
Exploring Deep Learning through Flux.jl: Insights
into Core Mechanisms and Datasets

Mannes Yolhan

December 07 2023

1 / 38



1 Introduction

2 Core Mechanisms

3 Flux Built-in Layers

4 Datasets For Deep Learning

5 Showcase of CNN and Transformers

6 Conclusion

2 / 38



1 Introduction

What is Deep Learning?

What is Flux.jl ?

2 Core Mechanisms

3 Flux Built-in Layers

4 Datasets For Deep Learning

5 Showcase of CNN and Transformers

6 Conclusion

3 / 38



What is Deep Learning?

A subset of machine learning where arti�cial neural networks,

algorithms inspired by the human brain, learn from large

amounts of data.

4 / 38



What is Deep Learning?

A subset of machine learning where arti�cial neural networks,

algorithms inspired by the human brain, learn from large

amounts of data.

Ability to learn and improve from experience without being

explicitly programmed.

4 / 38



What is Deep Learning?

A subset of machine learning where arti�cial neural networks,

algorithms inspired by the human brain, learn from large

amounts of data.

Ability to learn and improve from experience without being

explicitly programmed.

E�cient in processing large datasets and recognizing patterns.

4 / 38



1 Introduction

What is Deep Learning?

What is Flux.jl ?

2 Core Mechanisms

3 Flux Built-in Layers

4 Datasets For Deep Learning

5 Showcase of CNN and Transformers

6 Conclusion

5 / 38



What is Flux.jl ?

Flux.jl is a comprehensive package within the Julia programming

ecosystem, designed speci�cally for deep learning applications.

Open source Julia package dedicated to deep learning.

Michael Innes et al.

Fashionable Modelling with Flux
CoRR, 2018

FluxAI
Flux, The Elegant Machine Learning Stack
https://fluxml.ai/ 6 / 38

https://fluxml.ai/


What is Flux.jl ?

Flux.jl is a comprehensive package within the Julia programming

ecosystem, designed speci�cally for deep learning applications.

Open source Julia package dedicated to deep learning.

Full support for GPU utilization and Automatic Di�erentiation.

Michael Innes et al.

Fashionable Modelling with Flux
CoRR, 2018

FluxAI
Flux, The Elegant Machine Learning Stack
https://fluxml.ai/ 6 / 38

https://fluxml.ai/


What is Flux.jl ?

Flux.jl is a comprehensive package within the Julia programming

ecosystem, designed speci�cally for deep learning applications.

Open source Julia package dedicated to deep learning.

Full support for GPU utilization and Automatic Di�erentiation.

Wide array of tools for e�cient data processing.

Michael Innes et al.

Fashionable Modelling with Flux
CoRR, 2018

FluxAI
Flux, The Elegant Machine Learning Stack
https://fluxml.ai/ 6 / 38

https://fluxml.ai/


What is Flux.jl ?

Flux.jl is a comprehensive package within the Julia programming

ecosystem, designed speci�cally for deep learning applications.

Open source Julia package dedicated to deep learning.

Full support for GPU utilization and Automatic Di�erentiation.

Wide array of tools for e�cient data processing.

Vast selection of prede�ned layers for various neural network

architectures.

Michael Innes et al.

Fashionable Modelling with Flux
CoRR, 2018

FluxAI
Flux, The Elegant Machine Learning Stack
https://fluxml.ai/ 6 / 38

https://fluxml.ai/


1 Introduction

2 Core Mechanisms

Decomposition of complex nested structures

Automatic reverse di�erentiation

Descent-based minimization methods

3 Flux Built-in Layers

4 Datasets For Deep Learning

5 Showcase of CNN and Transformers

6 Conclusion
7 / 38



Core Mechanisms

The core mechanisms of Flux are the following:

Decomposition of complex nested structures (Functors.jl)

FluxML
Functors.jl
https://github.com/FluxML/Functors.jl 8 / 38

https://github.com/FluxML/Functors.jl


Core Mechanisms

The core mechanisms of Flux are the following:

Decomposition of complex nested structures (Functors.jl)

Automatic reverse di�erentiation (Zygote.jl)

FluxML
Zygote.jl
https://github.com/FluxML/Zygote.jl 8 / 38

https://github.com/FluxML/Zygote.jl


Core Mechanisms

The core mechanisms of Flux are the following:

Decomposition of complex nested structures (Functors.jl)

Automatic reverse di�erentiation (Zygote.jl)

Descent-based minimization methods (Optimisers.jl)

FluxML
Optimisers.jl
https://github.com/FluxML/Optimisers.jl 8 / 38

https://github.com/FluxML/Optimisers.jl


1 Introduction

2 Core Mechanisms

Decomposition of complex nested structures

Automatic reverse di�erentiation

Descent-based minimization methods

3 Flux Built-in Layers

4 Datasets For Deep Learning

5 Showcase of CNN and Transformers

6 Conclusion
9 / 38



Nested structures and deep learning

Nested structures are

commonly employed in deep

learning, primarily due to

their e�ciency in data

processing.

