
HPC for Idealists with Deadlines: Pragmatic Abstractions for
High Performance

Andreas Kloeckner

University of Illinois

November 16, 2022

Acknowledgments

Kaushik Kulkarni
(UIUC)

Matt Wala
(UIUC → Apple)

James Stevens
(UIUC, grad. 2021)

Funding:
▶ NSF (OAC-1931577, SHF-1911019)
▶ DOE (DE-NA0003963)

Outline

Goals and Approaches

An Application: GPU-Accelerated FEM Action

Interlude: Polyhedral Code Generation

Transforming the FE Action

Capturing Computations with Array Data Flow Graphs

Conclusions

Outline

Goals and Approaches

An Application: GPU-Accelerated FEM Action

Interlude: Polyhedral Code Generation

Transforming the FE Action

Capturing Computations with Array Data Flow Graphs

Conclusions

“Programming HPC Machines is Hard”

[McCalpin, Memory Bandwidth and System Balance in HPC Systems, SC16]

CPUs, GPUs: all subject to similar design pressures

HPC: What do you mean?

Not:
▶ ‘Go-fast stripes’ / Black-box / 4,000× faster

Instead:
▶ Build a quantitative understanding of what is possible

(modeling)
▶ Iteratively approach that limit

▶ Be an active participant
▶ Expect some exposed wiring: understanding required
▶ Use modeling as a guide

In this talk: Ideas and tools to. . .
▶ increase human effectiveness and efficiency
▶ help with separation of concerns
▶ help focus on the core issues

[OpenClipart / raulxav]

The Case for Code Transformation

[Bootstrap Icons]

Goals:
▶ Separation of concerns:

additive rather than multiplicative effort
▶ Conciseness: code is the enemy
▶ Abstraction:

not specifying details prematurely is a virtue
Approach:
▶ Program is a data structure
▶ Start with ‘math’
▶ Gradually add detail
▶ Annotations at most descriptive, not prescriptive

As opposed to:
▶ Directives (a la OpenMP/OpenACC)
▶ Libraries

The Case for Just-in-Time Compilation

[Bootstrap Icons]

▶ What is ‘compile time’?
▶ At runtime is when you have the most information

▶ Target device
▶ Desired problem

▶ JIT gives ability to specialize for available knowledge
▶ Avoids false trade-off beetween generality and cost

(“abstraction penalty”)
▶ Challenge: JIT cost must remain under control

▶ At least: Caching easily avoids repeated expense

The Case for OpenCL

▶ Host-side programming interface (library)
▶ Device-side programming language (C)
▶ Device-side intermediate repr. (SPIR-V)

▶ Same compute abstraction as everyone else
(focus on low-level)

▶ Device/vendor-neutral
▶ On current and upcoming leadership-class machines
▶ Will run even with no GPU in sight (e.g. Github CI)

▶ Just-In-Time compilation built-in
▶ Open-source implementations

(Pocl, Intel GPU, AMD*, rusticl, clover)
▶ Mostly retain access to vendor-specific

libraries/capabilties

[Khronos Group]

Wrangling the Grid

Axis 0
A

xi
s

1

▶ get_local_id(axis)?/size(axis)?
▶ get_group_id(axis)?/num_groups(axis)?
▶ get_global_id(axis)?/size(axis)?

axis=0,1,2,...

Uncooperative vendor?

▶ OpenCL commoditizes compute
▶ Not universally popular with vendors
▶ Not an unchangeable fate

pocl-cuda:
▶ Based on nvptx LLVM target from Google
▶ Started by James Price (Bristol)
▶ Maintained by a team at Tampere Tech U
▶ We at Illinois helped a bit
▶ LLVM keeps improving
▶ Possible to talk to CUDA libraries
▶ Allows profiling

[http://portablecl.org/cuda-backend.html]

[http://portablecl.org/pocl-1.6.html]

http://portablecl.org/cuda-backend.html
http://portablecl.org/pocl-1.6.html

The Case for Python

Frees up mental bandwidth. . .
for the actually difficult bits

How?
▶ Not shiny, not exciting
▶ No/few distractions

▶ Duck typing, automatic memory management

▶ Emphasizes readability
▶ Rich ecosystem of sci-comp related software
▶ Good for gluing: less reinventing
▶ Easy to deploy
▶ ‘Fast enough’ for logistics and code generation

