HPC for Idealists with Deadlines: Pragmatic Abstractions for
High Performance

Andreas Kloeckner

University of lllinois

November 16, 2022

X ILLINOIS

Acknowledgments

Kaushik Kulkarni Matt Wala James Stevens
(UIUC) (UIUC — Apple) (UIUC, grad. 2021)

Funding:
» NSF (OAC-1931577, SHF-1911019)
» DOE (DE-NA0003963)

Outline

Goals and Approaches

An Application: GPU-Accelerated FEM Action
Interlude: Polyhedral Code Generation

Transforming the FE Action

Capturing Computations with Array Data Flow Graphs

Conclusions

Outline

Goals and Approaches

“Programming HPC Machines is Hard"

10,000,000

Sustained (streaming)

Memory Bandwidth is falling

behind Peak FLOPS rates,

but every other kind of

PPl memory access is falling
behind even faster....

1,000,000

10,000

1,000

100

1
1990 1995 2000 2005 2010 2015 2020

[McCalpin, Memory Bandwidth and System Balance in HPC Systems, SC16]

CPUs, GPUs: all subject to similar design pressures

HPC: What do you mean?

Not:
> ‘Go-fast stripes’ / Black-box / 4,000x faster
Instead:

» Build a quantitative understanding of what is possible
(modeling)
» lteratively approach that limit

» Be an active participant
» Expect some exposed wiring: understanding required
» Use modeling as a guide

In this talk: Ideas and tools to. ..
» increase human effectiveness and efficiency
» help with separation of concerns

» help focus on the core issues

[OpenClipart / raulxav]

The Case for Code Transformation
Goals:

» Separation of concerns:
additive rather than multiplicative effort

» Conciseness: code is the enemy

» Abstraction:
not specifying details prematurely is a virtue
Approach:

» Program is a data structure

» Start with ‘math’

» Gradually add detail

» Annotations at most descriptive, not prescriptive
[Bootstrap Icons] As opposed to:

» Directives (a la OpenMP/OpenACC)

» Libraries

The Case for Just-in-Time Compilation

» What is ‘compile time'?
» At runtime is when you have the most information

> Target device
» Desired problem

v

JIT gives ability to specialize for available knowledge

v

Avoids false trade-off beetween generality and cost
(“abstraction penalty”)

\4

Challenge: JIT cost must remain under control
> At least: Caching easily avoids repeated expense

[Bootstrap Icons]

The Case for OpenCL

v

v

Host-side programming interface (library)
Device-side programming language (C)
Device-side intermediate repr. (SPIR-V)

Same compute abstraction as everyone else
(focus on low-level)
Device/vendor-neutral
» On current and upcoming leadership-class machines
> Will run even with no GPU in sight (e.g. Github CI)
Just-In-Time compilation built-in
Open-source implementations
(Pocl, Intel GPU, AMD¥*, rusticl, clover)
Mostly retain access to vendor-specific
libraries/capabilties

OpenCL

[Khronos Group]

Wrangling the Grid

f Axis 0

Axis 1 ¢—

» get_local_id(axis)?/size(axis)?

» get_group_id(axis)?/num_groups(axis)?

> get_global_id(axis)?/size(axis)?
axis=0,1,2,...

Uncooperative vendor?

>
>
>

OpenCL commoditizes compute
Not universally popular with vendors

Not an unchangeable fate

pocl-cuda:

>

>
>
>
>
>
4

Based on nvptx LLVM target from Google
Started by James Price (Bristol)
Maintained by a team at Tampere Tech U
We at lllinois helped a bit

LLVM keeps improving

Possible to talk to CUDA libraries

Allows profiling

pocl vs NVIDIA driver for SHOC (Titan X)

¥m
v |
o + l
55
§

o NVIDIA)

Performance (relath
i

2
;*

[http://portablecl.org/cuda-backend.html]

poct v VDA drver for SHOC (1an)

[http://portablecl.org/pocl-1.6.html]

http://portablecl.org/cuda-backend.html
http://portablecl.org/pocl-1.6.html

The Case for Python

Frees up mental bandwidth. ..
for the actually difficult bits
How?
» Not shiny, not exciting

