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What is Deep Learning?

@ A subset of machine learning where artificial neural networks,

algorithms inspired by the human brain, learn from large
amounts of data.
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What is Deep Learning?

@ A subset of machine learning where artificial neural networks,
algorithms inspired by the human brain, learn from large
amounts of data.

o Ability to learn and improve from experience without being

explicitly programmed.

e Efficient in processing large datasets and recognizing patterns.
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What is Flux.jl ?

Flux.jl is a comprehensive package within the Julia programming
ecosystem, designed specifically for deep learning applications.

@ Open source Julia package dedicated to deep learning.

flux
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Fashionable Modelling with Flux Flux, The Elegant Machine Learning Stack
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What is Flux.jl ?

Flux.jl is a comprehensive package within the Julia programming
ecosystem, designed specifically for deep learning applications.

@ Open source Julia package dedicated to deep learning.
o Full support for GPU utilization and Automatic Differentiation.
e Wide array of tools for efficient data processing.

@ Vast selection of predefined layers for various neural network
architectures.

Michael Innes et al. FluxAl
Fashionable Modelling with Flux Flux, The Elegant Machine Learning Stack
CoRR, 2018 https://fluxml.ai/ 6/38
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Core Mechanisms

The core mechanisms of Flux are the following:

@ Decomposition of complex nested structures (Functors.jl)

FluxML
Functors.jl
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Core Mechanisms

The core mechanisms of Flux are the following:
@ Decomposition of complex nested structures (Functors.jl)
@ Automatic reverse differentiation (Zygote.jl)

@ Descent-based minimization methods (Optimisers.jl)
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Nested structures and deep learning

@ Nested structures are
commonly employed in deep
learning, primarily due to
their efficiency in data
processing.

using Flux,Flux.Functors

Linear{Tl<:Real,T2<:Function}
W ::Matrix{T1}
b ::Vector{T1}
f ::T2
end |/

@functor Linear

Chain
layers ::Vector{lLinear}

end

@functor Chain
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Decomposition of complex nested structures

@ Goal : Facilitate access to
the parameters that need
optimization.

using Flux,Flux.Functors |/
Linear{Tl<:Real,T2<:Function}
: trix{T1}
::Vector{T1}
:T2

@functor Linear |V
s t Chain

layers ::Vector{lLinear}
end |/
@functor Chain |V

Linear(n,m,f) = Linear(randn(m,n),randn(m),f); |V
model = Chain([
Linear(1,64,tanh),
Linear(64,6u,tanh),
Linear(64,64,tanh),
Linear|(64,1, identity))
D; v
Flux.params(model) .|> length |> sum 8513
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Decomposition of complex nested structures

o Goal : Facilitate access to
the parameters that need
optimization.

o Limitation : All parameters

must be stored on the heap.

Llslng Flux,Flux.Functors |/
L1near{T1< Real,T2<:Function}
trix{T1}
b ::Vector{T1}
f T2
end |/
@functor Linear |V
truct Chain
layers ::Vector{lLinear}
end |/
@functor Chain |V

Linear(n,m,f) = Linear(randn(m,n),randn(m),f); |V
model = Chain([
Linear(1,64,tanh),
Linear(64,6u,tanh),
Linear(64,64,tanh),
Linear|(64,1, identity))
D; v
Flux.params(model) .|> length |> sum 8513
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Automatic differentiation

e Computational technique used to calculate the gradient of a
function relative to its inputs.
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Automatic differentiation

e Computational technique used to calculate the gradient of a
function relative to its inputs.

@ ForwardDiff : Forward mode (Number of inputs < Number of
outputs).

JuliaDiff
ForwardDiff jl
https://github.com/JuliaDiff/ForwardDiff.jl 13/38
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Automatic differentiation

e Computational technique used to calculate the gradient of a
function relative to its inputs.

e ForwardDiff : Forward mode (Number of inputs < Number of
outputs).

