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Introduction on copulas



Definition

Definition (Copulas)

A copula, usually denoted C , is the distribution function of a random vector, supported
on [0, 1]d , with U ([0, 1])-distributed marginals.

Let X = (Xi , i ∈ 1, ..., d) be an (absolutely continuous) random vector in Rd . Denote
by FX = P(X ≤ x) and FXi (x) = P(Xi ≤ x) the distributions functions of the random
vector and of the marginals respectively. Then there is a known link between the two:

Theorem (Existance and uniqueness (see Sklar 1959))

For any absolutely continuous random vector with distribution function F , there exists
a unique copula C such that

FX(x) = C (Fi(xi), i ∈ 1, ..., n) .
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A few comments

Remark (Division of labor)
The function C actually describes and contains the dependence structure of the whole
random vector, apart from its marginals distributions.

Example (First examples)

Independance copula: Π(u) =
∏d

i=1 ui

Fréchet-Hoeffding minimum: W (u) = 1 + ⟨1, u − 1⟩

Fréchet-Hoeffding maximum: M(u) = mini ui

Remark (Families)
As for univariate distributions, there exists a lot of better-or-lesser known parametric
families of copulas.
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Elliptical copulas

Definition (Elliptical random vector)

A random vector X is said to be Spherical if for every orthogonal matrix A ∈ Od(R),
AX ∼ X . Any linear transformation of X is then elliptical.

An elliptical copula is simply derived from an elliptical random vector by the Sklar
theorem. There is no easier expression.

Example (Elliptical examples)

The Gaussian and Sttudent families of elliptical random vectors are two classical used
parametric models. There is also the possibility to provide your own elliptical generator.

Oskar Laverny – JuliaOptParis2023 / Copulas.jl / Introduction on copulas 5/21



Examples

Figure 1: Sample from bivariate Gaussian Copula with sigma=0.7
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Archimedean copulas

Definition (d-monotone functions)

A function φ(t) is said d-monotone if it has d − 2 derivatives which satisfy
(−1)kφ(k)(t) ≥ 0 and (−1)d−2φ(d−2) is a non-increasing convex function.

Definition (Archimedean generator)

A d-archimedean generator is a d-monotone function from R+ to [0, 1] such that
φ(0) = 1 and φ(x) → 0 when x → ∞.

Definition (Archimedean copula)

The function C(u) = φ

(
d∑

i=1
φ(ui)

)
is a copula if and only if φ is a d-archimedean

generator.
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Classical archimedean examples

Example (Classical parametric families)

φ(t) = e−t generates Π, the independence copula !
φ(t) = (1 + tθ)−θ−1 generates the Clayton(θ) copula.
φ(t) = exp{−tθ−1} generates the Gumbel(θ) copula.
There are others : Franck, AMH, etc. . .

See (Nelsen 2006) for a comprehensive list of other notable generators.
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Stochastic representations

Proposition (Radial-Simplex decomposition)

A d-variate random vector U following an archimedean copula with generator φ can
be decomposed into

U. = φ.(SR),

where S is uniformely distributed on the d-variate simplex, and R is a non-negative
random variable, independant from S, defined as the (inverse) Williamson-d-transform
of φ.

Remark (Frailty reprensentation)
When φ is completely monotone, W = 1/R is a non-negative random varaible that has
φ as its Laplace transform.

See (Hofert, Mächler, and McNeil 2013), (McNeil 2008), and (McNeil and Nešlehová
2010) for details on these repesentations.
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Exemples

Figure 2: Sample from bivariate Clayton and Gumbel
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Handling empirical data

Definition (Empirical copula : renormalized ranks.)

From a (n, d)-sized array x, we can extract a (n, d)-sized array u corresponding to
renormalized marginals ranks by:

ui ,j = Rank(xi ,j in x.,j)
N + 1

Then the empirical copula of x is the ecdf of u.

Smoothing possibilities: Bernstein Copula, Beta copula, checkerboard copula, etc. . .
with a simple interface:

C = EmpiricalCopula(x,pseudos=false)
C = EmpiricalCopula(u,pseudos=true)
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About the implementation



The SklarDist type and the fit function

As any distribution following Distributions.jl’s standard, our code allows to fit
Copula object, but also full models through SklarDist :

using Copulas, Distributions, Random
X1,X2,X3 = Gamma(2,3), Pareto(), LogNormal(0,1)
C = ClaytonCopula(3,0.7)
D = SklarDist(C,(X1,X2,X3))
simu = rand(D,1000)
est_D = fit(SklarDist{FrankCopula,Tuple{Gamma,Normal,LogNormal}}, simu)
# probably a bad fit..

