Large Scale Optimization via Monte Carlo Tree
Search

Larkin Liu !

larkin.liu@tum.de

ITechnical University of Munich

Paris October 5, 2023

1/54

Overview

Introduction and Motivation
DP and MCTS

MCTS Implementation

Case Study: Maritime Logistics
Integration Python with Julia

I@ Future Theoretical Directions

2/54

Larkin Liu

Larkin Liu (born 1992) is a
Chinese-Canadian research scien-
tist. He studied first at the Uni-
versity of Toronto, obtaining his
Master's degree in Industrial En-
gineering. Larkin has worked ex-
tensively as a Data Scientist in
companies across both Germany
and Canada. Currently, he is a
Doctoral Student at the Technical
University of Munich in Computer
Science, specializing in research in
machine learning and operations
research.

3/54

Intro.
00000000

Introduction

4/54

Intro.

0O@000000

Motivation

Topic of this talk: Large Scale Optimization via Monte Carlo
Tree Search.

Objectives

m Share research findings and encourage dialogue.
m Identify areas of collaboration, via shared objectives.

m Get candid feedback and criticism, please go ahead.

5/54

Intro.
[e]e] lelelele]e]

Objectives

m Introduces the problem of high dimensional sequential decision
making.

m Proposes an MDP formulation for maritime bunkering, and
proposes a stochastic programming solution based on scenario
tree generation.

m Proposes an application of Monte Carlo Tree Search, to
address the curse-of-dimensionality associated with large scale
MDP'’s.

6/54

Intro.
[e]e]e] lelele]e]

Sequential Decision Making

m Decision occurs with state transitions and rewards (and/or
consequences) based on each state.

m Sequential decision making can be stochastic or
deterministic. Applies to both policy and/or state transitions.

m Optimization over a finite time horizon or infinite time
horizon.

m Learning of model parameters vs optimization of a model.

7/54

Intro.
[e]e]e]e] Telele]

Markov Property

m A state should summarize past sensations so as to retain all
essential information.

m The probability of transitioning to a state, and its reward, is
dependent only on the previous state.

m Previous history can be discarded.

Markov Property

P(Rt+1, St—l—l’SOa Ao, Rl---Rt7 At, St) - P(Rt+1, St—l-l’Rt) At, St)
(1)

8/54

Intro.
[e]e]e]ele] lele]

Markov Decision Process

Q(St, at) provides a measure of the discounted reward provided
action a is taken in state S;

Q(St;ac) = R(St,a) +7 > P(Ser1|Se, at)V(Set1)
5t+1€5

7 (S¢) = argmax Q(S¢, a) (3)

acA

9/54

Intro.
00000080

Markov Decision Process

Key Challenges for real-world MDP's

m Parameters of the underlying process MDP(S, A, T, R) are
unknown.

m Imperfect conditions and/or unobservable information.

m High dimensionality of state and action space.

10/54

Intro.
0000000e

Value Based Planning

The policy of an agent can be driven by the value of a state

Value Definitions by Policy

Gy = Riyi1+ ...+ Reqo+ ... + Rt (4)
Vi (St) = Ex[Gt|St] (5)
Vi (St) = Ex[Rev1 + 7V (St+1)] (6)
Value Definitions by Maximization
V(St) = max[Rer1 +7V(St41, 3)] (7)
V(S:) = max Q(S¢, Ar) (8)

11/54

DP and MCTS
000000000000

Dynamic Programming Visualization

Vo SNy
\ / [

AT

Visualization of Dynamic Programming

12/54

DP and MCTS
0@0000000000

Policy vs Value lteration, and DP Limitations

Limitations of DP - Intractable for large state action spaces.
m High number of states.
m High branching factor.
Complexity
m Value iteration: Each iteration O(|S|?|A|).
m Policy iteration: Each iteration O(|S|3 + |S[?|A|).
m DP Methods are suitable for problems under 10° states.

13/54

DP and MCTS
000000000000

Bias Variance Tradeoff - Monte Carlo Estimation

1 lteration of Monte Carlo Update.

m TD Learning uses the one-step ahead Value V(S') to estimate
the true G function.

m A full MC update may be biased, but have less variance.

14 /54

DP and MCTS

000@00000000

Algorithm UCBL1 Strategy

1: Q = @

2: fort=0— T do

3 for k=1— K do
4 Compute p?

