Dionysos.jl: a Modular Platform for Smart Symbolic
Control

Julien Calbert, Adrien Banse, Raphaél M. Jungers
ICTEAM/INMA

October 5, 2023
Julia and Optimization Days 2023

B UCLouvain »9 Dionysos

Control theory

Sl ol
%

q

3
1

G

—
The goal is to provide a procedure to design controllers with

guarantees.

A Paradigm Shift in Control Theory

However modern applications are

Classical applications made the
increasingly complex. ..

golden age of Control Theory

Cyber-Physical Systems

= N paradigm shift
State space representation unleashed
analytic approaches
Z.El 0 1 0 I 0
To | = 0 0 1 22 |+ |0 u

-5 —26 —5) \a3 1

y=(1 0 0) (Z;)

.. and so are their models

T3

Table of contents

AN

Origin of the project (L2C)
Abstraction-based control
Toolbox

Benchmarks

Conclusion

Learning to control (L2C)

We need a new control paradigm

Smart and Data-Driven Formal Methods for Cyber-Physical Systems control

Generic but modular

Opportunistic
State-space driven

Safety-critical
Scalable
Logic-enhanced
Data-friendly

European Research Council

Established by the European Commission

=
(6]
@®
o
o
o
@©
o
7
=
S
—-—
(@]
m

Abstraction-based control

Concrete problem Abstract problem

Concrete specifications Abstract specifications

1] 1 1
1] : 1
' f— ! 1) Abstraction | f— !
! V = ' _> ! V' — 1
| V — ' : :
1] ! 1
1 1 1 L}
1 1 1 1
! Concrete system ! : Abstract system !
| ' I :
Ly : L ! 2) Abstract
g & ! e ' controller
! e ' ! ' design
: Infinite state-space . : Finite state-space .
1
e : e —————— .
A 4
Concrete controller |« Abstract controller |«
S

3) Concretization

Classical abstraction-based control

[]
/"

Posf.. (g)

P

Additional
The number of cells grows

Relation

e

resulting from the discretization

®] [] /’ :
L @ .A./ /'.
@ {H @ @]

with the dimension of the state space

Smart abstraction

Co-design the abstraction and the controller

= Partially discretize the state space with non-uniform cells with respect to the specific
control task.

Dionysos

Complex model,
specifications,
data

Dionysos

The objectives of Dionysos are as follows
e Implement our state-of-the-art smart abstraction algorithms developed in L2C.

e Implement existing algorithms in our modular framework and demonstrate the
effectiveness of the Julia language.

Main contributors: Benoit Legat, Julien Calbert, Adrien Banse, Lucas N. Egidio

Dionysos in Julia

£y #ump

JuliaReach f

o0 — julia—
Dionysos

)) 2 ";';‘a"ﬁ?'i"l""\' ------
Hybrid optimal control N e
solver combining: - -

e Smart abstraction . [8]

. o
Q-learning 1 B P
Branch and bound -6 ~3 -6 ‘
Path-Complete _s Ny s

Sum-of-Squares

10 -8 {3 1 2 0 2 10 -8 6 I 2 0 2

Package structure

m

-

MathOptInterface.jl MathematicalSystems.jl
JuMP.ji HybridSystems.jl

“
Mapping

m

Package structure: System

e Structures for mathematical definitions of

- Control dynamical systems x* = f(z, u)
- Controllers u(z) = K(x)

e Methods . .
S Mat:egwlaggaISysteTs.]l
- For example: Runge Kutta scheme yoridSystems)

e Built on top of

- JuliaReach/MathematicalSystems.jl
- blegat/HybridSystems.jl

Package structure: Problem

e Structures to define
e For now, two types of problem

- OptimalControlProblem: initial, target and
cost
- SafetyProblem: safe/unsafe sets

