
Getting Started With GLiCID:
Advanced Session

Mir Junaid

October 19, 2023

1

OUTLINE
● Advanced Linux CLI

○ Vim Editor
○ SCP (compress, decompress, and transfer large files)

● Guix Package Manager
● Modules
● SLURM Workload Manager

○ Why do we need Slurm?
○ Slurm Configuration Options
○ Example Slurm Script
○ TP

■ Basic Slurm Script
■ Slurm for Parallel Programming
■ Install Conda/Micromamba
■ Fortran: Hello World

2

First Things First
For help visit, GLiCID Help

3

https://clam.glicid.fr/home/

WORKSHOP SERIES - Save The Date

Getting Started With Nautilus: Beginner Session 28-09-2023

Introduction to Git/GitLab 05-10-2023

Getting Started With GLiCID: Advanced Session 19-10-2023

Introduction to Parallel Programming (OpenMP/MPI) 09-11-2023

Reproducible Research Using Containers (Singularity /Apptainer) 16-11-2023

Getting Started With GLiCID: Beginner Session 30-11-2023

Introduction to JupyterLab/Python 14-12-2023

Getting Started With GLiCID: Beginner Session 14-01-2023

Introduction to CUDA Python/C++ 25-01-2024

Guix: Best Practices Yet to decide
4

Linux Command Line For HPC

5

Vim Editor
● Vim is more powerful text editor and includes syntax highlighting, which is very useful when writing code.
● Vim will require some effort to become proficient in, but it’s worth it for it’s efficiency.
● Start vim

○ To open vim, type vim <filename> and press Enter in the terminal
○ Note: If the file does not exist, it will open a new file
○ To switch from default to insert mode press i
○ Type the commands/text
○ To close and save file, press Esc key followed by :wq (colon, write and quit) and press Enter
○ To quit without saving, type :q!

6

File Management - Large Files
● Compress

$ tar -czvf <folder_name.tar.gz> <foldername>

● Decompress

$ tar -xzvf <folder_name.tar.gz>

7

File Management
● Local to Remote

$ scp -r folder_name nautilus:/scratch/users/username

● Remote to Local

$ scp -r nautilus:/scratch/users/username/folder_name /local_location

8

Software Modules

9

Software Modules
● Modules

○ Lot of useful software packages
○ Different versions
○ Maintained by experts
○ Optimized for the architecture
○ Users cannot install a module
○ Have to request the administrator

10

How to use Modules?
● Useful commands

Command Description

module avail List modules

module avail <module_name> List all installed versions of python

module load <module_name> Load the default python version

module load <module_name/3.11.5> Load a specific version of python

module unload <module_name> Unload python

module list List currently loaded modules

11

 Guix Package Manager

12

What is Guix?
● Package building system/Package manager
● Why Guix? Why is it better than modules?

○ Allows each user to manage his/her own packages
○ without root privilege
○ without interfering with other users
○ Easy creation of isolated environments with designated packages
○ useful for per-project dependency management

13

Guix Package Manager
● Useful commands

Command Description

guix pull You need to run this at least once(maybe weekly :p)

guix search <package_name> Look for a package to install

guix install <package_name> To install a package

guix remove <package_name> To remove a package

guix package -l List of installed packages

14

15

Competition for limited resources
● On computing cluster, people compete to use a finite set of resources (CPUs/GPUs/RAM)
● If everyone just starts running code, then everyone will have a bad time as resources are shared
● To solve this problem, computing centers use resource manager and job scheduler called Slurm
● With Slurm, you can submit jobs and tell Slurm what resources you need
● Slurm will allocate those resources to your job and then schedule your job

16

User 1 User 2

User 3

Admin

GPU

https://slurm.schedmd.com/overview.html

This is how it works

17

But you don’t use the whole Supercomputer

18

Enter the queue, and wait
● Your job(s) enter the queue,

 and wait for its turn

● When there are enough resources for

that job, it runs

19

Results

20

SLURM - Workload Manager/Job Scheduler
● Simple Linux Utility for Resource Management (SLURM)
● Open source, fault-tolerant, and highly scalable cluster management and job scheduling system for large

and small Linux clusters
● It has centralized manager, slurmctld, to monitor resources and work
● Each compute node has a slurmd daemon, which can be compared to a remote shell: it waits for work,

executes that work, returns status, and waits for more work.