» No/few distractions
» Duck typing, automatic memory management

Emphasizes readability
Rich ecosystem of sci-comp related software
Good for gluing: less reinventing

Easy to deploy

[python.org]

vVvyYvyVvyy

‘Fast enough’ for logistics and code generation

PyOpenCL

PyOpenCL has
» Direct access to low-level OpenCL

> Efficiency-minded: compiler cache, kernel enqueue
» Made safe for use with Python
(e.g. ‘nanny events', deletion semantics)

» A bare-bones numpy-like array type

» Parallel RNGs, indexing
» Numpy-like, but limited broadcasting, most operations

are 1D , ‘
» Foundational algorithm templates ™
» Reduction, scan, sort (radix, bitonic), unique, filter, OpenCL
CSR build

https://github.com/inducer/pyopencl aiso: pycupa

[Khronos Group, python.org]

https://github.com/inducer/pyopencl

Demo: PyOpenCL

https://github.com/inducer/pyopencl

https://github.com/inducer/pyopencl

Outline

An Application: GPU-Accelerated FEM Action

Finite Elements: Meshes

‘1[1'“
T f ey

‘f’!’

4“ "ﬂ.‘”i‘»

\‘“
‘\«\ 7

r; 171'4 i
1Y 7 e,
, VP‘ ﬂg"}? r‘;

e
’ .7
]

r b
Tag "*r-‘ B
‘)“‘:*“.

“ "u
7N A‘L‘)‘l e
v‘i" \'hﬂ,x
] #rﬁfﬂ

[Matt Smith, UIUC] I

Finite Element Action: Overview

Math: Au = f becomes

/Vu-dex:/ fipdx
Q Q
UFL (via Firedrake!):

a = inner(grad(u), grad(phi)) * dx
L = inner(f, phi) * dx
solve(a == L)
Computational kernel (for one DOF ~¢& one element):
Ng NpoF
ai =Y woi(x) (Z Uk3¢k(><j))
j=1 k=1

Goal: Get this onto a GPU, generically

'David Ham et al., https://firedrakeproject.org

https://firedrakeproject.org

Finite Element Action: Workload Variation

» Dimension (2D, 3D)
» FE approximation spaces (CG, DG, BDM, RT, ...)
> also composed via product (often ‘mixed’) spaces

» Variational forms (e.g. Stokes):

a = (inner(grad(u), grad(v)) — p * div(v) + div(u) * q)*dx
L = inner(Constant((0, 0)), v) * dx

» Varying polynomial degrees

Re
sults Previ
ew

[
Experiment

Laplace

2000
OJ‘I ii
U]

20 P
20 P2
20 P3
2D P4,
20 P°
20 P8
20 P71
2098,
20 P
30 P2
50 P2
30 P4
20 P53
40 PO

'S
(=3
(=3
S

GFLOPs/s

6000
Elasticity

4000

2000
[0 I

20 P
20.P250 P2
P30 PA’]_D P5
20 PO, PT
20 .\’330 P
Plap P2
N
3D P4
30 5
20 PO

GFLOPs/s

4000

2000

0

6000

4000

2000

0

|
Roofline

Helmholtz

20 P
20 P2
20 P2
20 P
0P
0 PO
20 P71
2098
20 P
30 P2
20 P3
30 P4
20 P
40 PO

H
er(iasticity

20 P
202
20 P3
20 P4
20 PO
20 PO
20 P17
20 P8
2D P
302
2D P3
30 P4
2D PO
20 PO

Approach Overview

UFL

from firedrake import * ufl/TSFC/FInaT

set _offloading_backend(cuda)
EE Q algebraic optimizations

TSFC/PyOP2

#...(define mesh, function spaces)

a = dot(grad(u), grad(v))=*dx
L = f*V*dX Loopy IR Q loop optimizations
sp = {"mat_type": "mat_free"}

Loopy

with offloading ():
solve(a ==L, s, | OpenCL | | CUDA |

solver _parameters=sp)

P using an approximate cost model

P to prune an autotuning search space I

Outline

Interlude: Polyhedral Code Generation

Kernel IR: Design Aspects
Single shared medium, must:
> Express computational intent with little information loss
» Enable program transform tools
» Be human-readable to enable performance work

Needs:
» Metadata capture for transformation targeting
> Precise dependency tracking

» Precise hardware mapping
(meets CL/CUDA machine model, specified, no heuristics!)