[python.org]

PyOpenCL

PyOpenCL has
▶ Direct access to low-level OpenCL

▶ Efficiency-minded: compiler cache, kernel enqueue
▶ Made safe for use with Python

(e.g. ‘nanny events’, deletion semantics)
▶ A bare-bones numpy-like array type

▶ Parallel RNGs, indexing
▶ Numpy-like, but limited broadcasting, most operations

are 1D
▶ Foundational algorithm templates

▶ Reduction, scan, sort (radix, bitonic), unique, filter,
CSR build

https://github.com/inducer/pyopencl Also: PyCUDA [Khronos Group, python.org]

https://github.com/inducer/pyopencl

Demo: PyOpenCL

https://github.com/inducer/pyopencl

https://github.com/inducer/pyopencl

Outline

Goals and Approaches

An Application: GPU-Accelerated FEM Action

Interlude: Polyhedral Code Generation

Transforming the FE Action

Capturing Computations with Array Data Flow Graphs

Conclusions

Finite Elements: Meshes

[Matt Smith, UIUC]

Finite Element Action: Overview

Math: △u = f becomes ∫
Ω
∇u · ∇ψdx =

∫
Ω
f ψdx

UFL (via Firedrake1):

a = inner(grad(u), grad(phi)) ∗ dx
L = inner(f , phi) ∗ dx
solve (a == L)

Computational kernel (for one DOF ∼∈ one element):

ai =

Nq∑
j=1

wj∂ψi (xj)

(
NDoF∑
k=1

uk∂ϕk(xj)

)

Goal: Get this onto a GPU, generically

1David Ham et al., https://firedrakeproject.org

https://firedrakeproject.org

Finite Element Action: Workload Variation

▶ Dimension (2D, 3D)
▶ FE approximation spaces (CG, DG, BDM, RT, . . .)

▶ also composed via product (often ‘mixed’) spaces

▶ Variational forms (e.g. Stokes):

a = (inner(grad(u), grad(v)) − p ∗ div(v) + div(u) ∗ q)∗dx
L = inner(Constant((0, 0)), v) ∗ dx

▶ Varying polynomial degrees

Results Preview

UFL to GPU: Near the Roofline

Kaushik Kulkarni† and Andreas Klöckner†
†Department of Computer Science, University of Illinois at Urbana-Champaign

UFL to GPU: Near the Roofline

Kaushik Kulkarni† and Andreas Klöckner†
†Department of Computer Science, University of Illinois at Urbana-Champaign

Abstract

• Goal: Speed-up u 7→ Lvu to accelerate Lvu = f

–Sparse linear systems are generally solved iteratively.

• Scope: Matrix-free FEM operators on simplices

–Global assembly + SpMV suffers from low arithmetic in-

tensity, matrix assembly costs, scattered access pattern.

Our matrix-free SpMV on GPU delivers at least 50% of the

roofline performance for 70% test cases. 2.9× compared to

the outer-loop parallelization strategy.

Motivation

We implemented a UFL to GPU compiler within Fire-
drake[1] to expose a close-to-mathematical notation for
an FEM solver, while delivering near-roofline application
performance.

Code : User Input

from firedrake import *

set_offloading_backend(cuda)

with offloading():

solve(dot(grad(u), grad(v))*dx == f*v*dx, u)

Workload: Many small MatVecs

For a finite element with NDoF DoFs per cell and Nq quadrature nodes,
per-element two small matrix-vector products are to be computed. The
inputs/outputs are gathered/scattered via indirection maps.

NDoF

Nq

Nq

NDoF

GatherScatter

ue

φi,j

ψi,j

Fig. 1: Computation done for one cell in the mesh. Total workload would be millions of such small

matrix-vector products.

Algorithm

Step 1·Defining a parametric schedule space, by

- Tiling the derivative matrices as T r1 × T c1 and T r2 × T c2
- Aggregating computation of Nc cells for one work-group

- Distributing a tile’s inner products among NWI work-items.