10 / 38



Decomposition of complex nested structures

Goal : Facilitate access to

the parameters that need

optimization.

11 / 38



Decomposition of complex nested structures

Goal : Facilitate access to

the parameters that need

optimization.

Limitation : All parameters

must be stored on the heap.

11 / 38



1 Introduction

2 Core Mechanisms

Decomposition of complex nested structures

Automatic reverse di�erentiation

Descent-based minimization methods

3 Flux Built-in Layers

4 Datasets For Deep Learning

5 Showcase of CNN and Transformers

6 Conclusion
12 / 38



Automatic di�erentiation

Computational technique used to calculate the gradient of a

function relative to its inputs.

13 / 38



Automatic di�erentiation

Computational technique used to calculate the gradient of a

function relative to its inputs.

ForwardDi� : Forward mode (Number of inputs < Number of

outputs).

JuliaDi�
ForwardDi�.jl
https://github.com/JuliaDiff/ForwardDiff.jl 13 / 38

https://github.com/JuliaDiff/ForwardDiff.jl


Automatic di�erentiation

Computational technique used to calculate the gradient of a

function relative to its inputs.

ForwardDi� : Forward mode (Number of inputs < Number of

outputs).

Zygote : Forward mode (Number of inputs > Number of

outputs).

13 / 38



Mixing Zygote and Functors

Zygote is capable of

di�erentiating nested

structures, provided they are

appropriately tagged by

Functors.

14 / 38



1 Introduction

2 Core Mechanisms

Decomposition of complex nested structures

Automatic reverse di�erentiation

Descent-based minimization methods

3 Flux Built-in Layers

4 Datasets For Deep Learning

5 Showcase of CNN and Transformers

6 Conclusion
15 / 38



Descent-Based Minimization Methods

Basic Descent Method:

f : Rn → R at least C 1,

16 / 38



Descent-Based Minimization Methods

Basic Descent Method:

f : Rn → R at least C 1,

x ∈ Rn,

16 / 38



Descent-Based Minimization Methods

Basic Descent Method:

f : Rn → R at least C 1,

x ∈ Rn,

xk such that,

xk+1 = xk − α∇f (xk),

where α is the step size.

16 / 38



Descent-Based Minimization Methods

Basic Descent Method:

Adam Method :

mk+1 = β1m
k

+(1− β1)∇f (xk)

vk+1 = β2v
k

+(1− β2)∇f (xk)2

xk+1 = xk − αmk+1

(1−(β1)k )(

√
vk+1

1−(β2)
k +ε)

where α is the step size, β1,
β2 and ε are parameters.

16 / 38



Mixing Optimisers, Zygote and Functors

Optimisers is capable of

optimizing nested structures,

provided they are

appropriately tagged by

Functors.

17 / 38



1 Introduction

2 Core Mechanisms

3 Flux Built-in Layers

Basic Flux Examples with Dense Layers

The Convolution Layer

The MultiHeadAttention(MHA) Layer

4 Datasets For Deep Learning

5 Showcase of CNN and Transformers

6 Conclusion
18 / 38



Commonly Used Layers in Neural Networks

The Dense Layer or fully connected layer : Connects every

neuron in one layer to every neuron in the next layer.

19 / 38



Commonly Used Layers in Neural Networks

The Dense Layer or fully connected layer : Connects every

neuron in one layer to every neuron in the next layer.

The Convolution Layer for image processing : Applie a

convolution operation to the input, passing the result to the

next layer.

19 / 38



Commonly Used Layers in Neural Networks

The Dense Layer or fully connected layer : Connects every

neuron in one layer to every neuron in the next layer.

The Convolution Layer for image processing : Applie a

convolution operation to the input, passing the result to the

next layer.