5: end for
6

7
8:

Play a; = argmax, mj
Q + Q(a)

end for

We seek to maximize mf where,

©)

UCB1 Regret Bound (Auer, 2002)

BRr(m] > 8 3 (log n(a)) 4 (1 + %) (Zuf - uf) (10)

a _ %
apd<pf [P = 12 a=1

15 /54

DP and MCTS
0000e0000000

Extending Multi-Armed Bandit to Markov Decision
Processes

Challenges:

m Incomplete model, so need to estimate values of states and
actions

m Need to balance exploration vs exploitation
m MDPs are stochastic in nature
m Large branching factors (width) and many steps until reward
(depth)
Proposed solution: Monte Carlo Tree Search (MCTYS)

16 /54

DP and MCTS
00000@000000

Monte Carlo Tree Search

Selectlon —> Expansion —— Simulation —> Backpropagation ~

£ 4 4

Tree Default
Policy Pul_icy
v
. - J

UCT guides the tree search from to the next possible state S’ via UCB1 MAB strategy. Where n is the number of
visits at the parent state at S and n’ is the number of visits for S’. E(S’) is the expected reward.

UCT(S') = E(S") + 1/ 2'"," 1)

UCT Selection Strategy

17 /54

DP and MCTS
000000 e00000

MCTS Algorithm - Layman’s Version

m Selection

m Select an unvisited node.
m Select an action according to UCB1.

m Expansion

m Perform exploratory action at a frontier.
m Obtain one new node.

= Simulation (rollout)

m Simulate randomly, without indicators such as UCB, to obtain
an unbiased approximation of the payoff.

m Backpropagation

m Terminal node has been reached.
m Propagated discounted reward up to the root node.

18/54

DP and MCTS

0000000e0000

MCTS Application to MDP's

/—> Selection —> Expansion —> Simulation —> Backpropagation ~

Tree Def;zult

Policy Pal_icy
v
N A J

m (Chang et al. 2010) demonstrates MCTS is a adaptation of
the MAB strategy to for MDP's.

m (Bertsimas et al. 2014) showed that MP and MCTS perform

similarly. Where MCTS performance in indifferent to the
MDP formulation.

19/54

DP and MCTS
000000008000

MCTS Application to MDP’s (Cont.)

Challenges of MCTS

m Falling in local minima/maxima Value Function traps.
m No guarantees on value function convergence under imperfect scenarios.

m Guesswork involved with determining exploration heuristics.

Advantages of MCTS

m Does not require model parameters MDP(S, A, T, R).
m Stochastically explores search space and can handle large depths and widths.

m E(S’) can be determined flexibly, allowing room for heuristics and hybridization
with Mathematical Programming (Baier 2013) Baier and Winands 2013.

20/54

DP and MCTS
000000000e00

Different variants of MCTS

width

g =
1 backup .
Temporal- o A Dynamic
difference programming
learning
height
(depth)
of backup
Exhaustive
st - search
Carlo -
: g B8 B
[]

m There's an entire spectrum of search methods to choose from!

21/54

DP and MCTS
000000000080

Optimization strategies for MCTS

m Hybrid with Dynamic Programming Feldman and Domshlak
2014

m Heuristics, from human knowledge, or Deep Learning.

m Value/policy function approximators (potentially from Deep
Learning).

m Parallelism

22/54

DP and MCTS
0000000000 0e

Dynamic Programming and MCTS

m Dynamic Programming (DP) is an exact solution to the MDP.
m DP is backward induction vs. MCTS forward approximation
via sampling (Approx DP.)
m With stochastic DP, used learned MDP parameters to produce
a weighted sum expected reward.
References:

m Feldman, Zohar, and Carmel Domshlak. " Monte-Carlo tree
search: To MC or to DP?.” ECAI. 2014.

