweck et al., Phys Rev B 71 125424 (2005)

Side-capacitance effects in AM- and FM-KPFM – 5/5

KBr on InSb(001)

FM-KPFM measurements

convolution in FM mode for structures with smaller size than the tip apex

FIG. 1. (a) FM-KPFM topography and (b) Δ CPD images of KBr islands grown on InSb(001) surface (f_0 =111, 1 kHz, Δf = -17 Hz). The white arrows indicate the KBr islands, which are topographically not resolved from the substrate terrace.

F. Krok et al., Phys. Rev. B 77, 235427 (2008)

AM-KPFM versus FM-KPFM

Justification, if AM and FM modes are performed on the same resonance (Q) :

 $dC/dz \cdot \Delta V_{dcmin, AM} \cdot V_{ac, AM} = F_{min} \text{ (limited by thermal noise)}$ $d^{2}C/dz^{2} \cdot \Delta V_{dcmin, FM} \cdot V_{ac, FM} = F'_{min} \text{ (limited by thermal noise)}$

for the same
$$V_{ac}$$
: $\Delta V_{dcmin, FM} / \Delta V_{dcmin, AM} = \left[\frac{dC}{dz} / \frac{d^2C}{dz^2} \right] \cdot \left[F'_{min} / F_{min} \right]$
 $z / |\alpha - 1|$ $\sqrt{2} / A$
if $\frac{d^2C}{dz^2}$ prop to $z^{-\alpha}$
(in air $\alpha \sim 1.5$)

AM-KPFM versus FM-KPFM

Justification, if AM and FM modes are performed on the same resonance (Q) :

 $dC/dz \cdot \Delta V_{dcmin, AM} \cdot V_{ac, AM} = F_{min} \text{ (limited by thermal noise)}$ $d^{2}C/dz^{2} \cdot \Delta V_{dcmin, FM} \cdot V_{ac, FM} = F'_{min} \text{ (limited by thermal noise)}$

for the same
$$V_{ac}$$
: $\Delta V_{dcmin, FM} / \Delta V_{dcmin, AM} = \frac{\sqrt{2}}{|\propto -1|} \frac{z}{A} > 1$

UMR CNRS 8520

AM-KPFM versus FM-KPFM

topo : $A_{pp} = 20 \text{ nm}, \Delta f = -5 \text{ Hz}$; 1,7 µm * 1,7 µm; 512 *512 pixels; tip-sample distance of 4-6 nm

 $\begin{array}{l} \mbox{AM-KPFM}: \mbox{V}_{ac} = 200 \mbox{ mV}; \mbox{ V}_{dc} \\ = 2 \mbox{ V}; \mbox{ } \tau = 100 \mbox{ } \mu s \end{array}$

FM-KPFM : $f_{ac} \sim 50Hz$; $V_{ac} = 200 \text{ mV}$

Can we measure quantitatively a work function difference ? (ac-crosstalk issues – AM KPFM in air)

Practical operation principle

projection angle necessary for the KFM feedback loop KFM "equation" : dC/dz. $(V_{dc}-V_s)$. V_{ac} . $\cos(\phi_{1\omega}-\phi) = 0$

Institut d'Electronique, de Microélectronique et de Nanotechnologie UMR CNRS 8520

Practical operation principle ... with ac cross-talks

KFM "equation" dC/dz. $(V_{dc}-V_s).V_{ac}.\cos(\phi_{1\omega}-\phi)$ + A_{ct} . V_{ac} . $\cos(\phi_{ct} - \phi) = 0$ $V_{dc} = V_s + A_{ct} \cdot \cos(\phi_{ct} - \phi) / dC/dz \cos(\phi_{1\omega} - \phi)$ This term depends 888 - on ϕ ("drive phase") - on ϕ_{10} (excitation frequency) on z (via dC/dz)

In practice (Brüker) : photodiode + mechanical ac-cross-talks

Cross-talk suppression/compensation

Cross-talk suppression/compensation

Conclusion

This was an introduction lecture on

- Electrostatic Force Microscopy (EFM)
 - spectroscopy of electrostatic forces
 - sensitivity and limits
- Kelvin Probe Force Microscopy (KPFM)
 - basic implementations
 - AM-KPFM vs FM-KPFM
 - quantitative work function measurement issues

Questions ?

