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OUTLINE
● Advanced Linux CLI

○ Vim Editor
○ SCP (compress, decompress, and transfer large files)

● Guix Package Manager
● Modules
● SLURM Workload Manager

○ Why do we need Slurm?
○ Slurm Configuration Options
○ Example Slurm Script
○ TP

■ Basic Slurm Script
■ Slurm for Parallel Programming
■ Install Conda/Micromamba
■ Fortran: Hello World
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First Things First
For help visit, GLiCID Help
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https://clam.glicid.fr/home/


WORKSHOP SERIES - Save The Date

 

Getting Started With Nautilus: Beginner Session 28-09-2023

Introduction to Git/GitLab 05-10-2023

Getting Started With GLiCID: Advanced Session 19-10-2023

Introduction to Parallel Programming (OpenMP/MPI) 09-11-2023

Reproducible Research Using Containers (Singularity /Apptainer) 16-11-2023

Getting Started With GLiCID: Beginner Session 30-11-2023

Introduction to JupyterLab/Python 14-12-2023

Getting Started With GLiCID: Beginner Session 14-01-2023

Introduction to CUDA Python/C++ 25-01-2024

Guix: Best Practices Yet to decide
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Linux Command Line For HPC
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Vim Editor
● Vim is more powerful text editor and includes syntax highlighting, which is very useful when writing code.
● Vim will require some effort to become proficient in, but it’s worth it for it’s efficiency.
● Start vim

○ To open vim, type vim <filename> and press Enter in the terminal
○ Note: If the file does not exist, it will open a new file
○ To switch from default to insert mode press i
○ Type the commands/text
○ To close and save file, press Esc key followed by :wq (colon, write and quit) and press Enter
○ To quit without saving, type :q!
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File Management - Large Files
● Compress

$ tar -czvf <folder_name.tar.gz> <foldername>

● Decompress

$ tar -xzvf <folder_name.tar.gz>
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File Management
● Local to Remote

$ scp -r folder_name nautilus:/scratch/users/username

● Remote to Local

$ scp -r nautilus:/scratch/users/username/folder_name /local_location
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Software Modules
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Software Modules
● Modules

○ Lot of useful software packages
○ Different versions
○ Maintained by experts
○ Optimized for the architecture
○ Users cannot install a module
○ Have to request the administrator
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How to use Modules?
● Useful commands

  

Command Description

module avail List modules

module avail <module_name> List all installed versions of python

module load <module_name> Load the default python version

module load <module_name/3.11.5> Load a specific version of python

module unload <module_name> Unload python

module list List currently loaded modules
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  Guix Package Manager
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What is Guix?
● Package building system/Package manager
● Why Guix? Why is it better than modules?

○ Allows each user to manage his/her own packages
○ without root privilege
○ without interfering with other users
○ Easy creation of isolated environments with designated packages
○ useful for per-project dependency management

13



Guix Package Manager
● Useful commands

  

Command Description

guix pull You need to run this at least once(maybe weekly :p)

guix search <package_name> Look for a package to install

guix install <package_name> To install a package

guix remove <package_name> To remove a package

guix package -l List of installed packages
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Competition for limited resources
● On computing cluster, people compete to use a finite set of resources (CPUs/GPUs/RAM)
● If everyone just starts running code, then everyone will have a bad time as resources are shared
● To solve this problem, computing centers use resource manager and job scheduler called Slurm
● With Slurm, you can submit jobs and tell Slurm what resources you need
● Slurm will allocate those resources to your job and then schedule your job
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https://slurm.schedmd.com/overview.html


This is how it works
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But you don’t use the whole Supercomputer
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Enter the queue, and wait
● Your job(s) enter the queue,

  and wait for its turn

● When there are enough resources for

that job, it runs
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Results
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SLURM - Workload Manager/Job Scheduler
● Simple Linux Utility for Resource Management (SLURM)
● Open source, fault-tolerant, and highly scalable cluster management and job scheduling system for large 

and small Linux clusters
● It has centralized manager, slurmctld, to monitor resources and work
● Each compute node has a slurmd daemon, which can be compared to a remote shell: it waits for work, 

executes that work, returns status, and waits for more work.
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Getting Started with Slurm
● To tell Slurm what resources you need, you will have to create an sbatch script/ Slurm script
● The sbatch scripts generally follow this format:

#!/bin/bash

# Declaring Slurm Configuration Options

# Loading Software/Libraries

# Running Code

● Note: #!/bin/bash above tells our terminal what program to run this file with. In this case, bash.
● You can write an sbatch script in any language as long as #SBATCH doesn’t result in errors 
● Examples: Ruby, Python, Bash, R.
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Configuration Options for Slurm
● There are many configuration options for Slurm
● Some options are cluster specific and may not work
● We can help you find the best set of configurations for your computing needs
● Configuration options are specified in your sbatch script like this:

#SBATCH <option_1>=<value>
#SBATCH <option_2>=<value>
…
#SBATCH <option_3>=<value>

● Note the pound sign( # ) is not the comment here.
● Slurm looks for lines starting with #SBATCH so it can find configuration options
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Accounting Configurations
● Job Name: #SBATCH --job-name=<job_name>

○ First thing you need to do is give your job a name and it should be descriptive
○ Example: #SBATCH --job-name=RandomWalk
○ The point of the job name is to remind yourself what you are doing
○ If it is not descriptive, you can easily get confused

● Comment: #SBATCH --comment=<comment>
○ To extend the description of your job, add a comment
○ Example: #SBATCH --comment=“To explore the nodes.”

● Account: #SBATCH --account=<account_name>
○ You need to tell Slurm which account to run your job under
○ This is not user account, but your project account
○ Example: #SBATCH --account=glicid
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Accounting Configurations
● Partition: #SBATCH --partition=<Partition_name>

○ Slurm needs to know which partition to run your job on
○ Example: #SBATCH --partition=standard
○ Each partition has access to different resources and has a specific use case

● Time Limit: #SBATCH --time=D-HH:MM:SS
○ You need to tell Slurm how long your job needs to run
○ The format is Days-Hours:Minutes:Seconds
○ Example: #SBATCH --time=1-12:30:00 (1 Day, 12 Hours, 30 Minutes, 0 Seconds)
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Job Output Configurations
● Output File: #SBATCH --output=%x_%j.out

○ Any output from your compute job will be saved to the output file that you specify
○ %x is a variable that fills in your job name. %j is a variable that filles in your job ID number
○ Example: #SBATCH --output=logs/%x_%j.out

● Error File: #SBATCH --output=%x_%j.err
○ Any errors from your compute job will be saved to the error file that you specify
○ %x is a variable that fills in your job name. %j is a variable that filles in your job ID number
○ Example: #SBATCH --output=logs/%x_%j.err

26



Node Configurations
● A node is just a computer in a cluster
● Most of the time, it probably makes sense to only use one node

● Nodes: #SBATCH --nodes=<num_nodes>
○ The default is 1 node, so if you’re using 1 node, you don’t need to specify it in configuration
○ We recommend that you include it to remind yourself what resources your job is using
○ Example: #SBATCH --nodes=4

● Excluding Nodes: #SBATCH --exclude=<node1, node2, …>

○ If for some reason you want to make sure your job does not run a specific node
○ Example: #SBATCH --exclude=cnode301

● Exclusive Access to a Node: #SBATCH --exclusive
○ If your job can utilize all of the resources on a single node, you can specify it
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Nautilus Architecture

 
#Computing Nodes Processor and Speed RAM #Cores

40 cnode[301-340] BullSequana X440 (2 AMD EPYC 9474@3.6GHz 48c) 384 GB 3840

8 cnode[701-708] BullSequana X440 (2 AMD EPYC 9474@3.6GHz 48c) 768 GB 768

4 visu[1-4] BullSequana X450 (2 AMD EPYC 9474@3.6GHz 48c) 
with Nvidia A40 (48G) 2 GPUs per node

768 GB 384

4 gnode[1-4] 4 BullSequana X410 (2 AMD EPYC 9474@3.6GHz 
48c) with Nvidia A100 (80G) 4 GPUs per node

768 GB 384

28Note: Other than Nautilus, we have Waves and MesoNET cluster as well.