23/54

MCTS Implementation
000000000

Core mctreesearch4j library

MDP Solver
i.";'f“'s‘."“j(“') select(...) caleulateUCT(...)
LJ E{g"“‘('(')"’ expand(...) runTreeSearchlteration(...)
| actions(... simulate(...) runTreeSearch(...)
g transition(...) 3 i e g
£ rewards(...)
e
o
e rggggggiggggggj
8 -
.‘.u- GenericSolver
E
select(...) seleet(...)
expand(...) expand(...
simulate(...) simulate...)
backpropagate...) backpropagate(...)
x ¥
H T

Exonds =

m The core library provides both implementations and
abstractions for MCTS.
m Solver class abstractions are predefined whereas MDP
abstractions require definition.
24 /54

MCTS Implementation
000000000

Defining the MDP via Abstract Class

m An MDP is defined via an Abstract Class.
m The State Action Space can be defined via Generic Types.

1 abstract class MDP<StateType, ActionType> {

2 abstract fun transition(StateType, ActionType) : StateType

3 /* Definee the State (StateType) Action (ActionType) transition */
4

5 abstract fun reward(StateType, ActionType?, StateType) : Double

6 /% Returns a reward (Double) given state transitions parameters */
7

8 abstract fun initialState() : StateType

9 /* Return the initial state of the root (StateType) */

10

11 abstract fun isTerminal(StateType) : Boolean

12 /* Return boolean indicating if the state ts terminal. */

13

14 abstract fun actions(StateType) : Collection<ActionType>

15 /% Return an Iterable of legal actions given a current state. */
16 }

25 /54

MCTS Implementation
[e]e] lelelelele]e]e]

Demo Time

Demo Time

26 /54

MCTS Implementation
000®000000

Reversi Heuristic

B[} -10 11 6 61 NI} »10

10 -20 1 2 2 1 -20 -10

[@)

O®
o
N
»~
.
.
.
.
.

o[} -10 11 6 [il »10

m A simple heuristic was implemented using domain knowledge
to give value to states, and alter the MCTS search
mechanism.

27 /54

MCTS Implementation

Experimental Results

Experimental Results

28 /54

MCTS Implementation
[e]e]elele] lelele]e]

GridWorld

+5

m In Gridworld, actions are not always deterministic, but the
agent can go in any direction given an action. The state
transitions are governed by discrete probabilities

29 /54

MCTS Implementation
0000008000

GridWorld Results

Convergence of Exploration Terms

Exploration Term
SN
S &

5

o

°
&

0 200 400 600 800 1000
Iterations

m Convergence of exploration terms.

30/54

MCTS Implementation
0000000 e00

GridWorld Results

Convergence of Reward

m Convergence of reward.

800

1000

31/54

MCTS Implementation
0000000080

GridWorld Results

Convergence of n visits

200 -
150 -
100 -

50 =

0 200 400 600 800 1000

m Convergence of visits.

32/54

MCTS Implementation

000000000 e

What did we learn today? What's next?

= Modular and Extensible Design The design of
mctreesearch4j enables the whole or partial reuse or
redefinition of all key components of MCTS.

m Lightweight implementation The relatively lightweight
implementation of MCTS, allows it to run on any device (ie.
Mobile Applications etc.)

m Research Platform Extending from the design of
mctreesearch4j, it can be used as an experimentation platform
for future research in MCTS-base algorithms (hybrid or
modification).

33/54

Case Study
©0000000000

Case Study: Maritime Logistics

Optimizing Fuel Consumption for a Maritime Liner

Ship Bunkering at a Port-of-Call

34/54

Case Study
0®000000000

The Bunkering Problem (Maritime Refuelling)

Consider a Liner must travel a fixed schedule for n ports.
n=0,1,2,3..N. The distance between ports n; and ny is d(n, n’)
given by a distance matrix. The route schedule is fixed D.

Cai Mep.
wj

Example of a fixed liner route (Asia Europe LL5).

35/54

Case Study
00®00000000

The Bunkering Problem (Maritime Refuelling)

Consider a Liner must travel a fixed schedule for n ports.
n=0,1,2,3...N. The distance between ports n; and ny is d(n, n’)
given by a fixed distance matrix D. The route schedule is fixed. A
liner must determine how much fuel to refuel (bunker) at each
port-of-call. The objective is to complete the trip, with the least
fuel consumption.
Simplifying Assumptions:

m Fuel prices are subject to global stochastic variation.

m Fuel consumption is linear and deterministic.

m Distance, to and from each port, is fixed and deterministic.

[

Sailing speed is fixed, there is no time penalty for late/early
arrivals.

No possibility of service disruptions.

