
Dionysos.jl: a Modular Platform for Smart Symbolic
Control

Julien Calbert, Adrien Banse, Raphaël M. Jungers

ICTEAM/INMA

October 5, 2023

Julia and Optimization Days 2023

1

Control theory

The goal is to provide a generic procedure to design efficient controllers with formal guarantees.

2

A Paradigm Shift in Control Theory

3

Classical applications made the
golden age of Control Theory

However modern applications are
increasingly complex. . .

State space representation unleashed
analytic approachesẋ1
ẋ2
ẋ3

 =

 0 1 0
0 0 1
−5 −26 −5

 x1
x2
x3

+

0
0
1

 u

y =
(
1 0 0

) x1
x2
x3

... and so are their models

Cyber-Physical Systems

paradigm shift

Table of contents

1. Origin of the project (L2C)
2. Abstraction-based control
3. Toolbox
4. Benchmarks
5. Conclusion

4

Learning to control (L2C)

5

We need a new control paradigm

Smart and Data-Driven Formal Methods for Cyber-Physical Systems control

- Generic but modular
- Opportunistic
- State-space driven
- Safety-critical
- Scalable
- Logic-enhanced
- Data-friendly
- ...

Abstraction-based control

6

Classical abstraction-based control

7

Additional non-determinism resulting from the discretization
The number of cells grows exponentially with the dimension of the state space

Relation

Curse of dimensionality

Smart abstraction

Co-design the abstraction and the controller

⇒ Partially discretize the state space with non-uniform cells with respect to the specific
control task.

8

Dionysos

9

The objectives of Dionysos are as follows
• Implement our state-of-the-art smart abstraction algorithms developed in L2C.
• Implement existing algorithms in our modular framework and demonstrate the

effectiveness of the Julia language.
Main contributors: Benoît Legat, Julien Calbert, Adrien Banse, Lucas N. Egidio

Dionysos in Julia

10

Hybrid optimal control
solver combining:

• Smart abstraction
• Q-learning
• Branch and bound
• Path-Complete
• Sum-of-Squares
• ...

Package structure

Control Domain

Mapping

Optim

Problem

SymbolicSystem

Utils

Dionysos

MathOptInterface.jl
JuMP.jl

MathematicalSystems.jl
HybridSystems.jl

11

Package structure: System

• Structures for mathematical definitions of
- Control dynamical systems x+ = f(x,u)
- Controllers u(x) = K(x)

• Methods
- For example: Runge Kutta scheme

• Built on top of
- JuliaReach/MathematicalSystems.jl
- blegat/HybridSystems.jl

System MathematicalSystems.jl
HybridSystems.jl

12

Package structure: Problem

• Structures to define control problems
• For now, two types of problem

- OptimalControlProblem: initial, target and
cost

- SafetyProblem: safe/unsafe sets
• Each problem is composed of a system, and problem

specifications

System MathematicalSystems.jl
HybridSystems.jl

Problem

13

Package structure: Optim

• Methods to solve the problems, the optimizers
• src/optim

- abstraction

- SCOTS_abstraction.jl
- ellipsoids_abstraction.jl
- hierarchical_abstraction.jl
- lazy_abstraction.jl
- lazy_ellipsoids_abstraction.jl

- bemporad_morari.jl
- branch_and_bound.jl
- q_learning.jl

• Built on top of
- jump-dev/MathOptInterface.jl
- jump-dev/JuMP.jl

Every optimizer is a subtype of MOI.AbstractOptimizer
• Each optimizer is composed of a problem, and method

specifications

System MathematicalSystems.jl
HybridSystems.jl

Problem

Optim MathOptInterface.jl
JuMP.jl

14

Examples

Now, let’s focus on two examples
1. Implementation of a smart abstraction method on a simple problem
2. Implementation of a abstraction method from state-of-the-art, and comparison to

existing implementations

15

First example: Simple problem

Consider the very simple discrete-time system

xt+1 = xt + hu,

where h ∈ R is a time step, xt ∈ R2 is the state and u ∈ R2 is an input.

Control objective = Drive the state x from an initial position to a target position while
avoiding obstacles

For that, we will use a smart abstraction method presented in [Calbert et al., 2021],
called hierarchical abstractions.

[Calbert et al., 2021] Julien Calbert, Benoit Legat, Lucas N. Egidio and Raphaël M. Jungers. 2021. In
Proceedings of the 60th IEEE Conference on Decision and Control (CDC).

16

First example: Simple problem (sketch of the code)

• First, we define the system

� �
function system(

rectX,
obstacles,
rectU,
Uobstacles,
tstep,
measnoise,
periodic,
periods,
T0,

)
...
return SimpleSystem(...)

sys = system(...)� �
17

First example: Simple problem (sketch of the code)

• We then define the problem

� �
problem = OptimalControlProblem(

sys,
initial_set,
target_set,
state_cost,
transition_cost,
N

)� �

18

First example: Simple problem (sketch of the code)

• And finally we can define the smart abstraction method (an optimizer)

� �
const AB = Dionysos.Optim.Abstraction
optimizer = MOI.instantiate(AB.HierarchicalAbstraction.Optimizer)
AB.HierarchicalAbstraction.set_optimizer!(

optimizer,
concrete_problem,
hx_global,
Ugrid,
compute_reachable_set,
minimum_transition_cost,
local_optimizer,
max_iter,
max_time;
option = true,

)� �
19

First example: Simple problem (sketch of the code)

• We solve the whole problem

� �
MOI.optimize!(optimizer)� �

• And we can extract, for example, its abstract system

� �
abstract_system = MOI.get(optimizer, MOI.RawOptimizerAttribute("abstract_system"))� �

• Go to Documentation > Examples > Hierarchical-abstraction for the full example!