@ Zygote : Forward mode (Number of inputs > Number of
outputs).

using Flux.Zygote |/

f(x) = 2. * x.”2 |> sum; |/

x = rand(3); |V
gradient(f,x)[1] == 4 .* x |true
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Mixing Zygote and Functors

@ Zygote is capable of
differentiating nested
structures, provided they are
appropriately tagged by
Functors.

(l::Linear)(x) = 1.f.(muladd(l.w,x,1.b)) |V
model = Linear(100,1,identity); |V
compute_model(model,x) = model(x)[1]; |V

x = rand(100); |v

g = gradient(compute_model,model,x); |V

g[1].w [1x100 Matrix{Floatéu}:

g[1].b |1-element Vector{Floatéu}:
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Descent-Based Minimization Methods

@ Basic Descent Method:
o f:R" — R at least C!,

using Flux.Zygote |V

using Flux.Optimisers |/
DescentAlg <: Optimisers.AbstractRule
:: Floatéu

ion Optimisers.apply!( escentAlg, state, x, X)
newx = o.a .* X
nextstate = state + 1
return nextstate, newx
end |/
Optimisers.init(o::DescentAlg, x::T)
opt_rule = DescentAlg(6.1); [V
x = rand(3); |V
opt = Optimisers.setup(opt_rule, x); [V
F(x) = 2. % x."2 |> sum; [V
f(x) |©.3587933958011746
for _ in 1:10
‘ Optimisers.update! (opt,x,gradient(f,x)[1]);
end [/
f(x) |1.3118055022973196e-5
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Descent-Based Minimization Methods

@ Basic Descent Method:
o f:R" — R at least Ct,
e x € R",
o x* such that,
XKL — xk an(xk).

where « is the step size.

ng Flux.Zygote |V
Flux.Optimisers |V
DescentAlg <: Optimisers.AbstractRule
: Floatéd
end |/
function Optimisers.apply!(o::DescentAlg, state, x, X)
newx = o.a .* X N
nextstate = state + 1
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end |/
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opt = Optimisers.setup(opt_rule, x); [V
F(x) = 2. % x."2 |> sum; [V
f(x) |©.3587933958011746
for _ in 1:10
‘ Optimisers.update! (opt,x,gradient(f,x)[1]);
end [/
f(x) |1.3118055022973196e-5

16 /38



Descent-Based Minimization Methods

@ Basic Descent Method: Blrdr Siruct Maahy < Gptinisr
:e;a = (0.9, 0.999)

o Adam Method : epsiton = 168

end [AdamAlg
Optimisers.init(, g, x) = (zero(x), zero(x), o.beta) |V
k+1 _ [ k
m —_ }31 m unction Optimisers.apply!(o ), state, x, dx) where T
P d, B, € = 0.a, o.beta, o.epsilon
+(1 — B1)VF(xH) w, Ve, pr = state
wt =e. 1] * mt + (1 - Bl1]) * dx
vt =@. B[2] * vt + (1 - B[2]) * abs2(dx)
k+1 k dxp =@. mt / (1 - Bt[1]) / (sqrt(vt / (1 - Bt[21)) + &) * d
v - /))2 v return (mt, v, Bt .* B), dxp
end [/
Ko i
+(1 - Bz)Vf(X ) opt_rule = AdamAlg(a= 0.1); |V
k+1
k+1 k am
xkH = x

(=3 [+ )

where « is the step size, (1,
(2 and ¢ are parameters.
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Mixing Optimisers, Zygote and Functors

@ Optimisers is capable of
optimizing nested structures,
provided they are
appropriately tagged by
Functors.

(l::Linear)(x) = 1.f.(muladd(l.W,x,1.b)) |V
model = Linear(100,1,identity); |/
compute_model(model,x) = model(x)[1]; [V

x = rand(100); |V

opt_rule = AdamAlg(a= 0.1); |/

opt = Optimisers.setup(opt_rule, model); |V

model(x)[] |-4.991810896328357

for _ in 1:10
g = gradient(compute_model,model,x)[1];
Optimisers.update!(opt,model,g);

end |V

model(x)[1] |-58.87701713966101
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Commonly Used Layers in Neural Networks

@ The Dense Layer or fully connected layer : Connects every
neuron in one layer to every neuron in the next layer.
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Commonly Used Layers in Neural Networks

@ The Dense Layer or fully connected layer : Connects every
neuron in one layer to every neuron in the next layer.