Task Configurations
● In the context of computing, a "job" and a "task" refer to different entities and have distinct meanings

● Job:
○ A job is a higher-level unit of work or a computational task that you submit to a cluster
○ It represents a specific computational workload, which can consist of one or more tasks
○ When you submit a job, you provide information about the resources it needs, such as the number 

of nodes, CPU cores, memory, runtime, etc.
● Task:

○ A task is a lower-level unit of work that is part of a job
○ It represents a specific computational operation or process
○ These tasks are typically parallelized to take advantage of the cluster's computing power
○ For example, if you have a job that needs to perform a large-scale simulation, you might divide the 

simulation into multiple tasks, each of which can be run on a separate compute node or cores to 
expedite the computation

○ Tasks within a job can be parallel or distributed, and they often communicate with each other to 
complete the overall workload.
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Task Configurations
● Number of Tasks: #SBATCH --ntasks=<num_tasks>

○ By default, Slurm will assign one task per node
○ These tasks can run on the same node or the different nodes
○ Example: #SBATCH --ntasks=2

● Number of Tasks per Node: #SBATCH --ntasks-per-node=<num_tasks>
○ If your job is using multiple nodes, you can specify the number of tasks per node
○ Example: #SBATCH --ntasks-per-node=2
○ For instance, if your job is allocated four compute nodes, each node will run two tasks, resulting in a 

total of eight tasks running in parallel
○ This option is used when you want to control how many tasks are executed on each individual node 

in your cluster

30



CPU and GPU Configurations
● CPUs per Tasks: #SBATCH --cpus-per-task=<num_cpus>

○ By default, Slurm will assign 1 CPU per task if you do not specify in the configuration
○ Slurm needs to know how many CPUs your job needs
○ Example: #SBATCH --cpus-per-task=4

● GPUs per Job: #SBATCH --gres=gpu:<gpu_num>
○ By default, Slurm will not assign any GPU to your job
○ You need to specify how many GPUs your job needs
○ Example: #SBATCH --gres=gpu:4
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Memory Configurations
● Memory per Node: #SBATCH --mem=<memory>

○ You need to tell Slurm how much memory you need per node
○ Example: To get 10 GB of memory per node, use #SBATCH --mem=10g
○ Default is megabytes(MB), so if you specify #SBATCH --mem=10, you will be assigned only 10 MB

● Memory per CPU: #SBATCH --mem-per-cpu=<memory>
○ You can also specify a memory required per CPU core
○ Example: To get 10 GB of memory per CPU, use #SBATCH --mem-per-cpu=10g
○ You need to make sure --mem and --mem-per-cpu don’t conflict with each other
○ Default value is 4 GB for cnode301 to cnode340
○ 8 GB for cnode701 to cnode708
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Job Scheduling
● When you submit your job, Slurm checks #SBATCH configurations and finds a time/place to run your job
● Four things that impact when you run your job

○ The resources you request
○ The frequency that you submit jobs
○ The other jobs in the queue
○ The maintenance windows (sometimes)

● Note
○ If you request a lot of resources, you’ll have to wait until those resources are available
○ If you submit a lot of jobs with a small amount of resources, they’ll likely execute quickly
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Job Speed
● Using GPUs may or may not result in a speedup for your job
● There are a lot of factors in play when it comes to GPUs

○ Your code needs to be able to use GPUs
○ Not all libraries can leverage GPUs, make sure you read the documentation of libraries/frameworks
○ If using multiple GPUs, make sure your code can use GPUs on different nodes
○ Some code can leverage GPUs, but not in an impactful way
○ Some code just isn’t doing enough computations to make it with the overhead of communicating 

between CPUs and GPUs, it may actually slow down your job
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Example Slurm Script
#!/bin/bash