20

First example: Simple problem (sketch of the code)

� �
fig = plot(; aspect_ratio = :equal);

plot!(
optimizer.hierarchical_problem;
path = optimizer.optimizer_BB.best_sol,
heuristic = false,
fine = true,

)
plot!(UT.DrawTrajectory(x_traj); ms = 0.5)� �

21

Second example: Path planning

Consider the model of a vehicle in the 2-dimensional plane given by

ẋ = f(x,u) =

u1 cos(α+ x3) cos(α
−1)

u1 sin(α+ x3) cos(α
−1)

u1 tan(u2)

 ,

with U = [−1, 1]× [−1, 1], and α = arctan(tan(u2)/2).
• (x1,x2) is the position,
• x3 is the orientation of the vehicle,
• u1 is the rear wheel velocity,
• u2 is the steering angle.

We study the sampled problem with a sampling time τ .

22

Second example: Path planning

• Control objective = Drive the vehicle from an initial position to a target position
while avoiding obstacles.

• To solve this problem, we use our implementation of an abstraction method
described in [Reissig et al., 2017]

• Let’s have an overview of how it looks like using Dionysos.jl...

[Reissig et al., 2017] G. Reissig, A. Weber and M. Rungger. 2017. Feedback Refinement Relations for the
Synthesis of Symbolic Controllers. In IEEE Transactions on Automatic Control, vol. 62, no. 4, pp. 1781-1796.

23

Second example: Path planning (sketch of the code)

• We first choose the right optimizer

� �
optimizer = MOI.instantiate(AB.SCOTSAbstraction.Optimizer)� �

• We then set the concrete problem to the optimizer

� �
MOI.set(

optimizer,
MOI.RawOptimizerAttribute("concrete_problem"),
concrete_problem

)� �
Where concrete_problem is defined in problems/path_planning.jl.

24

Second example: Path planning (sketch of the code)

• Now, we define the state/input grids

� �
MOI.set(optimizer, MOI.RawOptimizerAttribute("state_grid"), state_grid)
MOI.set(optimizer, MOI.RawOptimizerAttribute("input_grid"), input_grid)� �

• We solve the problem

� �
MOI.optimize!(optimizer)� �

25

Second example: Path planning (sketch of the code)

• Our solver then creates an abstract problem, finds an abstract controller, and
refines it to a concrete controller

� �
abstract_system = MOI.get(

optimizer, MOI.RawOptimizerAttribute("abstract_system")
)
abstract_problem = MOI.get(

optimizer, MOI.RawOptimizerAttribute("abstract_problem")
)
abstract_controller = MOI.get(

optimizer, MOI.RawOptimizerAttribute("abstract_controller")
)
concrete_controller = MOI.get(

optimizer, MOI.RawOptimizerAttribute("concrete_controller")
)� �

26

Second example: Path planning (sketch of the code)

• Let’s now extract the closed-loop trajectory and plot the
result

� �
x_traj, u_traj = ...
... Plotting the domain thanks
... to implemented Recipes
plot!(UT.DrawTrajectory(x_traj); ms = 0.5)� �

• Go to Documentation > Examples > Path Planning for
the full example!

27

Preliminary benchmarks

28

Abstraction [s] Synthesis [s]
Pessoa 478.7 65.2
SCOTS 18.1 75.4
Dionysos 1.02 0.22

Planar switched affine system with
univariate control and 2 modes

Preliminary benchmarks

29

Abstraction [s] Synthesis [s]
Pessoa 13509 535
SCOTS 53 210
Dionysos 6.59 0.57

Nonlinear system with 3 states,
2 inputs, obstacles and target

Conclusions

In summary
• Dionysos implements state-of-the-art and smart abstraction methods to solve

control problems for complex dynamical systems
• It offers a common framework thanks to its implementation based on JuMP and

MathOptInterface
• It is highly modular and benefits from the power/convenience of many other Julia

packages

Future work
• Solving the 27 issues on the github...
• Implementation of an orchestrator
• Benchmarking Dionysos on our walking robot

30

31

Thank you for listening!

https://github.com/dionysos-dev/Dionysos.jl

References

About Dionysos

[1] B. Legat, R. M. Jungers, and J. Bouchat, Abstraction-based branch and bound approach to
Q-learning for hybrid optimal control, in Proceedings of the 3rd Conference on Learning for
Dynamics and Control, 2021, pp. 263–274.

[2] J. Calbert, B. Legat, L. N. Egidio, and R. Jungers, Alternating Simulation on Hierarchical
Abstractions, 2021 60th IEEE Conference on Decision and Control (CDC), 2021.

[3] L. N. Egidio, T. A. Lima, and R. M. Jungers, State-feedback Abstractions for Optimal Control
of Piecewise-affine Systems, 2022 IEEE 61st Conference on Decision and Control (CDC), 2022.

About other toolboxes

[1] M. Mazo, A. Davitian, and P. Tabuada, PESSOA: A Tool for Embedded Controller Synthesis,
Computer Aided Verification, pp. 566–569, 2010.

[2] M. Rungger and M. Zamani, SCOTS, Proceedings of the 19th International Conference on
Hybrid Systems: Computation and Control, 2016.

[3] S. Mouelhi, A. Girard, and G. Gössler, CoSyMA, Proceedings of the 16th international
conference on Hybrid systems: computation and control, 2013.

32