21

Getting Started with Slurm
● To tell Slurm what resources you need, you will have to create an sbatch script/ Slurm script
● The sbatch scripts generally follow this format:

#!/bin/bash

Declaring Slurm Configuration Options

Loading Software/Libraries

Running Code

● Note: #!/bin/bash above tells our terminal what program to run this file with. In this case, bash.
● You can write an sbatch script in any language as long as #SBATCH doesn’t result in errors
● Examples: Ruby, Python, Bash, R.

22

Configuration Options for Slurm
● There are many configuration options for Slurm
● Some options are cluster specific and may not work
● We can help you find the best set of configurations for your computing needs
● Configuration options are specified in your sbatch script like this:

#SBATCH <option_1>=<value>
#SBATCH <option_2>=<value>
…
#SBATCH <option_3>=<value>

● Note the pound sign(#) is not the comment here.
● Slurm looks for lines starting with #SBATCH so it can find configuration options

23

Accounting Configurations
● Job Name: #SBATCH --job-name=<job_name>

○ First thing you need to do is give your job a name and it should be descriptive
○ Example: #SBATCH --job-name=RandomWalk
○ The point of the job name is to remind yourself what you are doing
○ If it is not descriptive, you can easily get confused

● Comment: #SBATCH --comment=<comment>
○ To extend the description of your job, add a comment
○ Example: #SBATCH --comment=“To explore the nodes.”

● Account: #SBATCH --account=<account_name>
○ You need to tell Slurm which account to run your job under
○ This is not user account, but your project account
○ Example: #SBATCH --account=glicid

24

Accounting Configurations
● Partition: #SBATCH --partition=<Partition_name>

○ Slurm needs to know which partition to run your job on
○ Example: #SBATCH --partition=standard
○ Each partition has access to different resources and has a specific use case

● Time Limit: #SBATCH --time=D-HH:MM:SS
○ You need to tell Slurm how long your job needs to run
○ The format is Days-Hours:Minutes:Seconds
○ Example: #SBATCH --time=1-12:30:00 (1 Day, 12 Hours, 30 Minutes, 0 Seconds)

25

Job Output Configurations
● Output File: #SBATCH --output=%x_%j.out

○ Any output from your compute job will be saved to the output file that you specify
○ %x is a variable that fills in your job name. %j is a variable that filles in your job ID number
○ Example: #SBATCH --output=logs/%x_%j.out

● Error File: #SBATCH --output=%x_%j.err
○ Any errors from your compute job will be saved to the error file that you specify
○ %x is a variable that fills in your job name. %j is a variable that filles in your job ID number
○ Example: #SBATCH --output=logs/%x_%j.err

26

Node Configurations
● A node is just a computer in a cluster
● Most of the time, it probably makes sense to only use one node

● Nodes: #SBATCH --nodes=<num_nodes>
○ The default is 1 node, so if you’re using 1 node, you don’t need to specify it in configuration
○ We recommend that you include it to remind yourself what resources your job is using
○ Example: #SBATCH --nodes=4

● Excluding Nodes: #SBATCH --exclude=<node1, node2, …>

○ If for some reason you want to make sure your job does not run a specific node
○ Example: #SBATCH --exclude=cnode301

● Exclusive Access to a Node: #SBATCH --exclusive
○ If your job can utilize all of the resources on a single node, you can specify it

27

Nautilus Architecture

#Computing Nodes Processor and Speed RAM #Cores

40 cnode[301-340] BullSequana X440 (2 AMD EPYC 9474@3.6GHz 48c) 384 GB 3840

8 cnode[701-708] BullSequana X440 (2 AMD EPYC 9474@3.6GHz 48c) 768 GB 768

4 visu[1-4] BullSequana X450 (2 AMD EPYC 9474@3.6GHz 48c)
with Nvidia A40 (48G) 2 GPUs per node

768 GB 384

4 gnode[1-4] 4 BullSequana X410 (2 AMD EPYC 9474@3.6GHz
48c) with Nvidia A100 (80G) 4 GPUs per node

768 GB 384

28Note: Other than Nautilus, we have Waves and MesoNET cluster as well.

Task Configurations
● In the context of computing, a "job" and a "task" refer to different entities and have distinct meanings

● Job:
○ A job is a higher-level unit of work or a computational task that you submit to a cluster
○ It represents a specific computational workload, which can consist of one or more tasks
○ When you submit a job, you provide information about the resources it needs, such as the number

of nodes, CPU cores, memory, runtime, etc.
● Task:

○ A task is a lower-level unit of work that is part of a job
○ It represents a specific computational operation or process
○ These tasks are typically parallelized to take advantage of the cluster's computing power
○ For example, if you have a job that needs to perform a large-scale simulation, you might divide the

simulation into multiple tasks, each of which can be run on a separate compute node or cores to
expedite the computation

○ Tasks within a job can be parallel or distributed, and they often communicate with each other to
complete the overall workload.