@ The Convolution Layer for image processing : Applie a
convolution operation to the input, passing the result to the
next layer.

@ The Normalizing Layer or the batch normalization : Improve
model stability and reduce overfitting by normalizing layer
inputs.

@ The Multi-Head Attention Layer for processing sequential data

(ex : text) : Multiple dense layers devided in key, query and
value.
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The Linear Regression Model

@ The linear regression model T—
is a Dense Layer with only
one neuron. In this setup,
the identity function is used
as the activation function.

hodel = Flux.Dense(1,1,identity); |V
f(x) = x"3-x"2+x+2; |/

N=1000; |/

x = rand(-1:0.01:1,1,N); |V

y f.(x); |v

loss(model,x,y) = Flux.mse(model(x),y); |V

loss(model, x,y) |2.9885269487981727
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The Linear Regression Model

@ The linear regression model T—
is a Dense Layer with only
one neuron. In this setup,
the identity function is used
as the activation function.

hodel = Flux.Dense(1,1,identity); |V
f(x) = x"3-x"2+x+2; |/

N=1000; |/

x = rand(-1:0.01:1,1,N); |V

@ The primary objective in this

model is to minimize the y = £.00; [
mean Squared error (MSE), loss(model,x,y) = Flux.mse(model(x),y); |V
which is the loss function. loss(model, x,y) |2.9885269u87981727
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The Linear Regression Model

@ The built-in layers, such as
Dense, are Functors by
default in many deep
learning frameworks.

N=1000; |V
epoch = 100; |V
x = rand(-1:0.01:1,1,N); |V

= f.(x); |V

loss(model,x,y) = Flux.mse(model(x),y); [V
loss(model, x,y) |4.0829329362030355

opt_rule = Flux.Adam(0.1); |/
opt = Flux.setup(opt_rule, model); |V

for _ in 1:epoch
g = gradient(loss,model,x,y)[1];
Flux.update! Copt,model,g);

end |/

loss(model,x,y) | 0.12288050564779106
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The Linear Regression Model

@ The built-in layers, such as
Dense, are Functors by
default in many deep
learning frameworks.

@ In this context, NV represents
the number of training
examples, and 'epoch’ refers
to the number of iteration
for the optimization process.

N=1000; |V
epoch = 100; |V

rand(-1:0.01:1,1,N); [v
f.(x); ¢

X

loss(model,x,y) = Flux.mse(model(x),y); [V
loss(model, x,y) |4.0829329362030355

opt_rule = Flux.Adam(0.1); |/
opt = Flux.setup(opt_rule, model); |V

for _ in 1:epoch
g = gradient(loss,model,x,y)[1];
Flux.update! Copt,model,g);

end |/

loss(model,x,y) | 0.12288050564779106
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The Linear Regression Model

-1

0 25 50 75

(a) Plot of the loss function
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(b) Plot of the function(blue) and the
model(red)
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Exemple of convolution operation on matricies

o Let M be a 3x3 matrix, and F a 2x2 filter.
o We apply F to M to compute the resulting matrix N.

@ The convolution involves element-wise multiplications and
summations.

@ Here, we demonstrate the computation of the first element of

N.
M %ﬂ %12 %13 F [F” F”] N [N“ N”]
= 21 22 23 - =
Fo;, F Noy N
M31 M32 M33 21 22 21 22

Nii = My - Fi1 + Mo - Fio + Moy - Fog 4+ Moy - Foo
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Define the convolution layer

@ Suppose we have a nxm struct MyConv
matrix M and a Ixk filter F D tibems

pad ::Tuple
stride ::Tuple
end [/

with a padding of (p1, p2)
and a stride of (s, ).