#SBATCH --job-name=myjob # Name for your job
#SBATCH --comment="Run My Job" # Comment for your job
#SBATCH --output=%x_%j.out # Output file
#SBATCH --error=%x_%j.err # Error file

#SBATCH --time=0-00:05:00 # Time limit
#SBATCH --nodes=1 # How many nodes to run on
#SBATCH --ntasks=2 # How many tasks per node
#SBATCH --cpus-per-task=2 # Number of CPUs per task
#SBATCH --mem-per-cpu=10g # Memory per CPU
#SBATCH --qos=short # priority/quality of service

hostname # Run the command hostname

● Submitting Your Job
$ sbatch my-job.slurm
Submitted batch job 1411747 on cluster nautilus 35

So, in this example, we have 
requested a job with the following 
dimensions:

● Max Run Time: 5 Minutes
● Number of Nodes: 1
● Number of Tasks Per Node: 2
● Number of CPUs Per Task: 2
● Memory Per CPU: 10GB

Reference: 
https://mirjunaid26.github.io/docs/tutorial-basics/slurm/

https://mirjunaid26.github.io/docs/tutorial-basics/slurm/


Monitoring Your Job
● Monitoring Your Job

$ ls
myjob_1411747.err  myjob_1411747.out  my-job.slurm

$ scontrol show job 1411747 -M nautilus

$ scancel 1411747
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Monitoring Your Job
● Monitoring Your Job

$ squeue -u $USER

CLUSTER: nautilus
    JOBID PARTITION                           NAME         USER ST         TIME  NODES QOS        PRIORITY NODELIST(REASON)

CLUSTER: waves
    JOBID PARTITION                           NAME         USER ST         TIME  NODES QOS        PRIORITY NODELIST(REASON)
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Hands-on: TP 1
● Submit your first job!

○ Download “nautilus-tutorial” → https://indico.mathrice.fr/event/498/manage/attachments/
○ Compress and transfer this folder to this location using SCP → /scratch/users/username
○ Connect to cluster
○ Open a text editor and write a slurm script that will run the “hostname” command
○ Submit the job
○ Monitor your job

 

38Reference: https://mirjunaid26.github.io/docs/tutorial-basics/slurm

https://indico.mathrice.fr/event/498/manage/attachments/
https://mirjunaid26.github.io/docs/tutorial-basics/slurm


Monitoring Your Job
● squeue

○ The squeue command will show what jobs are currently scheduled
$ squeue
CLUSTER: nautilus
    JOBID PARTITION                           NAME         USER ST         TIME  NODES QOS        PRIORITY 
NODELIST(REASON)
  1443980       all                Exchange_Second nassaad2017@ PD         0:00      1 short         37307 (Dependency)
1443979_[       all                      Advection nassaad2017@ PD         0:00      1 short         37307 (Dependency)
  1443978       all                 Exchange_First nassaad2017@  R         0:05      1 short         37307 cnode321
  1439197       all                       edw_wave adermatis202  R        25:12      1 medium        37026 cnode324
  1439000       all                       edw_wave adermatis202  R        26:02      1 medium        37026 cnode321
  1430806       all                       edw_wave adermatis202  R      1:09:23      1 medium        37026 cnode323
  1440954       all                     SnappyMesh ahernandez20  R        16:05      1 medium        36825 cnode325
  1441150       all diff_284_29_Tdiv580_moreRefin_ sakkari2022@  R        15:15      1 medium        36624 cnode325
  1406284       all      diff_300_46_Tdiv600_check sakkari2022@  R      3:24:53      1 medium        36624 cnode324
  1349601       all  diff_284_29_Tdiv580_moreRefin sakkari2022@  R     18:39:15      1 medium        36624 cnode322
  1308984       all      diff_400_46_Tdiv800_check sakkari2022@  R   1-03:07:33      1 medium        36624 cnode321
  1405888       all                    train_model melaarabi202  R      3:26:58      1 long          27508 gnode1
  1404124  standard                 test_stability jlopez@ec-na  R      4:00:14      1 long          23725 cnode323

