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Introduction
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Motivation

Topic of this talk: Large Scale Optimization via Monte Carlo
Tree Search.

Objectives

Share research findings and encourage dialogue.

Identify areas of collaboration, via shared objectives.

Get candid feedback and criticism, please go ahead.
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Objectives

Introduces the problem of high dimensional sequential decision
making.

Proposes an MDP formulation for maritime bunkering, and
proposes a stochastic programming solution based on scenario
tree generation.

Proposes an application of Monte Carlo Tree Search, to
address the curse-of-dimensionality associated with large scale
MDP’s.
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Sequential Decision Making

Decision occurs with state transitions and rewards (and/or
consequences) based on each state.

Sequential decision making can be stochastic or
deterministic. Applies to both policy and/or state transitions.

Optimization over a finite time horizon or infinite time
horizon.

Learning of model parameters vs optimization of a model.
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Markov Property

A state should summarize past sensations so as to retain all
essential information.

The probability of transitioning to a state, and its reward, is
dependent only on the previous state.

Previous history can be discarded.

Markov Property

P(Rt+1,St+1|S0,A0,R1...Rt ,At , St) = P(Rt+1, St+1|Rt ,At ,St)
(1)

8 / 54



Intro. DP and MCTS MCTS Implementation Case Study Python & Julia Next Steps

Markov Decision Process

Q function

Q(St , at) provides a measure of the discounted reward provided
action a is taken in state St

Q(St , at) = R(St , at) + γ
∑

St+1∈S
P(St+1|St , at)V (St+1)

π∗(St) = argmax
a∈A

Q(St , a) (3)
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Markov Decision Process

Key Challenges for real-world MDP’s

Parameters of the underlying process MDP⟨S ,A,T,R⟩ are
unknown.

Imperfect conditions and/or unobservable information.

High dimensionality of state and action space.
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Value Based Planning

The policy of an agent can be driven by the value of a state

Value Definitions by Policy

Gt = Rt+1 + ...+ Rt+2 + ...+ RT (4)

Vπ(St) = Eπ[Gt |St ] (5)

Vπ(St) = Eπ[Rt+1 + γVπ(St+1)] (6)

Value Definitions by Maximization

V (St) = max
a∈A

[Rt+1 + γV (St+1, a)] (7)

V (St) = max
a∈A

Q(St ,At) (8)
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Dynamic Programming Visualization

Visualization of Dynamic Programming
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Policy vs Value Iteration, and DP Limitations

Limitations of DP - Intractable for large state action spaces.

High number of states.

High branching factor.

Complexity

Value iteration: Each iteration O(|S |2|A|).
Policy iteration: Each iteration O(|S |3 + |S |2|A|).
DP Methods are suitable for problems under 106 states.
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Bias Variance Tradeoff - Monte Carlo Estimation

1 Iteration of Monte Carlo Update.

TD Learning uses the one-step ahead Value V(S’) to estimate
the true G function.

A full MC update may be biased, but have less variance.
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UCB-1

Algorithm UCB1 Strategy

1: Q = ∅
2: for t = 0→ T do
3: for k = 1→ K do
4: Compute µ̂a

t
5: end for
6: Play at = argmaxa m

a
t

7: Q ← Q(a)
8: end for

We seek to maximize mk
t where,

ma
t = µ

a
t +

√
2 log t

n(a)
(9)

UCB1 Regret Bound (Auer, 2002)

E[RT (π)] ≥ 8
∑

a:µa
t<µ∗

t

( log n(a)

µa
t − µ∗

t

)
+

(
1 +

π2

3

)( A∑
a=1

µ
a
t − µ

∗
t

)
(10)
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Extending Multi-Armed Bandit to Markov Decision
Processes

Challenges:

Incomplete model, so need to estimate values of states and
actions

Need to balance exploration vs exploitation

MDPs are stochastic in nature

Large branching factors (width) and many steps until reward
(depth)

Proposed solution: Monte Carlo Tree Search (MCTS)

16 / 54



Intro. DP and MCTS MCTS Implementation Case Study Python & Julia Next Steps

Monte Carlo Tree Search

UCT guides the tree search from to the next possible state S′ via UCB1 MAB strategy. Where n is the number of
visits at the parent state at S and n′ is the number of visits for S′. E(S′) is the expected reward.

UCT Selection Strategy

UCT (S′) = E(S′) +

√
2 ln n

n′
(11)
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MCTS Algorithm - Layman’s Version

Selection
Select an unvisited node.
Select an action according to UCB1.

Expansion
Perform exploratory action at a frontier.
Obtain one new node.

Simulation (rollout)
Simulate randomly, without indicators such as UCB, to obtain
an unbiased approximation of the payoff.

Backpropagation
Terminal node has been reached.
Propagated discounted reward up to the root node.
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MCTS Application to MDP’s

(Chang et al. 2010) demonstrates MCTS is a adaptation of
the MAB strategy to for MDP’s.