e Each problem is composed of a , and problem
specifications

MathematicalSystems. jl
HybridSystems.jl

Package structure: Optim

e Methods to solve the problems, the
® src/optim
- abstraction

- SCOTS_abstraction.jl

- ellipsoids_abstraction. jl

- hierarchical_abstraction.jl

- lazy_abstraction.jl

- lazy_ellipsoids_abstraction.jl
- bemporad_morari.jl
- branch_and_bound. jl
- g_learning.jl

e Built on top of

- jump-dev/MathOptinterface.jl
- jump-dev/JuMP.jl

Every optimizer is a subtype of MOT.AbstractOptimizer

e Each optimizer is composed of a
specifications

, and method

System

__l

Problem

_

Optim

MathematicalSystems.jl
HybridSystems.jl

MathOptlinterface.jl
JuMP.ji

Examples

Now, let's focus on two examples
1. Implementation of a method on a simple problem

2. Implementation of a abstraction method , and comparison to
existing implementations

First example: Simple problem

Consider the very simple system
Tyl = X + hu,

where h € R is a time step, x; € R? is the state and u € R? is an input.

Control objective = Drive the state x while
avoiding

For that, we will use a presented in [Calbert et al., 2021],
called

[Calbert et al., 2021] Julien Calbert, Benoit Legat, Lucas N. Egidio and Rapha&l M. Jungers. 2021. In
Proceedings of the 60th IEEE Conference on Decision and Control (CDC).

First example: Simple problem (sketch of the code)

e First, we define the

function system(
rectX,
obstacles,
rectU,
Uobstacles,
tstep,
measnoise,
periodic,
periods,
TO,

return SimpleSystem(...)
sys = system(...)

First example: Simple problem (sketch of the code)

e We then define the

problem = OptimalControlProblem (
sys,
initial_set,
target_set,
state_cost,
transition_cost,
N

First example: Simple problem (sketch of the code)

e And finally we can define the (an optimizer)

const AB = Dionysos.Optim.Abstraction
optimizer = MOI.instantiate (AB.HierarchicalAbstraction.Optimizer)
AB.HierarchicalAbstraction.set_optimizer! (

optimizer,

concrete_problem,

hx_global,

Ugrid,

compute_reachable_set,

minimum_transition_cost,

local_optimizer,

max_iter,

max_time;

option = ’

First example: Simple problem (sketch of the code)

e We solve the whole problem

MOI.optimize! (optimizer)

e And we can extract, for example, its abstract system

abstract_system = MOI.get (optimizer, MOI.RawOptimizerAttribute ("abstract_system"))

e Goto for the full example!

First example: Simple problem (sketch of the code)

fig = plot(; aspect_ratio = :equal);

plot! (
optimizer.hierarchical_problem;
path = optimizer.optimizer_ BB.best_sol,
heuristic = 7
fine = 0

)
plot! (UT.DrawTrajectory(x_traj); ms = 0.5)

Second example: Path planning

Consider the model of a in the 2-dimensional plane given by

uy cos(a + x3) cos(a™t)
i = f(z,u) = [upsin(a + x3) cos(a™!) |,
uy tan(ug)

with U = [-1,1] x [-1,1], and a = arctan(tan(uz)/2).
e (x1,x2) is the position,
e z3 is the orientation of the vehicle,
e uq is the rear wheel velocity,
e usy is the steering angle.

We study the sampled problem with a sampling time 7.

Second example: Path planning

e Control objective = Drive the vehicle
while avoiding

e To solve this problem, we use our implementation of an
described in [Reissig et al., 2017]

e Let's have an overview of how it looks like using Dionysos.jl...

[Reissig et al., 2017] G. Reissig, A. Weber and M. Rungger. 2017. Feedback Refinement Relations for the
Synthesis of Symbolic Controllers. In IEEE Transactions on Automatic Control, vol. 62, no. 4, pp. 1781-1796.