@functor MyConv |/

ction MyConv(T ::Tuple,n,m,f ::T1;pad=(0,0),
stride=(1,1)) where T1l<:Function
D = Flux.Dense(n=>m,f)
MyConv(randn(T...,n),D,pad,stride)
end; |V

model = MyConv((3,3),1,3,tanh,pad=(1,1)); [V
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Define the convolution layer at hand

o Suppose we have a nhxm f on padarray(A: :A pad: :Tuple)
i original_dins = size(A -
matrix M and a Ixk filter F . A g dins(ssend]. )
. . im?i:?s = [p+l:p+d for (p, d) in zip(pad, original_dims[1:21)]
with a padding of (p1, p2) el

. end |padarray (generic function with 1 method)
and a stride of (s, ). Fenction Candar
) ) ’ del.stride
@ Then the operation is, pad = padacrayCx, P1,P2))
@tullio C[i, j,k,1] := xpad[(i-1)*$S1 + m, (j-1)*$s2 + n,k,1]
* Flm, n,k]
return permutedims(model.D(permutedims(c,[3,1,2,41)),[2,3,1,41)
end |V

Nij = M(i—1)51+m.(j—1)52+nFm,n
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Define the convolution layer at hand

@ Suppose we have a nxm
matrix M and a Ixk filter F
with a padding of (p1, p2)
and a stride of (s, ).

o N will be of dimention

”+2P1

+1by m+2p2 k+1

n padarray(A pad: : Tuple)
original_dims = size(
i igi .+ 2 % pad
iginal_dims[3:end]...)
indices = :p+d for (p, d) in zip(pad, original_dims[1:2])]
Blindices. ..,
return B

d |padarray (generic function with 1 method)

n (model :

padmay(x (P1,P2))
F = model.F

@tullio C[i, j,k,1] := xpad[(i-1)*$S1 + m, (j-1)*$s2 + n,k,1]
* Flm, n,k]
return permutedims(model.D(permutedims(c,[3,1,2,41)),[2,3,1,41)

end |V
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The flux convolution layer

@ Far More Optimized (2 times less allocations)

using Flux |V
model = Conv((3,3),1=>3,tanh,pad=(1,1)); |/

xtest = rand(32,32,1,100); |/

model(xtest) |32x32x3x100 Array{Float32, u}:
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The MultiHeadAttention(MHA) Layer

@ Three principal components:
Value, Key, Query.

Linear

Concat

Scaled Dot-Product

Attention h
1L | — 1

Linear Linear Linear

Vaswani et al.
Attention is all you need
Advances in neural information processing systems,2017 29 /38
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The MultiHeadAttention(MHA) Layer

@ Three principal components:
Value, Key, Query.

@ Split into h parts and pass
them through dense layers.

Linear

Concat

@ Attention for each head :

Scaled Dot-Product

QKT Attention h
Attention = softmax _ Vv th th t
dlmk L1 L1 L1
Linear Linear Linear
o Concatenate and pass
through a final dense layer. % K Q

Vaswani et al.
Attention is all you need

Advances in neural information processing systems,2017
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Define the MHA layer at hand

struct MHA
Q ::Dense function (mha ::MHA)(q,k,v)
K ::Dense Q,K,V,D = mha.Q,mha.K,mha.V,mha.D
V ::Dense gh = reshape(q,size(q,1)+mha.nheads,
D ::Dense mha.nheads,size(q,2),size(q,3))
nheads ::Int kh = reshape(k,size(k,1)+mha.nheads,
end |4 mha.nheads,size(k,2),size(k,3))
function MHA(q_dim, k_dim,v_dim,qkv_dim, vh = reshape(v,size(v,1)+mha.nheads,
out_dim, nheads) mha.nheads,size(v,2),size(v,3))
@assert q_dim % nheads ==
@assert v_dim % nheads == @ qual = Q(qgh)
@assert k_dim == q_dim kval = K(kh)

