

Deep issues of the Python
ecosystem soon fixed through the

 project?

Pierre Augier

Yet another presentation about
Python problems...

● “Python slow”
● Python ~= CPython
● Role of 3rd party libraries and extensions

But first, some good news!

News and progresses...
● Usability for different applications

– Web frontend, WebAssembly, Pyodine, Pyscript
– Beeware
– Textual

● Packaging
– Pip, isolated build, Poetry, ...
– Conda-forge, Mamba, ...
– PyPy + Conda-forge

News performance
● No GIL proof of concept
● Python array API standard
● Pythran in Scipy and Scikit-image
● Faster CPython project (Microsoft, with Guido van Rossum)

– 3.11 (2022/10) x1.25 faster than 3.10
– 3.12 (2023/10) ?
– 3.13 (2024/10) ?
– 3.14 (2025/10) ?

Only pure Python code...

Target: x5 faster!

https://pyfound.blogspot.com/2022/05/the-2022-python-language-summit-python_11.html
https://data-apis.org/array-api/latest/index.html
https://devblogs.microsoft.com/python/python-311-faster-cpython-team/

About numerical Python problems...
● “Python slow”
● Python ~= CPython
● Role of 3rd party libraries and extensions

Why?

Python slow ? Bad for CO2 ?
● Actually, CPython slow (pure Python code and

extensions)
● Slow interpreter != inefficient programs!

– Avoid the interpreter in hot loops (long calls native functions)
– Numpy with high level prog.
– Cython, Pythran, Numba, Numexpr...

● Other implementations (PyPy, GraalPy) much faster

Python slow ? Bad for CO2 ?

Taken from Augier et al.
Reducing the ecological impact of
computing through education and
python compilers.
Nature Astronomy, 2021

Benchmark of different
implementations in different
languages.

CPython slow
– Generalist interpreter
– Performance less important than simplicity of

implementation and robustness
– Old internal design

● Garbage collector: reference counting
● No specialized objects (for example lists)
● No JIT
● ... It is changing with the

Faster CPython project

CPython slow, consequences

● Hard to write numerical code in pure Python
● Language not designed in this direction (lacks

“math arrays”, “arrays of objects”, ...)

● Needs things like

(C extensions, using the CPython C API)

C API and ABI
● API (Application Programming Interface)

involves source code: content of headers,
function declarations, macros, structs, ...

● ABI (Application Binary Interface) involves
compiled code: function objects, struct memory
layout, etc.

CPython C API
● A huge success!
● No proper design, evolve organically
● Exposes (assumptions about) too many

implementation details
● A nightmare for alternative Python implementations

(supporting extensions requires mimicking the
internals of CPython)

Alternative Python implementations
● PyPy

(fast, tracing JIT, tracing garbage collector)
● MicroPython
● GraalPy (, Oracle Labs, Java, LLVM)
● RustPython
● ...
● Multiple projects failed...

No OOP for numerics
+

no evolution of the language
for numerical computing

(homogeneous arrays of objects)
+

schism OOP versus array comp.

CPython slow
(pure Python)

High level array computing,
Numpy / array libs

(written in C, CPython C API)

Limitation
internal evolution

CPython

CPython C API
exposes

internal details
Alternative Python implementations
very slow for code using extensions

Alternative Python implementations
little used for numerical computing

Low level array comp. slow
(Python / native border)

Accelerators needed
- Cython, Pythran, Numba
- Reimplementations
- Move the border

Libs of the numerical stack
not designed taking into account

alternative Python implementations

No OOP for numerics
+

no evolution of the language
for numerical computing

(homogeneous arrays of objects)
+

schism OOP versus array comp.

CPython slow
(pure Python)

High level array computing,
Numpy / array libs

(written in C, CPython C API)

Limitation
internal evolution

CPython

CPython C API
exposes

internal details
Alternative Python implementations
very slow for code using extensions

Alternative Python implementations
little used for numerical computing

Low level array comp. slow
(Python / native border)

Accelerators needed
- Cython, Pythran, Numba
- Reimplementations
- Move the border

Libs of the numerical stack
not designed taking into account

alternative Python implementations

HPy C APIA crazy
solution!

 - A better C API for Python
Principles:
● Based on handles to represent references to Python objects
● Hides implementations details (no assumption)
● 1 API and different ABIs (CPython ABIs and 1 HPy Universal ABI)

Advantages:
● Zero overhead on CPython
● Much faster on alternative implementations such as PyPy, GraalPython
● Universal binaries: extensions built for the HPy Universal ABI can be loaded unmodified on CPython,

PyPy, GraalPython, etc. No need to rebuild for different versions (3.9, 3.10, …)!
● A migration path for mixing legacy C-API with HPy API
● Debug mode: to identify common problems such as memory leaks, invalid lifetime of objects, invalid

usage of API, … No need to rebuild!
● Nicer API: smaller, simpler, more consistent

Scikit-image example
● Scikit-image written in Python and Cython
● Depends on Numpy, Matplotlib, ...
● Extensions

– C code produced via Cython and Pythran
– Using the CPython C API and the Numpy C API

Scikit-image fully using HPy?
● Numpy HPy porting
● New Numpy HPy C API
● Matplotlib HPy porting
● Cython backend producing HPy code
● Pythran backend producing HPy code

And a HPy universal wheel can be created!

HPy: current status in 2023?
Probability of success?

● 4 years after the first commit, still in development (HPy 0.0.4, alpha testing)

● Actively developed (by PyPy, GraalPy and Numpy core devs)

● Milestone “ABI version 1” soon reached!

● Few packages ported (Matplotlib!)

● Numpy port in progress but no more big technical uncertainties!

 My guess: end users may be able to get the
first benefices of HPy in few months

No OOP for numerics
+

no evolution of the language
for numerical computing

(homogeneous arrays of objects)
+

schism OOP versus array comp.

CPython slow
(pure Python)

High level array computing,
Numpy / array libs

(written in C, CPython C API)

Limitation
internal evolution

CPython

CPython C API
exposes

internal details
Alternative Python implementations
very slow for code using extensions

Alternative Python implementations
little used for numerical computing

Low level array comp. slow
(Python / native border)

Accelerators needed
- Cython, Pythran, Numba
- Reimplementations
- Move the border

Libs of the numerical stack
not designed taking into account

alternative Python implementations

HPy C
APIA crazy

solution!

No OOP for numerics
+

no evolution of the language
for numerical computing

(homogeneous arrays of objects)
+

schism OOP versus array comp.

CPython slow
(pure Python)

High level array computing,
Numpy / array libs

(written in C, CPython C API)

Limitation
internal evolution

CPython

Alternative Python implementations
very slow for code using extensions

Alternative Python implementations
little used for numerical computing

Low level array comp. slow
(Python / native border)

Accelerators needed
- Cython, Pythran, Numba
- Reimplementations
- Move the border

Libs of the numerical stack
not designed taking into account

alternative Python implementations

HPy C APIA crazy
solution!

???

More

quite efficient

less slow

Conclusions and perspectives
During the next years, we’ll see remarkable
performance improvements for Python
● Faster CPython project
● HPy

Conclusions and perspectives
About
● Towards a multi implementations ecosystem
● Universal wheels great for users!
● HPy opens a lot of possibilities
● What about low level code using extensions?

– Python/Numpy accelerators still useful
– GraalPy very promising (JIT across language boundaries)…

How to help? https://hpyproject.org/

https://hpyproject.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