CLUSTER: waves
    JOBID PARTITION                           NAME         USER ST         TIME  NODES QOS        PRIORITY 
NODELIST(REASON)
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Monitoring Your Job
● The squeue command gives us the following information:

○ JOBID: The unique ID for your job
○ PARTITION: The partition your job is running on (or scheduled to run on)
○ NAME: The name of your job
○ USER: The username for whomever submitted the job
○ ST: The status of the job. The typical status codes you may see are:

■ CD (Completed): Job completed successfully
■ CG (Completing): Job is finishing, Slurm is cleaning up
■ PD (Pending): Job is scheduled, but the requested resources aren’t available yet
■ R (Running): Job is actively running TIME: How long your job has been running

○ TIME: How long your job has been running
○ NODES: How many nodes your job is using
○ QOS: Quality of Service
○ PRIORITY: Priority of your job
○ NODELIST(REASON): List of nodes and which nodes your job is running on (or scheduled to run on). If 

your job is not running yet, you will also see reason
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Partition Information
● sinfo

○ available partitions on the cluster and partitions time limit
○ how many nodes are available on the partition and what is the state of those nodes

$ sinfo
CLUSTER: nautilus
PARTITION AVAIL  TIMELIMIT  NODES  STATE NODELIST
standard     up   infinite      5    mix cnode[321-325]
standard     up   infinite     35   idle cnode[301-320,326-340]
bigmem       up   infinite      1  down* cnode707
bigmem       up   infinite      7   idle cnode[701-706,708]
gpu          up   infinite      1    mix gnode1
gpu          up   infinite      3   idle gnode[2-4]
visu         up   infinite      4   idle visu[1-4]
all*         up   infinite      1  down* cnode707
all*         up   infinite      6    mix cnode[321-325],gnode1
all*         up   infinite     49   idle cnode[301-320,326-340,701-706,708],gnode[2-4],visu[1-4]

CLUSTER: waves
PARTITION AVAIL  TIMELIMIT  NODES  STATE NODELIST
all*         up    9:00:00      1   unk* budbud018
all*         up    9:00:00      8   idle budbud[014-017,019-022]
med          up 4-04:00:00      3   idle budbud[020-022]
devel        up      20:00      1   unk* vmworker-001

● Try sinfo -N
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Track Your Jobs
● sacct

○ Track your recent jobs to find their job IDs and other details
$ sacct
JobID           JobName  Partition    Account  AllocCPUS      State ExitCode 
------------ ---------- ---------- ---------- ---------- ---------- -------- 
1404103           myjob   standard     glicid          1  COMPLETED      0:0 
1404103.bat+      batch                glicid          1  COMPLETED      0:0 
1404103.ext+     extern                glicid          1  COMPLETED      0:0 
1419267           myjob        all     glicid          4  COMPLETED      0:0 
1419267.bat+      batch                glicid          4  COMPLETED      0:0 
1419267.ext+     extern                glicid          4  COMPLETED      0:0

● To view a specific job

$ sacct --jobs=1411747
JobID           JobName  Partition    Account  AllocCPUS      State ExitCode 
------------ ---------- ---------- ---------- ---------- ---------- -------- 
1419267           myjob        all     glicid          4  COMPLETED      0:0 
1419267.bat+      batch                glicid          4  COMPLETED      0:0 
1419267.ext+     extern                glicid          4  COMPLETED      0:0 
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Check Job State
● scontrol