(Bertsimas et al. 2014) showed that MP and MCTS perform
similarly. Where MCTS performance in indifferent to the
MDP formulation.
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MCTS Application to MDP’s (Cont.)

Challenges of MCTS

Falling in local minima/maxima Value Function traps.

No guarantees on value function convergence under imperfect scenarios.

Guesswork involved with determining exploration heuristics.

Advantages of MCTS

Does not require model parameters MDP⟨S ,A,T,R⟩.
Stochastically explores search space and can handle large depths and widths.

E(S ′) can be determined flexibly, allowing room for heuristics and hybridization
with Mathematical Programming (Baier 2013) Baier and Winands 2013.
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Different variants of MCTS

There’s an entire spectrum of search methods to choose from!
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Optimization strategies for MCTS

Hybrid with Dynamic Programming Feldman and Domshlak
2014

Heuristics, from human knowledge, or Deep Learning.

Value/policy function approximators (potentially from Deep
Learning).

Parallelism
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Dynamic Programming and MCTS

Dynamic Programming (DP) is an exact solution to the MDP.

DP is backward induction vs. MCTS forward approximation
via sampling (Approx DP.)

With stochastic DP, used learned MDP parameters to produce
a weighted sum expected reward.

References:

Feldman, Zohar, and Carmel Domshlak. ”Monte-Carlo tree
search: To MC or to DP?.” ECAI. 2014.
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Core mctreesearch4j library

The core library provides both implementations and
abstractions for MCTS.
Solver class abstractions are predefined whereas MDP
abstractions require definition.
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Defining the MDP via Abstract Class

An MDP is defined via an Abstract Class.

The State Action Space can be defined via Generic Types.

1 abstract class MDP<StateType, ActionType> {

2 abstract fun transition(StateType, ActionType) : StateType

3 /* Definee the State (StateType) Action (ActionType) transition */

4

5 abstract fun reward(StateType, ActionType?, StateType) : Double

6 /* Returns a reward (Double) given state transitions parameters */

7

8 abstract fun initialState() : StateType

9 /* Return the initial state of the root (StateType) */

10

11 abstract fun isTerminal(StateType) : Boolean

12 /* Return boolean indicating if the state is terminal. */

13

14 abstract fun actions(StateType) : Collection<ActionType>

15 /* Return an Iterable of legal actions given a current state. */

16 }
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Demo Time

Demo Time
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Reversi Heuristic

A simple heuristic was implemented using domain knowledge
to give value to states, and alter the MCTS search
mechanism.
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Experimental Results

Experimental Results
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GridWorld

In Gridworld, actions are not always deterministic, but the
agent can go in any direction given an action. The state
transitions are governed by discrete probabilities
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GridWorld Results

Convergence of exploration terms.
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GridWorld Results

Convergence of reward.
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GridWorld Results

Convergence of visits.
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Wrap-up

What did we learn today? What’s next?

Modular and Extensible Design The design of
mctreesearch4j enables the whole or partial reuse or
redefinition of all key components of MCTS.

Lightweight implementation The relatively lightweight
implementation of MCTS, allows it to run on any device (ie.
Mobile Applications etc.)

Research Platform Extending from the design of
mctreesearch4j, it can be used as an experimentation platform
for future research in MCTS-base algorithms (hybrid or
modification).

33 / 54



Intro. DP and MCTS MCTS Implementation Case Study Python & Julia Next Steps

Case Study: Maritime Logistics

Optimizing Fuel Consumption for a Maritime Liner

Ship Bunkering at a Port-of-Call
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The Bunkering Problem (Maritime Refuelling)

Consider a Liner must travel a fixed schedule for n ports.
n = 0, 1, 2, 3..N. The distance between ports n1 and n2 is d(n, n′)
given by a distance matrix. The route schedule is fixed D.

Example of a fixed liner route (Asia Europe LL5).
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The Bunkering Problem (Maritime Refuelling)

Consider a Liner must travel a fixed schedule for n ports.
n = 0, 1, 2, 3...N. The distance between ports n1 and n2 is d(n, n′)
given by a fixed distance matrix D. The route schedule is fixed. A
liner must determine how much fuel to refuel (bunker) at each
port-of-call. The objective is to complete the trip, with the least
fuel consumption.
Simplifying Assumptions:

Fuel prices are subject to global stochastic variation.

Fuel consumption is linear and deterministic.

Distance, to and from each port, is fixed and deterministic.

Sailing speed is fixed, there is no time penalty for late/early
arrivals.