Step 2·Choosing b-best configurations as ranked by the cost-model

Cost(x) ≈ Total Global Memory accesses

βglobal(x)
+

Total Local Memory accesses

βlocal(x)

where, β(x) is the device’s local/global memory bandwidth model. We chose the
bandwidths to be a linear model of the # residing sub-groups for a configuration x.

Nc

NDoF

T r1 × T c1
T r2 × T c2

Fig. 2: A configuration in the schedule space. T r,c1,2 are the tile size, Nc is the number of cells computed by a work-group.

Performance Evaluation on an Nvidia V100

We run ‘b = 10’ candidates from the algorithm and choose the best performing variant.

• 2D Mesh with 0.5 million triangles; 3D mesh with 0.2 million tetrahedra

• Weak forms: Laplace, Helmholtz, Elasticity and Hyperelasticity.

• Function spaces: P1, P2, . . . , P8

2D.P1
2D.P2

2D.P3
2D.P4

2D.P5
2D.P6

2D.P7
2D.P8

3D.P1
3D.P2

3D.P3
3D.P4

3D.P5
3D.P6

0

2000

4000

G
F

L
O

P
s/

s

Laplace

Experiment Roofline

2D.P1
2D.P2

2D.P3
2D.P4

2D.P5
2D.P6

2D.P7
2D.P8

3D.P1
3D.P2

3D.P3
3D.P4

3D.P5
3D.P6

0

2000

4000

Helmholtz

2D.P1
2D.P2

2D.P3
2D.P4

2D.P5
2D.P6

2D.P7
2D.P8

3D.P1
3D.P2

3D.P3
3D.P4

3D.P5
3D.P6

0

2000

4000

6000

G
F

L
O

P
s/

s

Elasticity

2D.P1
2D.P2

2D.P3
2D.P4

2D.P5
2D.P6

2D.P7
2D.P8

3D.P1
3D.P2

3D.P3
3D.P4

3D.P5
3D.P6

0

2000

4000

6000 Hyperelasticity

Fig. 3: Performance relative to the roofline. Our algorithm delivers near-roofline performance irrespective of the operator.

Performance Portability

Our algorithm is designed to be portable across GPU architec-
tures. Verified on Kepler (introduced 2013) and Volta (introduced
2017) micro-architectures.

10 20 30 40 50 60 70 80 90
x% of roofline

0

20

40

60

80

100

y
%

of
te

st
ca

se
s

y% test cases performing at least x% of the roofline

Tesla K40
V100

Fig. 4: Comparison of % of cases achieving a % roofline on the Tesla K40 and V100 GPUs.

(Consistently higher is better)

Remarks

• Our domain-specific schedule space with a cost model

delivers near-roofline performance with just 10 eval-

uations, compared to O(100) evaluations by black-

box auto-tuners [2].

• Targeting inner-loop concurrency is essential in-order

to consistently deliver near-roofline FEM operator on

GPUs.

–Loop transformation engines like Loopy[3] are

helpful for such use-cases.

References

[1] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. McRae,
G.-T. Bercea, G. R. Markall, and P. H. Kelly, “Firedrake: Automating the
finite element method by composing abstractions,” ACM Transactions on
Mathematical Software (TOMS), vol. 43, no. 3, pp. 1–27, 2016.

[2] T. Chen, T. Moreau, Z. Jiang, H. Shen, E. Q. Yan, L. Wang, Y. Hu, L.
Ceze, C. Guestrin, and A. Krishnamurthy, “Tvm: End-to-end optimization
stack for deep learning,” vol. 11, p. 20, 2018.

[3] A. Klöckner, “Loo. py: Transformation-based code generation for gpus and
cpus,” in Proceedings of ACM SIGPLAN International Workshop on Li-
braries, Languages, and Compilers for Array Programming, 2014.

[Kulkarni, K, in prep.]