From Distributions.jl’s documentation: The fit function will choose a reasonable
way to fit the distribution, which, in most cases, is maximum likelihood estimation.
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About the implementation

A quick example with the Clayton implementation from the package:

struct ClaytonCopula{d,T} <: ArchimedeanCopula{d}
theta::T

end
phi(C::ClaytonCopula, t) = (1+sign(C.theta)*t)ˆ(-1/C.theta)
phi_inv(C::ClaytonCopula,t) = sign(C.theta)*(tˆ(-C.theta)-1)
tau(C::ClaytonCopula) = C.theta/(C.theta+2)
tau_inv(::Type{ClaytonCopula},tau) = 2tau/(1-tau)
radial_dist(C::ClaytonCopula) = Distributions.Gamma(1/C.theta,1)

Note the quite small amount of code needed. . . compared to R::copula.
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Modularity of the API

The Archimedean API is modular:

To sample an archimedean, only radial_dist and phi are needed.
To evaluate the cdf and (log-)density in any dimension, only phi and inv_phi are
needed.
Currently, to fit the copula itau is needed as we use the inverse tau moment
method. But we plan on also implementing inverse rho and MLE (density needed).
We plan on implementing the Williamson transforms so that radial-dist can
be automatically deduced from phi and vice versa, if you dont know much about
your archimedean family
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Shine of automatic differentiation

To compute archimedean copula densities, the d th derivativer of the generator is needed:

function phi_d(C::ArchimedeanCopula{d},t) where d
X = Taylor1(eltype(t),d)
taylor_expansion = phi(C,t+X)
coef = getcoeff(taylor_expansion,d) # gets the dth coef.
return coef * factorial(d) # gets the dth derivative of $\phi$ taken in t.

end

This piece of code is type-stable since d is part of the type, and much faster than the
equivalent in R::copula that is relying on a C++ implementation of partial derivatives.
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A few usage examples



Ex 1: TuringLang/Turing.jl

using Turing
@model function model(dataset)

# Priors
t ~ TruncatedNormal(1.0, 1.0, 0, Inf)
t1 ~ TruncatedNormal(1.0, 1.0, 0, Inf)
t2 ~ TruncatedNormal(1.0, 1.0, 0, Inf)
X1 = Exponential(t1)
X2 = Pareto(t2)
C = SurvivalCopula(ClaytonCopula(2,t),(1,))
D = SklarDist(C, (X1, X2))
Turing.Turing.@addlogprob! loglikelihood(D, dataset)

end

Other possibility: dependence between residuals in bayesian regression context, for
exemple.
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Ex 2: SciML/GlobalSensitivity.jl

Shapley effects models the influence of inputs of a black-box-model on the outputs.
This requires dependence structures modeling and is implemented on top of
Copulas.jl by SciML/GlobalSensitivity.jl

See their docs: https://docs.sciml.ai/GlobalSensitivity/stable/tutorials/shapley/
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Ex 3: JuliaActuary/EconomicScenarioGenerators.jl

From their readme:

using EconomicScenarioGenerators, Copulas, Plots
m = BlackScholesMerton(0.01,0.02,.15,100.)
s = ScenarioGenerator(

1, # timestep
30, # projection horizon
m, # model

)
ss = [s,s] # these don't have to be the exact same, but do need same shape
c = Correlated(ss,ClaytonCopula(2,6))
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The future



Potential for other integrations

Already identified:

AnderGray/ProbabilityBoundsAnalysis.jl and
AnderGray/PossibilisticArithmetic.jl : They use copulas but implemented
their own versions before this package existed, there is a plan to remove duplicated
code and leverage Copulas.jl.
lucaferranti/FuzzyLogic.jl: A copula is a T-norm and therefore a fuzzy AND:
we could leverage Copulas.jl to construct new parametric T-norms, or even
higher-dimensional ones.

Maybe others you think about?
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Potential for future developpement

Future implementations directions depends on your feedback and needs:

More comprehensive documentation
Hierarchical archimedeans copulas ? Louivilles ?
Pair-copulas / Vines constructions ?
Dependence metrics : strong/weak tail dependance functions for a given copula?

Together with, of course, straightforward to use estimators from real data.
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