No possibility of service disruptions.
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The Bunkering Problem - MDP Definition

Proposed State Definition

Sn = (Xn,1,Pn,k , n
′) (12)

An = ∆n = Xn,2 − Xn,1 (13)

P(Sn′ |An,Sn) = (Xn,2 − f (n, n′), 1[Pn = Pn,k ], n
′) (14)

R(Sn,An) = ∆nPn + YnBn, (15)

Yn = 1[Xn,2 − Xn,1 > 0] (16)

Pn,k ∼ Multi(K ) (17)

Objective

Cπ = E
[∑
n∈N

Pn(Xn,2 − Xn,1) + BnYn

]
(18)
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Notation and Variable Definitions

Notation

N Number of port-of-calls.
Xn,1 Fuel level at port n when arriving at port.
Xn,2 Fuel level when departing port n.
f (n, n + 1) Fuel consumption function from port n until next

port n + 1.
Pn Price of fuel at port n.
Yn ∈ (0, 1) Indicator for bunkering decision.
Bn Fixed bunkering cost.
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Formulate as Stochastic Programming

Solution can also be obtained via stochastic programming.

min
X

C ∗ =
∑
n∈N

Pn(Xn,2 − Xn,1) + BnYn (19a)

subject to Xn+1,1 = Xn,2 − f (d(n, n + 1)), (19b)

Xn+1,2 ≥ Xn,2 − Xn+1,1 (19c)

f (d(n, n + 1)) ≥ 0 (19d)

Yn ∈ (0, 1) (19e)

Yn = 1[Xn,2 − Xn,1 > 0] (19f)
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Scenario tree generation

Scenario tree. (i) The nodes of a scenario tree represent the fuel price
percentage changes, (ii) The values xi are events of the multinomial
distribution Multi(K ) that occur with equal probabilities, (iii) The root
node assumes no price change, i.e., x = 1, (iv) There is a total of
S = KN scenarios (tree leafs) where N is the number of ports and K is
the number of events, (v) Scenarios are shared between all ports.
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Let the cost minimization begin!

Stochastic Programming (SP) in this example, provides the
theoretical expected cost minimum.

However, if the scenario distribution is more general, ie
Mixture of Gaussians, SP is limited to discredited scenarios.

SP cannot be used if model parameters unknown, we rely on
MCTS for learning of parameters.

Stochastic programming optimization vs. MCTS.

Current framework available in Python and Kotlin.
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Value Function Approximation

Algorithm Monte Carlo Tree Search (MCTS) with Value Function Ap-
proximator

1: Input: Initialize state (chance node) s0.

2: Output: Best action a∗

3: while Max iterations not exceeded. do
4: sselected −→ Selection(v0)

5: aexpanded ← Expansion(vselected) ”Decision node (action)”

6: if α > Uniform[0, 1] then

7: Q(s, a)← Simulation(aexpanded)

8: else
9: Q(s, a)← J (s, a)

10: end if
11: Backpropagation(sexpanded, Q(s, a))

12: end while
13: a∗ ← BestAction(s0)

14: return a∗
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VFA Results

MCTS Enhancement using value function approximator where J (s, a) is a coarse grained stochastic programming
solution on expected cost.
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VFA Results - cont.

MCTS Enhancement using value function approximator where J (s, a) is a coarse grained stochastic programming
solution on expected cost.
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Julia Integration with Python

Julia Integration with Python
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Callback with JuliaPy

Implemented a callback function to support calling Julia
subroutines inside of Python, via PyJulia.

Callbacks can be used to trigger Julia code inside of Python.

Python and Julia share similar data structures and
philosophies (i.e. high level, multi-paradigm, interoperability).

Demo time: Calling the cascade func() in both Python and Julia.

1 from julia import Julia

2 from common.properties import *

3 import time

4

5 jl = Julia(compiled_modules=False)

6 jl.include("julia/julia_callbacks.jl")

7

8 jl_result = jl.cascade_func(arg1, arg2)

9 result = cascade_func(arg1, arg2)

46 / 54



Intro. DP and MCTS MCTS Implementation Case Study Python & Julia Next Steps

Integration with JuMP

Call the Julia callback function using
Julia.function name (args) to create the JuMP optimization
model with the callback constraints.

Solve the optimization problem and retrieve results.
1 import julia

2 from julia import Julia

3 import JuMP

4

5 julia.install()

6 julia.include("stochastic_programming.jl")

7

8 JuMP.optimize!(julia_callback)

9 optimal_value = JuMP.objective_value(julia_callback)

10

11 julia_callback = Julia.stochastic_programming_callback(args)

12

13 JuMP.optimize!(julia_callback)

14 optimal_value = JuMP.objective_value(julia_callback)
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Implementation of mctreesearch4j in Julia

It is on the roadmap that we develop a new version of
mctreesearch4j/mcts4py, in Julia.

mcts4julia follows the same principles of modular component
design, and state action abstraction.

Essentially cross-lingual implementations.
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Future Theoretical Directions

Future Theoretical Directions
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Additional Theoretical Concepts

Progressive widening: One can more efficiently explore
continuous action spaces via discrete action approximation.

The Learning Problem: In reality the transition of prices are
unknown, and this poses a learning problem.

Optimal Stopping Problem: Assuming even if we have an
optimzation.

Robust Optimization: Value at risk and worst case scenario,
versus expected cost.
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Cost Robustness

Illustrating cost robustness.
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