Approach Overview

from firedrake import ∗
set_offloading_backend(cuda)

#...(define mesh, function spaces)

a = dot(grad(u), grad(v))∗dx
L = f∗v∗dx
sp = {"mat_type": "mat_free"}

with offloading ():
solve (a == L, s,

solver_parameters=sp)

UFL

GEM

Loopy IR

OpenCL CUDA

ufl/TSFC/FInaT

TSFC/PyOP2

Loopy

algebraic optimizations

loop optimizations

▶ using an approximate cost model
▶ to prune an autotuning search space

Outline

Goals and Approaches

An Application: GPU-Accelerated FEM Action

Interlude: Polyhedral Code Generation

Transforming the FE Action

Capturing Computations with Array Data Flow Graphs

Conclusions

Kernel IR: Design Aspects
Single shared medium, must:
▶ Express computational intent with little information loss
▶ Enable program transform tools
▶ Be human-readable to enable performance work

Needs:
▶ Metadata capture for transformation targeting
▶ Precise dependency tracking
▶ Precise hardware mapping

(meets CL/CUDA machine model, specified, no heuristics!)

Community IR innovation:
▶ C. Lattner, J. Pienaar “MLIR Primer: A Compiler Infrastructure for the End of Moore’s Law.” (2019).
▶ R. Baghdadi et al. “Tiramisu: A polyhedral compiler for expressing fast and portable code.” Proceedings of the 2019

IEEE/ACM International Symposium on Code Generation and Optimization. IEEE Press. (2019)
▶ T. Ben-Nun et al. “Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs.”, SC ‘19.

(2019)

What and why: polyhedral?
Loop nest

do i = 1,n
do j = 1,n

do k = 1,n−i−k
A(i , j ,k) = ...
B(i , j ,k) = ...

end do
end do

end do

Polyhedron

{[i,j,k]:0 <= i,j < n and... }

S. Verdoolaege “isl: An integer set library
for the polyhedral model.” International
Congress on Mathematical Software.
Springer, Berlin, Heidelberg, 2010
https://github.com/indcuer/islpy

https://github.com/indcuer/islpy

Not just sets: also dependencies
Loop domain: {(i , j) : 0 ≤ i , j ≤ 4 ∧ i ≤ j} ⊂ Z2

Parametric loop domain: n 7→ {(i , j) : 0 ≤ i , j ≤ n ∧ i ≤ j} ⊂ Z3

Dependencies: {((i , j), (i ′, j ′)) : . . . } ⊂ Z4

+ parameter: n 7→ {((i , j), (i ′, j ′)) : . . . } ⊂ Z5

▶ Way to represent
▶ sets of integer tuples
▶ graphs on sets of integer tuples

and operate on them:
Π, ∩, ∪, ◦, ⊂?, \, min, lexmin

▶ parametrically
▶ need decidability: (quasi-)affine expr.

▶ no: i · j , n mod p
▶ yes: n mod 4, 4i − 3j

Code Transforms

▶ Unroll
▶ Stride changes (Row/column/something major)
▶ Prefetch
▶ Precompute
▶ Tile
▶ Reorder loops
▶ Fix constants
▶ Parallelize (Thread/Workgroup)
▶ Affine map loop domains
▶ Texture-based data access
▶ Loop collapse

Even More Code Transforms

▶ Kernel and Loop Fusion
▶ Scans and Reductions
▶ Global Barrier by Kernel Fission
▶ Explicit-SIMD Vectorization
▶ Reuse of Temporary Storage
▶ SoA → AoS
▶ Buffering, Storage substitution
▶ Save flops using Distributive Law
▶ Arbitrary nesting of Data Layouts
▶ Realization of ILP
▶ Array compression/reindexing

[Seghir, et al. ‘06]

Automatic Operation Counting

Can obtain parametric, piecewise polynomial operation counts/bounds2, directly from
IR:
▶ Flops performed ≈

∑
Statement s

|Domain(s)| · flops(s)

▶ Mem. Ops performed ≤
∑

Statement s

|Domain(s)| · Mem. Ops(s)

▶ Mem. Ops performed ≥
∑

Variable v

|Access Footprint(v)|

Can use these for computer-aided performance model fitting3.