○ To check job state, start time/end time, command, workdir, stderr, stdout
$ scontrol show job 1411747 -M nautilus
JobId=1446614 JobName=myjob
   UserId=jmir@ec-nantes.fr(8000019) GroupId=jmir@ec-nantes.fr(8000019) MCS_label=N/A
   Priority=45942 Nice=0 Account=glicid QOS=short
   JobState=COMPLETED Reason=None Dependency=(null)
   Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0
   RunTime=00:00:00 TimeLimit=00:05:00 TimeMin=N/A
   SubmitTime=2023-10-17T14:40:47 EligibleTime=2023-10-17T14:40:47
   AccrueTime=2023-10-17T14:40:47
   StartTime=2023-10-17T14:40:47 EndTime=2023-10-17T14:40:47 Deadline=N/A
   SuspendTime=None SecsPreSuspend=0 LastSchedEval=2023-10-17T14:40:47 Scheduler=Backfill
   Partition=all AllocNode:Sid=nautilus-devel-001:883696
   ReqNodeList=(null) ExcNodeList=(null)
   NodeList=cnode321
   BatchHost=cnode321
   NumNodes=1 NumCPUs=4 NumTasks=2 CPUs/Task=2 ReqB:S:C:T=0:0:*:*
   TRES=cpu=4,node=1,billing=4
   Socks/Node=* NtasksPerN:B:S:C=0:0:*:* CoreSpec=*
   MinCPUsNode=2 MinMemoryCPU=10G MinTmpDiskNode=0
   Features=(null) DelayBoot=00:00:00
   OverSubscribe=OK Contiguous=0 Licenses=(null) Network=(null)
   Command=/scratch/users/jmir@ec-nantes.fr/nautilus-tutorial/task_1/my-job.slurm
   WorkDir=/scratch/users/jmir@ec-nantes.fr/nautilus-tutorial/task_1
   Comment=Run My Job 
   StdErr=/scratch/users/jmir@ec-nantes.fr/nautilus-tutorial/task_1/myjob_1446614.err
   StdIn=/dev/null
   StdOut=/scratch/users/jmir@ec-nantes.fr/nautilus-tutorial/task_1/myjob_1446614.out
   Power=
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Job Priority Factors
●  Slurm takes into account two different factors when scheduling jobs:

○ Requested Resources and Priority
○ If you request a lot of resources, your job may take longer to start than someone who requests very few 

resources because Slurm needs to wait for the resources you requested to be available
○ If you are constantly submitting and running jobs, Slurm may assign your jobs a lower priority than 

someone who rarely submits jobs.

Job_priority =
site_factor +
(PriorityWeightAge) * (age_factor) +
(PriorityWeightAssoc) * (assoc_factor) +
(PriorityWeightFairshare) * (fair-share_factor) +
(PriorityWeightJobSize) * (job_size_factor) +
(PriorityWeightPartition) * (priority_job_factor) +
(PriorityWeightQOS) * (QOS_factor) +
SUM(TRES_weight_cpu * TRES_factor_cpu,
    TRES_weight_<type> * TRES_factor_<type>,
    ...) - nice_factor
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Job Priority Factors
● Nine factors in the Multifactor Job Priority plugin that influence job priority:

○ Age: the length of time a job has been waiting in the queue, eligible to be scheduled
○ Association: a factor associated with each association
○ Fair-share: the difference between the portion of the computing resource that has been promised and the 

amount of resources that has been consumed
○ Job size: the number of nodes or CPUs a job is allocated
○ Nice: a factor that can be controlled by users to prioritize their own jobs
○ Partition: a factor associated with each node partition
○ QOS: a factor associated with each Quality Of Service
○ Site: a factor dictated by an administrator or a site-developed job_submit or site_factor plugin
○ TRES: each TRES Type has its own factor for a job which represents the number of requested/allocated 

TRES Type in a given partition
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Priorities in GLiCID Cluster
● sacctmgr

○ To view or modify Slurm account information

$ sacctmgr show qos  format="name%20,priority,MaxJobsPerUser,MaxWall"
                Name   Priority MaxJobsPU     MaxWall 
-------------------- ---------- --------- ----------- 
              normal          1              00:05:00 
               short         50            1-00:00:00 
              medium         40            3-00:00:00 
                long         30            8-00:00:00 
           unlimited         10         1             
               debug        100              00:20:00 
            priority        200            8-00:00:00 
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Different Resource Scenarios
Here is a summary of different resource utilization scenarios:

● RAM:
○ Request too little: Job will die when it runs out of RAM
○ Request too much: Lots of RAM will sit idle and no one else can use it
○ Ideal: Request slightly more RAM than you need
○ Recommendation: Try to keep idle RAM at less than 10% of the total RAM you requested

● CPUs:
○ Request too little: Your job will trip over itself because of kernel scheduling; your job will take a 

massive performance hit as a result
○ Request too much: Lots or CPUs will sit idle and no one else can use them
○ Ideal: Request exactly the number of CPUs that your job can use
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Different Resource Scenarios
● GPUs:

○ Request too little: You may not actually see a speedup (due to communication overhead between 
CPUs and GPUs)

○ Request too much: Your code may not be able to use multiple GPUs; idle GPUs cannot be used by 
anyone else until your job finishes

○ Ideal: Request exactly the number of GPUs that your job can use
○ Recommendation: Get your job working with one GPU, and make sure you’re actually using the GPU 

before trying to use more
● Time:

○ Request too little: Your job will not finish before the time limit runs out; lots of time will be wasted
○ Request too much: Slurm may give your job a lower priority to let smaller jobs go first. If a 

maintenance window is coming up, your job may not schedule until after the maintenance window
○ Ideal: Request slightly more time than you need, but not too much
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Parallel Programming Examples using Slurm
Parallel programming on a cluster can be challenging, but it is a powerful technique for harnessing the 
computational resources of a cluster effectively.

● Some reasons why parallel programming can be tricky on a cluster:
○ Distributed computing, load balancing, synchronization, communication overhead, debugging and 

troubleshooting, scalability, heterogeneous resources
● To overcome these challenges, developers often use parallel programming libraries,

○ such as MPI (Message Passing Interface) for distributed memory systems and
○ OpenMP for shared memory systems

● These libraries provide abstractions and tools for handling parallelism, communication, and 
synchronization

● Additionally, understanding the architecture of the cluster and the specifics of the job scheduler (e.g., 
Slurm) can be crucial for resource allocation and job management
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Example 1: Intel/IntelMPI
Sample Script: job-intel.slurm

#!/bin/bash
#SBATCH --job-name=HelloWorldMpi
#SBATCH --partition=standard
#SBATCH --ntasks=4

module purge
module load intel/compiler intel/mpi

export I_MPI_PMI_LIBRARY=/lib64/libpmi2.so
export I_MPI_COLL_EXTERNAL=0
export I_MPI_ADJUST_BCAST=0
export I_MPI_FABRICS=shm:ofi
export FI_PROVIDER=psm3

srun --mpi=pmi2 hello-mpi
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Example 1: Intel/IntelMPI
● Intel Compiler and IntelMPI

$ module load intel/compiler intel/mpi

$ mpicxx -cxx=icpx -O3 -o hello-mpi hello-mpi.cpp

● Submit your slurm script
$ sbatch -M nautilus -p standard -q short job-intel.slurm
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Example 2: GNU/OpenMPI
Sample script: job-mpi.slurm

#!/bin/bash
#SBATCH --job-name=HelloWorldMpi
#SBATCH --partition=standard
#SBATCH --ntasks=4

module purge
module load gcc openmpi/ucx/4.1.5_gcc_8.5.0_ucx_1.14.1_rdma_46.0

export UCX_WARN_UNUSED_ENV_VARS=n
export OMPI_MCA_btl=^openib
export UCX_NET_DEVICES=mlx5_2:1

srun ./hello-openmpi
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Example 2: GNU/OpenMPI
● GNU Compiler and OpenMPI

○ module load gcc openmpi/ucx/4.1.5_gcc_8.5.0_uxc_1.14.1_rdma_46.0

○ mpicxx -O3 -o hello-openmpi hello-mpi.cpp

● Submit your slurm script
$ sbatch -M nautilus -p standard -q short job-mpi.slurm
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Example 3: GNU/OpenMP
Sample script → job-omp.slurm