The Normalizing Layer or the batch normalization : Improve

model stability and reduce over�tting by normalizing layer

inputs.

19 / 38



Commonly Used Layers in Neural Networks

The Dense Layer or fully connected layer : Connects every

neuron in one layer to every neuron in the next layer.

The Convolution Layer for image processing : Applie a

convolution operation to the input, passing the result to the

next layer.

The Normalizing Layer or the batch normalization : Improve

model stability and reduce over�tting by normalizing layer

inputs.

The Multi-Head Attention Layer for processing sequential data

(ex : text) : Multiple dense layers devided in key, query and

value.

19 / 38



1 Introduction

2 Core Mechanisms

3 Flux Built-in Layers

Basic Flux Examples with Dense Layers

The Convolution Layer

The MultiHeadAttention(MHA) Layer

4 Datasets For Deep Learning

5 Showcase of CNN and Transformers

6 Conclusion
20 / 38



The Linear Regression Model

The linear regression model

is a Dense Layer with only

one neuron. In this setup,

the identity function is used

as the activation function.

21 / 38



The Linear Regression Model

The linear regression model

is a Dense Layer with only

one neuron. In this setup,

the identity function is used

as the activation function.

The primary objective in this

model is to minimize the

mean squared error (MSE),

which is the loss function.

21 / 38



The Linear Regression Model

The built-in layers, such as

Dense, are Functors by

default in many deep

learning frameworks.

22 / 38



The Linear Regression Model

The built-in layers, such as

Dense, are Functors by

default in many deep

learning frameworks.

In this context, N represents

the number of training

examples, and 'epoch' refers

to the number of iteration

for the optimization process.

22 / 38



The Linear Regression Model

(a) Plot of the loss function (b) Plot of the function(blue) and the
model(red)

23 / 38



1 Introduction

2 Core Mechanisms

3 Flux Built-in Layers

Basic Flux Examples with Dense Layers

The Convolution Layer

The MultiHeadAttention(MHA) Layer

4 Datasets For Deep Learning

5 Showcase of CNN and Transformers

6 Conclusion
24 / 38



Exemple of convolution operation on matricies

Let M be a 3x3 matrix, and F a 2x2 �lter.

We apply F to M to compute the resulting matrix N.

The convolution involves element-wise multiplications and

summations.

Here, we demonstrate the computation of the �rst element of

N.

M =

M11 M12 M13

M21 M22 M23

M31 M32 M33

 F =

[
F11 F12
F21 F22

]
N =

[
N11 N12

N21 N22

]

N11 = M11 · F11 +M12 · F12 +M21 · F21 +M22 · F22

25 / 38



De�ne the convolution layer at hand

Suppose we have a nxm
matrix M and a lxk �lter F
with a padding of (p1, p2)
and a stride of (s1, s2).

26 / 38



De�ne the convolution layer at hand

Suppose we have a nxm
matrix M and a lxk �lter F
with a padding of (p1, p2)
and a stride of (s1, s2).

Then the operation is,

Nij = M(i−1)s1+m,(j−1)s2+nFm,n

26 / 38



De�ne the convolution layer at hand

Suppose we have a nxm
matrix M and a lxk �lter F
with a padding of (p1, p2)
and a stride of (s1, s2).

N will be of dimention
n+2p1−l

s1
+ 1 by m+2p2−k

s2
+ 1.

26 / 38



The �ux convolution layer

Far More Optimized (2 times less allocations)

27 / 38



1 Introduction

2 Core Mechanisms

3 Flux Built-in Layers

Basic Flux Examples with Dense Layers

The Convolution Layer

The MultiHeadAttention(MHA) Layer

4 Datasets For Deep Learning

5 Showcase of CNN and Transformers

6 Conclusion
28 / 38



The MultiHeadAttention(MHA) Layer

Three principal components:

Value, Key, Query.

Vaswani et al.

Attention is all you need
Advances in neural information processing systems,2017 29 / 38



The MultiHeadAttention(MHA) Layer

Three principal components:

Value, Key, Query.

Split into h parts and pass

them through dense layers.

Vaswani et al.

Attention is all you need
Advances in neural information processing systems,2017 29 / 38



The MultiHeadAttention(MHA) Layer

Three principal components:

Value, Key, Query.

Split into h parts and pass

them through dense layers.

Attention for each head :

Attention = softmax

(
QKT

√
dimk

)
V ,

Vaswani et al.