2Verdoolaege et al. 2007
3Stevens, K 2020

Demo: Loopy

https://github.com/inducer/loopy

https://github.com/inducer/loopy

Loopy in the context of the FEM action

ai =

Nq∑
j=1

wj∂ψi (xj)

(
NDoF∑
k=1

uk∂ϕk(xj)

)

knl = lp.make_kernel(
"{[e, i , j ,k]: 0<=e<nelements and 0<=i,k<ndofs and 0<=j<nq}",
"""
quad(e, j) := sum(k, u[k,e] ∗ phi [k, j])
a[e, i] = sum(j, w[j] ∗ psi [i , j] ∗ quad(e, j))
""")

Transformations (illustrative):

knl = lp.split_iname(knl , "e", 128)
knl = lp.tag_inames(knl, {"e_outer": "g.0"})

Outline

Goals and Approaches

An Application: GPU-Accelerated FEM Action

Interlude: Polyhedral Code Generation

Transforming the FE Action

Capturing Computations with Array Data Flow Graphs

Conclusions

Workload

=NDoF

Nq
Nq

NDoF
· ·

GatherScatter (at.)

ue

ϕi ,j

ψi ,j

▶ Nq: #Quadrature pts.
▶ NDoF: #local DoFs
▶ Geometric factors, quadrature weights not shown

Transform Approach
▶ Tile the accesses to the matrices as T r

1 × T c
1 , T r

2 × T c
2

▶ Group computation of Nc cells to be operated on by a workgroup
▶ Inner products within each tile divided among Nt SIMT work items
▶ Block size = NcNt SIMT work items

Nc

NDoF

T r
1 × T c

1T r
2 × T c

2

▶ NDoF: Number of local DoFs.
▶ Nc : Cells in a block
▶ T r ,c

1,2 : Tile sizes

Cost Model and Roofline

theur =
Total Global Memory accesses

βmodel
glob

+
Total Local Memory accesses

βmodel
local

▶ AIglobal: Arith. intensity wrt global memory access count
▶ AIlocal: Arith. intensity wrt local memory access count

Froofline = min
(
AIglobalβ

peak
global, AIlocalβ

peak
local , Fpeak

)

Performance evaluation (Titan V)

UFL to GPU: Near the Roofline

Kaushik Kulkarni† and Andreas Klöckner†
†Department of Computer Science, University of Illinois at Urbana-Champaign

UFL to GPU: Near the Roofline

Kaushik Kulkarni† and Andreas Klöckner†
†Department of Computer Science, University of Illinois at Urbana-Champaign

Abstract

• Goal: Speed-up u 7→ Lvu to accelerate Lvu = f

–Sparse linear systems are generally solved iteratively.

• Scope: Matrix-free FEM operators on simplices

–Global assembly + SpMV suffers from low arithmetic in-

tensity, matrix assembly costs, scattered access pattern.

Our matrix-free SpMV on GPU delivers at least 50% of the

roofline performance for 70% test cases. 2.9× compared to

the outer-loop parallelization strategy.

Motivation

We implemented a UFL to GPU compiler within Fire-
drake[1] to expose a close-to-mathematical notation for
an FEM solver, while delivering near-roofline application
performance.

Code : User Input

from firedrake import *

set_offloading_backend(cuda)

with offloading():

solve(dot(grad(u), grad(v))*dx == f*v*dx, u)

Workload: Many small MatVecs

For a finite element with NDoF DoFs per cell and Nq quadrature nodes,
per-element two small matrix-vector products are to be computed. The
inputs/outputs are gathered/scattered via indirection maps.

NDoF

Nq

Nq

NDoF

GatherScatter

ue

φi,j

ψi,j

Fig. 1: Computation done for one cell in the mesh. Total workload would be millions of such small

matrix-vector products.

Algorithm

Step 1·Defining a parametric schedule space, by

- Tiling the derivative matrices as T r1 × T c1 and T r2 × T c2
- Aggregating computation of Nc cells for one work-group

- Distributing a tile’s inner products among NWI work-items.

Step 2·Choosing b-best configurations as ranked by the cost-model

Cost(x) ≈ Total Global Memory accesses

βglobal(x)
+

Total Local Memory accesses

βlocal(x)

where, β(x) is the device’s local/global memory bandwidth model. We chose the
bandwidths to be a linear model of the # residing sub-groups for a configuration x.

Nc

NDoF

T r1 × T c1
T r2 × T c2

Fig. 2: A configuration in the schedule space. T r,c1,2 are the tile size, Nc is the number of cells computed by a work-group.