#!/bin/bash
#SBATCH --job-name=HelloWorldOmp
#SBATCH --partition=standard
#SBATCH --cpus-per-task=12

module purge
module load gcc

if [[ "${SLURM_CPUS_PER_TASK}" ]] 
then
  c=${SLURM_CPUS_PER_TASK}
else
  c=1
fi 

export OMP_NUM_THREADS=$c 
srun ./hello-omp 54



Example 3: GNU/OpenMP
● GNU Compiler and OpenMP

○ module load gcc

○ g++ -fopenmp -o hello-omp hello_omp.cpp

● Submit your slurm script
$ sbatch -M nautilus -p standard -q short job-omp.slurm
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Example 4: GNU/hybrid OpenMPI/OpenMP
Sample script: job-hybrid.slurm
#!/bin/bash
#SBATCH --job-name=HelloWorldHybrid
#SBATCH --partition=standard
#SBATCH --cpus-per-task=6
#SBATCH --ntasks=16 

module purge
module load gcc openmpi/ucx/4.1.5_gcc_8.5.0_ucx_1.14.1_rdma_46.0

export UCX_WARN_UNUSED_ENV_VARS=n
export OMPI_MCA_btl=^openib
export UCX_NET_DEVICES=mlx5_2:1

if [[ "${SLURM_CPUS_PER_TASK}" ]] 
then
  c=${SLURM_CPUS_PER_TASK}
else
  c=1
fi 

export OMP_NUM_THREADS=$c 
srun ./hello-hybrid 56



Example 4: GNU/OpenMP
● GNU Compiler and OpenMP

○ module load gcc

○ mpicxx -fopenmp -o hello-hybrid hello-mpi-omp.cpp

● Submit your slurm script
$ sbatch -M nautilus -p standard -q short job-hybrid.slurm

57



Hands-on: TP 2
● Create a Slurm script for any of the above 4 examples

○ Submit your job
○ Monitor your job

Reference: https://mirjunaid26.github.io/docs/tutorial-basics/slurm
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Micromamba/Anaconda
● No Anaconda module for now
● But you can use Micromamba - lighter version of conda

# Download micromamba 
mkdir -p $HOME/.local/bin
wget -P $HOME/.local/bin https://s3.glicid.fr/pkgs/micromamba
chmod u+x $HOME/.local/bin/micromamba

# Initilize micromamba
$HOME/.local/bin/micromamba -r /micromamba/$USER/ shell init --shell=bash 
--prefix=/micromamba/$USER/

# [OPTIONAL] Add a `conda` alias
echo -e '\n\n#Alias conda with micromamba\nalias conda=micromamba' >> ~/.bashrc

# Recharger le .bashrc
source ~/.bashrc

● Source: https://doc.glicid.fr/GLiCID-PUBLIC/0/logiciels/logiciels.html 59
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Mircomamba/Anaconda
$ micromamba --version
$ conda create --name myenv  
$ conda env list
$ conda activate myenv
$ conda install numpy
$ conda list
$ conda deactivate
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Hands-on: TP 3
● Install Micromamba and check version
● Create a Conda environment and check environment list
● Try to install numpy and check installed packages

Reference: https://mirjunaid26.github.io/docs/tutorial-basics/slurm
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Hands-on: TP_Fortan
● Load gcc compiler and compile 

$ module load gcc/13.1.0
$ gfortran hello-fortran.f90 -o hello

● Submit your slurm script

$ sbatch -M nautilus -p standard -q short my-job.slurm
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Thank you. Any questions?
 

Useful links:

User Doc: https://doc.glicid.fr

Support: https://help.glicid.fr or help@glicid.fr 

Chat: On CLAM website

Admins: tech@glicid.fr

Forum: Coming soon

Status page:  https://ckc.glicid.fr

Please answer the survey if you haven't yet 
https://forms.gle/B4dto4axGm4EVPwaA
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