36 /54

Case Study

The Bunkering Problem - MDP Definition

Proposed State Definition

5,, = (Xn,1; Pn,k; n’) (12)

A — AR =X (13)

P(Sur|Ans Sn) = (Xnz — F(m, 1), 1[Po = Pogln’) (14)
R(Sp, An) = ApPy £ Y, By, (15)

Yo =1[Xn2 — Xn1 > 0] (16)

Py i ~ Multi(K) (17)

Co=E[Y Po(Xn2 = Xn1) + BnYa] (18)
neN

37/54

Case Study
0000@000000

Notation and Variable Definitions

Notation

N Number of port-of-calls.

Xn1 Fuel level at port n when arriving at port.

Xn,2 Fuel level when departing port n.

f(n,n+1) Fuel consumption function from port n until next

port n+ 1.

Price of fuel at port n.
Indicator for bunkering decision.
Fixed bunkering cost.

38/54

Case Study
00000@00000

Formulate as Stochastic Programming

Solution can also be obtained via stochastic programming.

min Cr = Pn(Xno2 — Xn B,Yn 1
i r; (X2 1)+ (19a)
subject to Xnt11 = Xn2 — f(d(n, n+ 1)), (19b)
Xni12 > Xn2 — Xny11 (19¢)
f(d(n,n+1)) >0 (19d)
Y, €(0,1) (19e)
Y = 1[Xp2 — Xp1 > 0] (19f)

39/54

Case Study
00000080000

Scenario tree generation

Scenario tree. (i) The nodes of a scenario tree represent the fuel price
percentage changes, (ii) The values x; are events of the multinomial
distribution Multi(K) that occur with equal probabilities, (i) The root
node assumes no price change, i.e., x = 1, (iv) There is a total of

S = KN scenarios (tree leafs) where N is the number of ports and K is
the number of events, (v) Scenarios are shared between all ports.

40/ 54

Case Study
0000000e000

Let the cost minimization begin!

m Stochastic Programming (SP) in this example, provides the
theoretical expected cost minimum.

m However, if the scenario distribution is more general, ie
Mixture of Gaussians, SP is limited to discredited scenarios.

m SP cannot be used if model parameters unknown, we rely on
MCTS for learning of parameters.

Stochastic programming optimization vs. MCTS.

Current framework available in Python and Kotlin.

41/54

Case Study
00000000800

Value Function Approximation

Algorithm Monte Carlo Tree Search (MCTS) with Value Function Ap-
proximator

1: Input: Initialize state (chance node) sq.
2: Output: Best action a*
3: while Max iterations not exceeded. do
Sselected — Selection(vg)
3eypanded Expansion(vegjected) " Decision node (action)”
if « > Uniform|0, 1] then

Q(s, a) « Simulation(aeypanded)
else

Q(s,a) « J(s,a)

end if

11: Backpropagation(Sexpanded: Q(S, a))
12: end while

I a* < BestAction(sp)
14: return a*

LN O

—
=

42 /54

Case Study
00000000080

VFA Results

Configuration 2.0 (7 Ports) Configuration 2.1 (7 Ports)
450000 . 500000 *
: ' ¢
400000 450000
350000 400000 —_—
350000
300000
s ©
= -2 300000
8 250000 e

250000
200000
B R i

150000 150000

100000 100000

MCTS MCTS VFA MCTS MCTS VFA
Files Files

MCTS Enhancement using value function approximator where 7 (s, a) is a coarse grained stochastic programming
solution on expected cost.

43/54

Case Study
0000000000e

VFA Results - cont.

Configuration 2.2 (7 Ports) Configuration 2.3 (4 Ports)
H 24000
450000
400000 ¢ 22000
350000 20000
& 300000 e e ©
8 & 18000
250000
o000 o ﬁ
150000 14000
100000 12000
MCTS MCTS VFA MCTS MCTS VA
Files Files

MCTS Enhancement using value function approximator where 7 (s, a) is a coarse grained stochastic programming
solution on expected cost.