Performance Evaluation on an Nvidia V100

We run ‘b = 10’ candidates from the algorithm and choose the best performing variant.

• 2D Mesh with 0.5 million triangles; 3D mesh with 0.2 million tetrahedra

• Weak forms: Laplace, Helmholtz, Elasticity and Hyperelasticity.

• Function spaces: P1, P2, . . . , P8

2D.P1
2D.P2

2D.P3
2D.P4

2D.P5
2D.P6

2D.P7
2D.P8

3D.P1
3D.P2

3D.P3
3D.P4

3D.P5
3D.P6

0

2000

4000

G
F

L
O

P
s/

s

Laplace

Experiment Roofline

2D.P1
2D.P2

2D.P3
2D.P4

2D.P5
2D.P6

2D.P7
2D.P8

3D.P1
3D.P2

3D.P3
3D.P4

3D.P5
3D.P6

0

2000

4000

Helmholtz

2D.P1
2D.P2

2D.P3
2D.P4

2D.P5
2D.P6

2D.P7
2D.P8

3D.P1
3D.P2

3D.P3
3D.P4

3D.P5
3D.P6

0

2000

4000

6000

G
F

L
O

P
s/

s

Elasticity

2D.P1
2D.P2

2D.P3
2D.P4

2D.P5
2D.P6

2D.P7
2D.P8

3D.P1
3D.P2

3D.P3
3D.P4

3D.P5
3D.P6

0

2000

4000

6000 Hyperelasticity

Fig. 3: Performance relative to the roofline. Our algorithm delivers near-roofline performance irrespective of the operator.

Performance Portability

Our algorithm is designed to be portable across GPU architec-
tures. Verified on Kepler (introduced 2013) and Volta (introduced
2017) micro-architectures.

10 20 30 40 50 60 70 80 90
x% of roofline

0

20

40

60

80

100

y
%

of
te

st
ca

se
s

y% test cases performing at least x% of the roofline

Tesla K40
V100

Fig. 4: Comparison of % of cases achieving a % roofline on the Tesla K40 and V100 GPUs.

(Consistently higher is better)

Remarks

• Our domain-specific schedule space with a cost model

delivers near-roofline performance with just 10 eval-

uations, compared to O(100) evaluations by black-

box auto-tuners [2].

• Targeting inner-loop concurrency is essential in-order

to consistently deliver near-roofline FEM operator on

GPUs.

–Loop transformation engines like Loopy[3] are

helpful for such use-cases.

References

[1] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. McRae,
G.-T. Bercea, G. R. Markall, and P. H. Kelly, “Firedrake: Automating the
finite element method by composing abstractions,” ACM Transactions on
Mathematical Software (TOMS), vol. 43, no. 3, pp. 1–27, 2016.

[2] T. Chen, T. Moreau, Z. Jiang, H. Shen, E. Q. Yan, L. Wang, Y. Hu, L.
Ceze, C. Guestrin, and A. Krishnamurthy, “Tvm: End-to-end optimization
stack for deep learning,” vol. 11, p. 20, 2018.

[3] A. Klöckner, “Loo. py: Transformation-based code generation for gpus and
cpus,” in Proceedings of ACM SIGPLAN International Workshop on Li-
braries, Languages, and Compilers for Array Programming, 2014.

[Kulkarni, K, in prep.]

Statistical Performance Achievability Study

10 20 30 40 50 60 70 80 90
x% of roofline

0

20

40

60

80

100

y
%

of
te

st
ca

se
s

y% test cases performing at least x% of the roofline

Tesla K40
Titan V

“test cases” are “winners”
across settings
(2D/3D, PDEs, poly
orders)

[Kulkarni, K, in prep.]

Outline

Goals and Approaches

An Application: GPU-Accelerated FEM Action

Interlude: Polyhedral Code Generation

Transforming the FE Action

Capturing Computations with Array Data Flow Graphs

Conclusions

Improving the Scientist Interface

[XArray]

Loopy intermediate representation:
▶ Somewhat user-friendly, some idiosyncrasies
▶ Still specifies some detail prematurely

What might a better scientist interface look like?