Attention is all you need
Advances in neural information processing systems,2017 29 / 38



The MultiHeadAttention(MHA) Layer

Three principal components:

Value, Key, Query.

Split into h parts and pass

them through dense layers.

Attention for each head :

Attention = softmax

(
QKT

√
dimk

)
V ,

Concatenate and pass

through a �nal dense layer.

Vaswani et al.

Attention is all you need
Advances in neural information processing systems,2017 29 / 38



De�ne the MHA layer at hand

30 / 38



The MultiHeadAttention layer

31 / 38



1 Introduction

2 Core Mechanisms

3 Flux Built-in Layers

4 Datasets For Deep Learning

5 Showcase of CNN and Transformers

6 Conclusion

32 / 38



A lot of "usual" datasets can

be directly dowload within

julia and MLDatasets.

JuliaML
MLDatasets.jl
https://github.com/
JuliaML/MLDatasets.jl

JuliaPy
PythonCall.jl
https://github.com/
JuliaPy/PythonCall.jl

JuliaStats
RDatasets.jl
https://github.com/
JuliaStats/RDatasets.jl

33 / 38

https://github.com/JuliaML/MLDatasets.jl
https://github.com/JuliaML/MLDatasets.jl
https://github.com/JuliaPy/PythonCall.jl
https://github.com/JuliaPy/PythonCall.jl
https://github.com/JuliaStats/RDatasets.jl
https://github.com/JuliaStats/RDatasets.jl


A lot of "usual" datasets can

be directly dowload within

julia and MLDatasets.

We always want more, and

we can get more from

python (PythonCall.jl) or R

(Rdatasets.jl).

JuliaML
MLDatasets.jl
https://github.com/
JuliaML/MLDatasets.jl

JuliaPy
PythonCall.jl
https://github.com/
JuliaPy/PythonCall.jl

JuliaStats
RDatasets.jl
https://github.com/
JuliaStats/RDatasets.jl

33 / 38

https://github.com/JuliaML/MLDatasets.jl
https://github.com/JuliaML/MLDatasets.jl
https://github.com/JuliaPy/PythonCall.jl
https://github.com/JuliaPy/PythonCall.jl
https://github.com/JuliaStats/RDatasets.jl
https://github.com/JuliaStats/RDatasets.jl


Comparaison of including datasets

34 / 38



1 Introduction

2 Core Mechanisms

3 Flux Built-in Layers

4 Datasets For Deep Learning

5 Showcase of CNN and Transformers

6 Conclusion

35 / 38



Showcase of CNN and Transformers

Code is available on https://github.com/yolhan83.

36 / 38

https://github.com/yolhan83


1 Introduction

2 Core Mechanisms

3 Flux Built-in Layers

4 Datasets For Deep Learning

5 Showcase of CNN and Transformers

6 Conclusion

37 / 38



Conclusion

Flux is a deep learning library for Julia.

38 / 38



Conclusion

Flux is a deep learning library for Julia.

Functors, Zygote and Optimisers are the building blocks of

Flux.

38 / 38



Conclusion

Flux is a deep learning library for Julia.

Functors, Zygote and Optimisers are the building blocks of

Flux.

Easy to make new layer, loss, optimiser, ect.

38 / 38



Conclusion

Flux is a deep learning library for Julia.

Functors, Zygote and Optimisers are the building blocks of

Flux.

Easy to make new layer, loss, optimiser, ect.

Datasets are fully available in julia.

38 / 38



Conclusion

Flux is a deep learning library for Julia.

Functors, Zygote and Optimisers are the building blocks of

Flux.

Easy to make new layer, loss, optimiser, ect.

Datasets are fully available in julia.

Complex models can be written in a comprehensive way.

38 / 38



Conclusion

Flux is a deep learning library for Julia.

Functors, Zygote and Optimisers are the building blocks of

Flux.

Easy to make new layer, loss, optimiser, ect.

Datasets are fully available in julia.

Complex models can be written in a comprehensive way.

Thank you all for your attention.

38 / 38


	Introduction
	What is Deep Learning?
	What is Flux.jl ?

	Core Mechanisms
	Decomposition of complex nested structures
	Automatic reverse differentiation
	Descent-based minimization methods

	Flux Built-in Layers
	Basic Flux Examples with Dense Layers
	The Convolution Layer
	The MultiHeadAttention(MHA) Layer

	Datasets For Deep Learning
	Showcase of CNN and Transformers
	Conclusion