@assert qkv_dim % nheads == 0 vval ? Vlvh) . .
q_dim_h = q_dim + nheads @tullio att[n,m,hi,b] := qvalli,hi,n,

k_dim_h = K_dim + nheads bl * kvalli,hi,m,b] / sqrt(size(kval,

. _ . 1))
v_flg_h —(v_g%m h nzeag§ +nheads) att = Flux.softmax(att)
= Densefq_cim_f, qrv_cim=nneacs @tullio res[i,hi,n,b] := att[n,m,hi,
= Dense(k_dim_h,gkv_dim+nheads)

- : L. bl * vvalli, hi,m,b]
= Dense(v_dim_h, gkv_dim+nheads) res = reshape(res,size(res,1)*size

= Dense(gkv_dim,out_dim+nheads) (res,2) size(v)[2:end]...)
1 r N cet
MHACQ,K,V,D, nheads) return D(res),att
end |MHA end |/
Flux.@functor MHA |/




The MultiHeadAttention layer

= rand(64,100,1000);

mha = MultiHeadAttention((6u,6u,6U)
=>1024=>6U,nheads = 4);

res,att= mha(x);

res | 6U4x100x1000 Array{Float32, 3}:
att |100x100x4x1000 Arrayf{Float32, u}:

31/38



Datasets For Deep Learning
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@ A lot of "usual" datasets can
be directly dowload within
julia and MLDatasets.

JuliaML

MLDatasets.jl
https://github.com/
TuliaMIL/MILDatasets 31

JuliaPy

PythonCall.jl
https://github.com/
TuliaPv/PvthonCall 31

JuliaStats

RDatasets.jl
https://github.com/

TuliaState/RDatacets 31 33/38
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@ A lot of "usual" datasets can
be directly dowload within
julia and MLDatasets.

@ We always want more, and
we can get more from
python (PythonCall jl) or R
(Rdatasets.jl).

JuliaML JuliaPy

MLDatasets.jl PythonCall.jl
https://github.com/ https://github.com/
TuliaMIL/MILDatasets 31 TuliaPv/PvthonCall 31

-
.e

JuliaStats

RDatasets.jl
https://github.com/
TuliaState/RDatacsets 31
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Comparaison of including datasets

using MLDatasets: Iris |/

iris = Iris(Q); [V

datass = iris.features; |/

target = iris.targets |> Array; |/

target = reshape(target,length(target)); |/

target = Dict("$(target[i])"=> target .== target[i] for i in
eachindex(target)) |> DataFrame |150x3 DataFrame

using PythonCall [/ using RDatasets |V

skl = PythonCall.pyimport("sklearn.datasets"); |/

datass, target = skl.load_iris(return_X_y=true, iris = RDatasets.dataset("datasets",
as_frame I "iris") [150x5 DataFrame

using DataFrames |/

k = datass.keys(); |V

vv = pyconvert(Array,datass.values);

7 datass = iris[:,1:4] |> Array; |/
datass = Dict([ pyconvert(String,k[i-11) => vv[:,i] for i
in axes(vv,2)]...) |> DataFrame |150x4 DataFrame target = iris[:,5] |> Array; [/

k= pyconvert(Array,target.keys()); |/ —ne . —
target = pyconvert(Array,target.values); [/ target = Dict("$(target[i])"=> target .

target = Dict([ "$(target[i])"=> target .== target[i] for == target[i] for i in eachindex
i in eachindex(target)]...) |> DataFrame |156x3 DataFrame (target)) |> DataFrame |150x3 DataFrame
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Showcase of CNN and Transformers

Code is available on https://github.com/yolhan83.
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Conclusion

Flux is a deep learning library for Julia.

Functors, Zygote and Optimisers are the building blocks of
Flux.

Easy to make new layer, loss, optimiser, ect.

Datasets are fully available in julia.

Complex models can be written in a comprehensive way.

Thank you all for your attention.
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