(Not a new) Idea: numpy-like multi-dimensional arrays
▶ E.g. JAX, Theano, Tensorflow, . . .

Specialize:
▶ Undetermined data layout
▶ Immutable once created
▶ Allows building an array-valued DFG

→ represent entire workload as one giant expression

Pytato: Demo

https://github.com/inducer/pytato

https://github.com/inducer/pytato

Stages of a Computation
Stage 1: Capture an Array DFG Pytato
▶ Goal: Build an Array-Valued Data Flow Graph (DFG)

▶ By tracing execution of a Numpy-ish array program
▶ Use Lazy Evaluation to do so:

▶ Feed in (symbolic) placeholder data
▶ Return an opaque value that ‘remembers’ what was

done

Stage 2: Transform the DAG Pytato
▶ E.g. fold constants, apply math simplifications

Stage 3: Rewrite to Scalar IR Pytato → Loopy
▶ Introduce time, memory, loops

Stage 4: Scalar IR Transformations Array Context and Loopy
▶ E.g. parallelize, optimize for the memory hierarchy

Stage 5: Emit Target Code Loopy → OpenCL

B = f(A) C = g(B)
E = f(C) F = h(C)

G = s(E,F) P = p(B)
Q = q(B) R = r(G,P,Q)

What Workload?

[M. Smith (UIUC)]

Ek

∂tq +∇ · F (q) = 0

Test with ϕ, integrate by parts:

0 =

∫
Ek

qkt ϕdx −
∫
Ek

F · ∇ϕdx

+

∫
∂Ek

(F · n̂)∗ϕdx

In matrix form:

0 = Mk∂tu
k −

∑
ν

Sk,∂ν [F (uk)]

+
∑

A⊂∂Ek

Mk,A(n̂ · F)∗

Multi-species, reacting, heat transfer, materials, . . .

A View of the DFG

ifj,fej,fej→ei

u

dij,ej,ej,dej→eidij,ej,ej,dej→ei dij,ej,ej,dej→ei

ei,ij,ej→ei

v_2_out

ifj,fej,fej→ei

ei,ij,ej→ei

v_3_outv_1_out

ei,ij,ej→ei

dij,ej,ej,dej→ei

ei,ij,ej→ei

v_2

dij,ej,ej,dej→ei

u_out

ifj,fej,fej→ei

v_1

ifj,fej,fej→ei

dij,ej,ej,dej→ei

v_3

DAG Capture

▶ How to capture result reuse?
▶ Imperative codes must store intermediate results, breeds global

state
(often a significant challenge in science codes)

▶ We can recompute with impunity: simpler app code
▶ Approach: Recognize and collapse repeated DAG segments via

hashing
▶ Future work: Allow asserting no recomputation via metadata

▶ Issue: Repeated sub-DAGs (distinct ‘inputs’) increase (transform,
code gen, execution) cost
▶ Salient example: Interior fluxes repeated for each neighbor rank

Fusion

a b b c

Op1 Op2

a b c

Op1 Op2

▶ Need a more global view, including data flow between
kernels to enable fusion

▶ Benefits:
▶ Eliminate memory traffic
▶ Reduce control overhead

Realized in two stages:
▶ Starting point: entirely abstract view of the

computation. Essentially: a giant formula.
▶ Which array values should be stored?
▶ Approach: Materialize if ≥2 predecessors, successors

▶ Which temporary arrays can be eliminated?
▶ Approach: Graph-based array contraction building on

[Kennedy, et al. ‘93]

Transformation and Metadata

▶ Transform strategy is application-specific, relies on
metadata—from where?
▶ Approach: sparse annotations applied by infrastructure

(meshmode, grudge) are propagated and suffice to fully
‘type’ array axes

▶ Loops with data reuse need storage management, tiling
for near-roofline performance
▶ Perform optimization at the level of a ‘fused Einstein

summation’
▶ Einstein summation:

∑
k aikbkj → ik,kj->ij

▶ ‘Fused:’ Consider groups without result dependencies as
one unit, typically sharing input data as one unit

▶ Build database of transform templates, match via
normal form, use stored optimizations