Community IR innovation:
» C. Lattner, J. Pienaar “MLIR Primer: A Compiler Infrastructure for the End of Moore's Law.” (2019).

» R. Baghdadi et al. “Tiramisu: A polyhedral compiler for expressing fast and portable code.” Proceedings of the 2019
IEEE/ACM International Symposium on Code Generation and Optimization. |IEEE Press. (2019)

» T. Ben-Nun et al. “Stateful Dataflow Multigraphs: A Data-Centric Model for High-Performance Parallel Programs.”, SC ‘19.

(2019)

What and why: polyhedral?
Loop nest

doi =1,n
doj=1n
do k = 1,n—i—k
AG,j. k) = ...
B(i,j k) = ...
end do
end do
end do

Polyhedron

{[i,j,k]:0 <= i,j < n and... }

S. Verdoolaege “isl: An integer set library

for the polyhedral model.” International
Congress on Mathematical Software.
Springer, Berlin, Heidelberg, 2010
https://github.com/indcuer/islpy I

https://github.com/indcuer/islpy

Not just sets: also dependencies
Loop domain: {(i,j):0<ij<4Ai<j}CZ?
Parametric loop domain: n+ {(i,j): 0<i,j<nAi<j}CZ3
Dependencies: {((i, /), (/",j')) : ...} C Z*
+ parameter: n— {((i,j),(i",j)): ...} CZ°

» Way to represent

> sets of integer tuples
» graphs on sets of integer tuples

and operate on them:
n N u o c’, \, min, lexmin
» parametrically
» need decidability: (quasi-)affine expr.
» no: j-j, nmodp
» vyes: nmod 4, 4i — 3j

Code Transforms

VVYyVVVVVVVYYVYY

Unroll

Stride changes (Row/column/something major)
Prefetch

Precompute

Tile

Reorder loops

Fix constants

Parallelize (Thread/Workgroup)

Affine map loop domains

Texture-based data access

Loop collapse

Even

VVYVVVVVVVYYVYY

More Code Transforms

Kernel and Loop Fusion

Scans and Reductions

Global Barrier by Kernel Fission
Explicit-SIMD Vectorization
Reuse of Temporary Storage

SoA — AoS

Buffering, Storage substitution
Save flops using Distributive Law
Arbitrary nesting of Data Layouts
Realization of ILP

Array compression/reindexing
[Seghir, et al. ‘06]

Automatic Operation Counting

Can obtain parametric, piecewise polynomial operation counts/bounds?, directly from
IR:

» Flops performed ~ Z | Domain(s)| - flops(s)
Statement s
» Mem. Ops performed < Z | Domain(s)| - Mem. Ops(s)

Statement s

» Mem. Ops performed > Z |Access Footprint(v)|

Variable v

Can use these for computer-aided performance model fitting3.

2Verdoolaege et al. 2007
3Stevens, K 2020

Demo: Loopy

https://github.com/inducer/loopy

https://github.com/inducer/loopy

Loopy in the context of the FEM action
Npor
ZWJ(%, (x;) (Z ukOPk(x;)

knl = Ip.make kernel(
"{le,i,j k]: 0<=e<nelements and 0<=i,k<ndofs and 0<=j<nq}",
mun
quad(e, j) :=sum(k, ulk,e] * phi[k, j])
ale,i] = sum(j, w[j] * psi[i,j] * quad(e, }))

] ||||)
Transformations (illustrative):
knl = Ip.split_iname(knl, "e", 128)
knl = Ip.tag_inames(knl, {”e_outer". "g.0"})

Outline

Transforming the FE Action

Workload

Scatter (Q\)_ _/Gather
N, N

)oF

[1~ [VYDpF ¢I,J

/

e L]
Pij Ue

» Ng: #Quadrature pts.
» Npor: #local DoFs
» Geometric factors, quadrature weights not shown