Second example: Path planning (sketch of the code)

e We first choose the right optimizer

optimizer = MOI.instantiate (AB.SCOTSAbstraction.Optimizer)

e We then set the concrete problem to the optimizer

MOTI. set (

optimizer,
MOI.RawOptimizerAttribute ("concrete_problem"),

concrete_problem

Where concrete_problem is defined in problems/path_planning. jl.

Second example: Path planning (sketch of the code)

e Now, we define the state/input grids

MOI.set (optimizer, MOI.RawOptimizerAttribute ("state_grid"), state_grid)
MOI.set (optimizer, MOI.RawOptimizerAttribute ("input_grid"), input_grid)

e We the problem

MOI.optimize! (optimizer)

Second example: Path planning (sketch of the code)

e Our solver then creates an abstract problem, finds an abstract controller, and
refines it to a

abstract_system = MOI.get (
optimizer, MOI.RawOptimizerAttribute ("abstract_system")
)
abstract_problem = MOI.get (
optimizer, MOI.RawOptimizerAttribute ("abstract_problem")
)
abstract_controller = MOI.get (
optimizer, MOI.RawOptimizerAttribute ("abstract_controller"
)
concrete_controller = MOI.get (
optimizer, MOI.RawOptimizerAttribute ("concrete_controller")

Second example: Path planning (sketch of the code)

e Let's now extract the closed-loop trajectory and plot the
result

x_traj, u_traj = ...
...

Plotting the domain thanks
...

to implemented Recipes
plot! (UT.DrawTrajectory(x_traj); ms

0.5)

e Go to Documentation > Examples > Path Planning for
the full example!

Preliminary benchmarks

Abstraction [s] | Synthesis [s]
_ _ _ Pessoa 478.7 65.2

Planar switched affine system with SCOTS 181 754
univariate control and 2 modes Dionysos 102 022

5.85

58

5': _ SCOTS Dionysos

5.65 |

56

5.55

5.5

5.45

1.15 1.2 1.25 13 1.35 1.4 1.45 15 155

Preliminary benchmarks

Nonlinear system with 3 states,
2 inputs, obstacles and target

Abstraction

Synthesis [s]

Pessoa 13509 535
SCOTS 53 210
Dionysos 6.59 0.57

Conclusions

In summary

e Dionysos implements state-of-the-art and smart abstraction methods to solve
control problems for complex dynamical systems

e |t offers a common framework thanks to its implementation based on JulMP and
MathOptlInterface

e It is highly modular and benefits from the power/convenience of many other Julia
packages

Future work
e Solving the 27 issues on the github...
e Implementation of an orchestrator

e Benchmarking Dionysos on our walking robot

Thank you for listening!

] iIcteam

o

Dionysos UCLouvain v
Q Io'o
julia

https://github.com/dionysos-dev/Dionysos.jl

References

About Dionysos

[1] B. Legat, R. M. Jungers, and J. Bouchat, Abstraction-based branch and bound approach to
Q-learning for hybrid optimal control, in Proceedings of the 3rd Conference on Learning for
Dynamics and Control, 2021, pp. 263-274.

[2] J. Calbert, B. Legat, L. N. Egidio, and R. Jungers, Alternating Simulation on Hierarchical
Abstractions, 2021 60th IEEE Conference on Decision and Control (CDC), 2021.

[3] L. N. Egidio, T. A. Lima, and R. M. Jungers, State-feedback Abstractions for Optimal Control
of Piecewise-affine Systems, 2022 IEEE 61st Conference on Decision and Control (CDC), 2022.

About other toolboxes

[1] M. Mazo, A. Davitian, and P. Tabuada, PESSOA: A Tool for Embedded Controller Synthesis,
Computer Aided Verification, pp. 566-569, 2010.

[2] M. Rungger and M. Zamani, SCOTS, Proceedings of the 19th International Conference on
Hybrid Systems: Computation and Control, 2016.

[3] S. Mouelhi, A. Girard, and G. G&ssler, CoSyMA, Proceedings of the 16th international
conference on Hybrid systems: computation and control, 2013.