DFG after ‘Vertical Fusion’

u_0

dij,ej,ej,dej→eidij,ej,ej,dej→ei dij,ej,ej,dej→ei

v_1

dij,ej,ej,dej→ei

v_2

dij,ej,ej,dej→ei

v_3

dij,ej,ej,dej→ei

ei,ij,ej→ei

v_1_out

ei,ij,ej→ei

v_3_out

ei,ij,ej→ei

u_0_out

ei,ij,ej→ei

v_2_out

ifj,fej,fej→eiifj,fej,fej→ei ifj,fej,fej→eiifj,fej,fej→ei

DFG after ‘Horizontal Fusion’

Projection onto Interior Faces

Interior faces flux computation

Boundary faces flux computation

Project onto All Faces

Face Mass Weak diffs

Mass Inverse

u_0

dij,ej,ej,dej→eidij,ej,ej,dej→ei dij,ej,ej,dej→ei

v_1

dij,ej,ej,dej→ei

v_2

dij,ej,ej,dej→ei

v_3

dij,ej,ej,dej→ei

ei,ij,ej→ei

v_1_out

ei,ij,ej→ei

v_3_out

ei,ij,ej→ei

u_0_out

ei,ij,ej→ei

v_2_out

ifj,fej,fej→eiifj,fej,fej→ei ifj,fej,fej→eiifj,fej,fej→ei

Experimental Setup

▶ Nvidia Titan V
▶ Peak Double prec. FlOps: 6144 GFlOps/s
▶ Peak bandwidth: 652.8 GB/s

▶ p ∈ {1, 2, 3, 4}, 3D tetrahedra
▶ Elements in mesh: 200K (for high orders), 700K (for lower orders)
▶ OpenCL Implementation: PoCL-CUDA (v1.8)

▶ Performance roughly equivalent to Nvidia CL

▶ Roofline = min
(
Device’s Peak FlOps/s, Kernel FlOps·Device’s Peak Bandwidth

Memory Footprint

)
▶ Uses the Fused-Einsum kernel granularity to model Global Memory Footprint

Results: Wave Equation

P1 P2 P3 P4

0

500

1000

1500

2000

2500

3000

G
F

L
O

P
s/

s

PyOpenCL JAX Pytato Roofline

Results: Maxwell Equations

P1 P2 P3 P4

0

1000

2000

3000

4000

5000

6000

G
F

L
O

P
s/

s

PyOpenCL JAX Pytato Roofline

Results: Compressible Navier-Stokes

P1 P2 P3

0

250

500

750

1000

1250

1500

1750

2000

G
F

lO
ps

/s

PyOpenCL JAX Pytato Roofline

Scramjet Application

Model of a supersonic combustion ramjet (scramjet):
▶ supersonic with combustion
▶ fuel injector, flame-holding cavity
▶ isolator, nozzle
▶ inlet: not yet

Combustion Movie

Combustion Movie

Combustion Movie

Combustion Movie

Combustion Movie

Combustion Movie

Combustion Movie

Combustion Movie

Combustion Movie

Combustion Movie

Performance on a Proxy for the Application (3D p = 2)

Numpy (on 40×Xeon) JAX (on Titan V) Pytato (on Titan V) Roofline (on Titan V)
0

200

400

600

800

1000
G

F
lO

ps
/s

Outline

Goals and Approaches

An Application: GPU-Accelerated FEM Action

Interlude: Polyhedral Code Generation

Transforming the FE Action

Capturing Computations with Array Data Flow Graphs

Conclusions

Conclusions

GPU Finite Elements
▶ Simple, ∼ generic analytical model

achieves effective pruning
▶ At least 50% roofline for 70% of test

cases
▶ i.e. attains considerable generality

▶ Tuning strategy relatively low-cost, no
user involvement needed

▶ Transforms permit separation of
concerns between
▶ domain-specific compiler and
▶ performance work

DG Array DFG
▶ A stark reminder of the value of

domain knowledge
▶ Array DFG capture:

quite mature, very general
▶ DG transformation parts:

still quite WIP
▶ Additional part: distributed memory

(via send/recv nodes in rank-local
DAG)

▶ https://github.com/inducer/{pyopencl,loopy,pytato}

