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DSTLS SINDy Optimizer

In the current day and age, we have an abundance of
data about many different systems. This data can be
mined for useful information and an ODE formulation of
the original systems is among the most important.
While a myriad of techniques emerged, Sparse
Identification of Nonlinear Dynamics (SINDy) [1] is
one of the most popular, which uses l-dimensional
regularized linear regression
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s.t. sparsity inducing constraint.

Although it can be solved using different optimization
techniques, we propose Dynamic Sequentially
Thresholded Least Squares (DSTLS); a modification of
Sequentially Thresholded Least Squares (STLS).

DSTLS optimization problem

For a k-th variable of our system, we can estimate its
derivative using a DSTLS optimization problem:

min
ξk
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s.t. ∀i ∈ {1, . . . , p} : |ξki| ≥ τ · max |ξk|

X measurements of our systems
Ẋ derivatives of our systems
Θ library of candidate functions
ξk k-th column of coefficient matrix Ξ, corresponding

to the equation for the derivative of k-th variable
p number of candidate functions
τ sparsity threshold

Such modification is motivated by the
FitzHugh-Nagumo (FHN) model of neuron

V̇ = V − V 3

3
− W + ie,

Ẇ = a · (bV − cW + d),
with the following parameters and initial conditions

a = 0.08, b = 1, c = 0.8, d = 0.7, ie = 0.8,

V (0) = 3.3, W (0) = −2.

The disparity in magnitudes of parameters between
equations causes sensitivity to the value of threshold τ
with the ordinary STLS method. Choosing τ too big,
only a constant zero solution will be discovered for Ẇ .
For τ small enough unnecessary terms will be identified
for V̇ . Scaling the threshold by the largest absolute
value of estimated parameters aims to address this issue.

Applications and results

For the illustration of the proposed method, let us assume
the derivatives are unknown and our data are corrupted
by a additive white Gaussian noise (AWGN) with its
variance equal to 5 percent of the data’s variance. The
derivative is estimated with total variation regularized nu-
merical differentiation, which is computed on raw noisy
data, and smooth the data using total variation. At last,
polynomials up to 4th order were used as a candidate
library. DSTLS optimizer correctly chooses the appropri-
ate candidate functions, unlike STLS.

Comparison of discovered models

V̇ = 0.71 + 0.95 · V − 0.32 · V 3 − 0.91 · W,

Ẇ = 0.05 + 0.08 · V − 0.06 · W D
ST

LS

V̇ = 0.85 + 0.81 · V + 0.27 · W · V 2 + 0.28 · V · W 2

− 1.02 · W − 0.16 · V 2 − 0.22 · V 3 − 0.44 · V · W

− 0.09 · V 2 · W 2,

Ẇ = 0.08 · V

ST
LS

Furthermore, a comparison of STLS, DSTLS, and SR3
[2] optimizers was performed with respect to the
variance of AWGN.
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Figure 1: The effect of the magnitude of applied noise and used op-
timizer on the behavior of SINDy learning the FHN model. The
DSTLS optimizer best retains sought qualities of low parameter
count, high R2 and low AIC with a rising variance of noise in the
FitzHugh-Nagumo model.

Effects on Lorenz system

Although DSTLS was designed to be used on models with
differences in magnitudes of parameters between equa-
tions, it still reliably works in other cases. As an example,
we show its behavior on the well-known Lorenz model:

ẋ = σ(y − x),
ẏ = x(ρ − z) − y,

ż = xy − βz

with the standard choice of chaos inducing parameters
σ = 10, ρ = 28, β = 8

3. The derivatives are unknown
and trajectory data is affected by AWGN with variance
equal to 1 percent of the data variance. Polynomials up
to 3rd order were used as a candidate library. Due to the
chaotic nature of the said system, prediction of the exact
same trajectory with the discovered model cannot be ex-
pected, but the goal is to identify the attractor reasonably
well. Only trajectories lying on the attractor were used
for training.
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Transformations of HH onto FHN
model with Optim.jl

The highly nonlinear 4D Hodgkin-Huxley (HH) system
is a physiological neuron model [3], unlike its concep-
tual simplification in the form of the 2D polynomial FHN
model. As such, we strive to fit these two models to ob-
tain physiological parameters for the FHN model as well.

Transformation optimization problem

The trajectory H of the HH model is presumed to be
the truth and we strive to find both the transformation
Λ ∈ R4×2 and the parameters p for FHN model with
a trajectory u(T ; p) as a solution to the problem

min
Λ,p

loss(u(T ; p), HΛ), (1)

such that for x, y ∈ Rk×2 the loss function reads

loss(x, y) = 1
k

‖x − y‖2
2 + α osc(x, y)
+ β osc(x1...

⌊
k
2
⌋
,·, x⌊

k
2
⌋
+1...k,·),

osc(a, b) =
∣∣∣∣∣1 − Var(a)

Var(b)

∣∣∣∣∣
The optimization problem (1) has a non-convex loss func-
tion and due to the inclusion of the simulated trajectory
u(T ; p) of the FHN model, computation of the gradient
would be expensive. Therefore we employed the Nelder-
Mead method from the Optim.jl package, which does not
require the gradient.
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Enhancing fit with Metaheuristics.jl

While the Nelder-Mead method works reasonably well,
in our case it happens to be very sensitive to the ini-
tial condition, i.e. initial transformation matrix Λ and
parameters p. To overcome this issue, we utilized the
Whale Optimization Algorithm (WOA) from the Meta-
heuristics.jl package, which can be thought of as using an
ensemble of initial conditions.
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