44 /54

Python & Julia
€000

Julia Integration with Python

Julia Integration with Python

45 /54

Python & Julia
000

Callback with JuliaPy

m Implemented a callback function to support calling Julia
subroutines inside of Python, via PyJulia.

m Callbacks can be used to trigger Julia code inside of Python.

m Python and Julia share similar data structures and
philosophies (i.e. high level, multi-paradigm, interoperability).
Demo time: Calling the cascade_func() in both Python and Julia.

from julia import Julia
from common.properties import *
import time

j1 = Julia(compiled_modules=False)
jl.include("julia/julia_callbacks.jl")

jl_result = jl.cascade_func(argl, arg2)
result = cascade_func(argl, arg2)

© 0 N U e W N

46 /54

Python & Julia
00®0

Integration with JuMP

m Call the Julia callback function using
Julia.function_name (args) to create the JuMP optimization
model with the callback constraints.

m Solve the optimization problem and retrieve results.
import julia
from julia import Julia
import JuMP

julia.install()
julia.include("stochastic_programming.jl")

JuMP.optimize! (julia_callback)
optimal_value = JuMP.objective_value(julia_callback)

© 0N U e W N

e
= o

julia_callback = Julia.stochastic_programming_callback(args)

=
w N

JuMP.optimize! (julia_callback)
optimal_value = JuMP.objective_value(julia_callback)

—
IS

47 /54

Python & Julia
ocooe

Implementation of mctreesearch4j in Julia

m It is on the roadmap that we develop a new version of
mctreesearch4j/mctsédpy, in Julia.

m mcts4julia follows the same principles of modular component
design, and state action abstraction.

m Essentially cross-lingual implementations.

48 /54

Next Steps
©00000

Future Theoretical Directions

Future Theoretical Directions

49 /54

Next Steps
0®0000

Additional Theoretical Concepts

m Progressive widening: One can more efficiently explore
continuous action spaces via discrete action approximation.

m The Learning Problem: In reality the transition of prices are
unknown, and this poses a learning problem.

m Optimal Stopping Problem: Assuming even if we have an
optimzation.

m Robust Optimization: Value at risk and worst case scenario,
versus expected cost.

50 /54

Next Steps
00000

Cost Robustness

Frely

<

Cost

Illustrating cost robustness.

51/54

Next Steps
00000

Acknowledgements

m Jun Tao Luo (Carnegie Mellon University)
m Matej Jusup (ETH Ziirich)

52/54

References |

B
B
[
B

Baier, H. and M. H. M. Winands (2013). “Monte-Carlo Tree Search and minimax hybrids”. In: pp. 1-8. b0
10.1109/CIG.2013.6633630.

Bertsimas, Dimitris et al. (2014). A Comparison of Monte Carlo Tree Search and Mathematical Optimization for Large Scale

Dynamic Resource Allocation. arXiv: 1405.5498 [math.0C].

Chang, Hyeong Soo et al. (2010). “Adaptive Adversarial Multi-Armed Bandit Approach to Two-Person Zero-Sum Markov Games".
In: vol. 55. 2, pp. 463-468. DOI: 10.1109/TAC.2009.2036333. URL: https://doi.org/10.1109/TAC.2009.2036333

Feldman, Zohar and Carmel Domshlak (2014). “Monte-Carlo Tree Search: To MC or to DP?" In: ECA/ 2014 - 21st European
Conference on Artificial Intelligence, 18-22 August 2014, Prague, Czech Republic - Including Prestigious Applications of Intelligent
Systems (PAIS 2014). Ed. by Torsten Schaub, Gerhard Friedrich, and Barry O'Sullivan. Vol. 263. Frontiers in Artificial Intelligence
and Applications. 10S Press, pp. 321-326. DOI: 10.3233/978-1-61499-419-0-321. URI
https://doi.org/10.3233/978-1-61499-419-0-321

53 /54

https://doi.org/10.1109/CIG.2013.6633630
https://arxiv.org/abs/1405.5498
https://doi.org/10.1109/TAC.2009.2036333
https://doi.org/10.1109/TAC.2009.2036333
https://doi.org/10.3233/978-1-61499-419-0-321
https://doi.org/10.3233/978-1-61499-419-0-321

Copyright Notice

Larkin Liu @ 2022. All slides are the intellectual
property of the authors. Please request explicit
permission for the reuse or dissemination of this
resource.

54 /54

	Introduction and Motivation
	DP and MCTS
	MCTS Implementation
	Case Study: Maritime Logistics
	Integration Python with Julia
	Future Theoretical Directions