Transform Approach

» Tile the accesses to the matrices as T{ x Ty, T3 x T5

» Group computation of N, cells to be operated on by a workgroup
» Inner products within each tile divided among N; SIMT work items
» Block size = N.N; SIMT work items

Ne
T{ x Tf
Ty x T§

NpoF

» Npor: Number of local DoFs.
» N.: Cells in a block
> T,5: Tile sizes

Cost Model and Roofline

Total Global Memory accesses = Total Local Memory accesses

heur = ﬁmodel Bmodel
glob local

» Algiobar: Arith. intensity wrt global memory access count

» Aljoca: Arith. intensity wrt local memory access count

R peak peak
froofline = min (Alglobalﬁgbbap Allocalﬁbcap fpeak)

Perf
orman
c
e evaluation (Ti
itan V)

[
Experiment

Laplace

2000
OJ‘I ii
U]

20 P
20 P2
20 P3
2D P4,
20 P°
20 P8
20 P71
2098,
20 P
30 P2
50 P2
30 P4
20 P53
40 PO

'S
(=3
(=3
S

GFLOPs/s

6000
Elasticity

4000

2000
[0 I

20 P
20.P250 P2
P30 PA’]_D P5
20 PO, PT
20 .\’330 P
Plap P2
N
3D P4
30 5
20 PO

GFLOPs/s

4000

2000

0

6000

4000

2000

0

|
Roofline

Helmholtz

20 P
20 P2
20 P2
20 P
0P
0 PO
20 P71
2098
20 P
30 P2
20 P3
30 P4
20 P
40 PO

H
er(iasticity

20 P
202
20 P3
20 P4
20 PO
20 PO
20 P17
20 P8
2D P
302
2D P3
30 P4
2D PO
20 PO

Statistical Performance Achievability Study

y% test cases performing at least 2% of the roofline

100 - Tesla K40
—o— Titan V

80
“test cases’ are “winners’

across settings
(2D/3D, PDEs, poly
orders)

60

[Kulkarni, K, in prep.]

y% of test cases

20

10 20 30 40 50 60 70 80 90
2% of roofline

Outline

Capturing Computations with Array Data Flow Graphs

Improving the Scientist Interface

[XArray]

Loopy intermediate representation:
» Somewhat user-friendly, some idiosyncrasies
» Still specifies some detail prematurely

What might a better scientist interface look like?

(Not a new) Idea: numpy-like multi-dimensional arrays
» E.g. JAX, Theano, Tensorflow, ...

Specialize:
» Undetermined data layout
» Immutable once created
» Allows building an array-valued DFG

— represent entire workload as one giant expressior:

Pytato: Demo

https://github.com/inducer/pytato

https://github.com/inducer/pytato

Stages of a Computation

Stage 1: Capture an Array DFG Pytato
» Goal: Build an Array-Valued Data Flow Graph (DFG) ?

> By tracing execution of a Numpy-ish array program

» Use Lazy Evaluation to do so:
> Feed in (symbolic) placeholder data /
» Return an opaque value that ‘remembers’ what was
done \/X
Stage 2: Transform the DAG Pytato \l
» E.g. fold constants, apply math simplifications
Stage 3: Rewrite to Scalar IR Pytato — Loopy

» Introduce time, memory, loops
Stage 4: Scalar IR Transformations Array Context and Loopy £ ; #C)
> E.g. parallelize, optimize for the memory hierarchy G=s
Stage 5: Emit Target Code Loopy — OpenCL Q=q(B) R= r(G.P,QI

What Workload?

Ex

[M. Smith (UIUC)]

otq+V-F(q)=0

Test with ¢, integrate by parts:

0:/ qtkqsdx—/ F - Vdx
I E,

+/ (F - A)"pdx
OE,
In matrix form:

0= M O = SH¥[F(u¥)]

+ Y MR- F)

ACOEy

Multi-species, reacting, heat transfer, materials, ..

A View of the DFG

)

‘\ﬁ.lb’“.‘ N

LT

7
(ei-e7.7, dej—eif [d1,eJ.e].dej—~ei] [di.e].e]. dej—ei]

DAG Capture

> How to capture result reuse?
» Imperative codes must store intermediate results, breeds global
state
(often a significant challenge in science codes)
» We can recompute with impunity: simpler app code
ﬁ » Approach: Recognize and collapse repeated DAG segments via

hashing
» Future work: Allow asserting no recomputation via metadata

» Issue: Repeated sub-DAGs (distinct ‘inputs’) increase (transform
code gen, execution) cost

» Salient example: Interior fluxes repeated for each neighbor rank

Fusion

» Need a more global view, including data flow between
kernels to enable fusion

‘ Opl ‘ ‘ Op2 ‘ > Benefits:

» Eliminate memory traffic

» Reduce control overhead

a b b

(9]

Realized in two stages:
+ > Starting point: entirely abstract view of the
computation. Essentially: a giant formula.
a b C » Which array values should be stored?

» Approach: Materialize if >2 predecessors, successors
Opl | Op2 » Which temporary arrays can be eliminated?

» Approach: Graph-based array contraction building on
[Kennedy, et al. ‘93]

Transformation and Metadata

» Transform strategy is application-specific, relies on
metadata—from where?

>

Approach: sparse annotations applied by infrastructure
(meshmode, grudge) are propagated and suffice to fully
‘type’ array axes

» Loops with data reuse need storage management, tiling
for near-roofline performance

>

>
>

Perform optimization at the level of a ‘fused Einstein
summation’

Einstein summation:), aibi; — ik,kj->ij

‘Fused:’ Consider groups without result dependencies as
one unit, typically sharing input data as one unit

Build database of transform templates, match via
normal form, use stored optimizations

DFG after ‘Vertical Fusion’

DFG after ‘Horizontal Fusion’

Experimental Setup

» Nvidia Titan V

» Peak Double prec. FIOps: 6144 GFlOps/s
» Peak bandwidth: 652.8 GB/s

p € {1,2,3,4}, 3D tetrahedra
» Elements in mesh: 200K (for high orders), 700K (for lower orders)

OpenCL Implementation: PoCL-CUDA (v1.8)
» Performance roughly equivalent to Nvidia CL

» Roofline = min <Device's Peak FlOpS/S, Kernel FIOps-Device's Peak BandW|dth>

v

v

Memory Footprint
» Uses the Fused-Einsum kernel granularity to model Global Memory Footprint

Results: Wave Equation

4JJJ

3000

2500

2000

1500

GFLOPs/s

1000

500

[==]

Il PyOpenCL

B JAX

Il Pytato

I Roofline

Results: Maxwell Equations

Ladd

6000

5000

=~
o
o
[«

3000

GFLOPs/s

2000

1000

[==]

Il PyOpenCL

B JAX

Il Pytato

I Roofline

Results: Compressible Navier-Stokes

2000

1750

1500

1250

1000

GFlOps/s

750

500

250

Py
Il PyOpenCL

. JAX

P
I Pytato

Py
I Roofline

Scramjet Application

Model of a supersonic combustion ramjet (scramjet):
> supersonic with combustion
» fuel injector, flame-holding cavity
» isolator, nozzle

> inlet: not yet

b

Combustion Movie

Combustion Movie

Combustion Movie

Combustion Movie

Combustion Movie

Combustion Movie

Combustion Movie

Combustion Movie

Combustion Movie

Combustion Movie

Performance on a Proxy for the Application (3D p = 2)

1000

800

GFlOps/s
[=2}
o
[=}

400

200

0
Numpy (on 40xXeon) JAX (on Titan V) Pytato (on Titan V) Roofline (on Titan V)

Outline

Conclusions

Conclusions

GPU Finite Elements DG Array DFG
» Simple, ~ generic analytical model » A stark reminder of the value of
achieves effective pruning domain knowledge
» At least 50% roofline for 70% of test » Array DFG capture:
cases

quite mature, very general

» i.e. attains considerable generality » DG transformation parts:

» Tuning strategy relatively low-cost, no still quite WIP

user involvement needed > Additional part: distributed memory

(via send/recv nodes in rank-local
DAG)

» Transforms permit separation of
concerns between
» domain-specific compiler and
» performance work

> https://github.com/inducer/{pyopencl,loopy,pytato}