29

Task Configurations
● Number of Tasks: #SBATCH --ntasks=<num_tasks>

○ By default, Slurm will assign one task per node
○ These tasks can run on the same node or the different nodes
○ Example: #SBATCH --ntasks=2

● Number of Tasks per Node: #SBATCH --ntasks-per-node=<num_tasks>
○ If your job is using multiple nodes, you can specify the number of tasks per node
○ Example: #SBATCH --ntasks-per-node=2
○ For instance, if your job is allocated four compute nodes, each node will run two tasks, resulting in a

total of eight tasks running in parallel
○ This option is used when you want to control how many tasks are executed on each individual node

in your cluster

30

CPU and GPU Configurations
● CPUs per Tasks: #SBATCH --cpus-per-task=<num_cpus>

○ By default, Slurm will assign 1 CPU per task if you do not specify in the configuration
○ Slurm needs to know how many CPUs your job needs
○ Example: #SBATCH --cpus-per-task=4

● GPUs per Job: #SBATCH --gres=gpu:<gpu_num>
○ By default, Slurm will not assign any GPU to your job
○ You need to specify how many GPUs your job needs
○ Example: #SBATCH --gres=gpu:4

31

Memory Configurations
● Memory per Node: #SBATCH --mem=<memory>

○ You need to tell Slurm how much memory you need per node
○ Example: To get 10 GB of memory per node, use #SBATCH --mem=10g
○ Default is megabytes(MB), so if you specify #SBATCH --mem=10, you will be assigned only 10 MB

● Memory per CPU: #SBATCH --mem-per-cpu=<memory>
○ You can also specify a memory required per CPU core
○ Example: To get 10 GB of memory per CPU, use #SBATCH --mem-per-cpu=10g
○ You need to make sure --mem and --mem-per-cpu don’t conflict with each other
○ Default value is 4 GB for cnode301 to cnode340
○ 8 GB for cnode701 to cnode708

32

Job Scheduling
● When you submit your job, Slurm checks #SBATCH configurations and finds a time/place to run your job
● Four things that impact when you run your job

○ The resources you request
○ The frequency that you submit jobs
○ The other jobs in the queue
○ The maintenance windows (sometimes)

● Note
○ If you request a lot of resources, you’ll have to wait until those resources are available
○ If you submit a lot of jobs with a small amount of resources, they’ll likely execute quickly

33

Job Speed
● Using GPUs may or may not result in a speedup for your job
● There are a lot of factors in play when it comes to GPUs

○ Your code needs to be able to use GPUs
○ Not all libraries can leverage GPUs, make sure you read the documentation of libraries/frameworks
○ If using multiple GPUs, make sure your code can use GPUs on different nodes
○ Some code can leverage GPUs, but not in an impactful way
○ Some code just isn’t doing enough computations to make it with the overhead of communicating

between CPUs and GPUs, it may actually slow down your job

34

Example Slurm Script
#!/bin/bash

#SBATCH --job-name=myjob # Name for your job
#SBATCH --comment="Run My Job" # Comment for your job
#SBATCH --output=%x_%j.out # Output file
#SBATCH --error=%x_%j.err # Error file

#SBATCH --time=0-00:05:00 # Time limit
#SBATCH --nodes=1 # How many nodes to run on
#SBATCH --ntasks=2 # How many tasks per node
#SBATCH --cpus-per-task=2 # Number of CPUs per task
#SBATCH --mem-per-cpu=10g # Memory per CPU
#SBATCH --qos=short # priority/quality of service

hostname # Run the command hostname

● Submitting Your Job
$ sbatch my-job.slurm
Submitted batch job 1411747 on cluster nautilus 35

So, in this example, we have
requested a job with the following
dimensions:

● Max Run Time: 5 Minutes
● Number of Nodes: 1
● Number of Tasks Per Node: 2
● Number of CPUs Per Task: 2
● Memory Per CPU: 10GB

Reference:
https://mirjunaid26.github.io/docs/tutorial-basics/slurm/

https://mirjunaid26.github.io/docs/tutorial-basics/slurm/

Monitoring Your Job
● Monitoring Your Job

$ ls
myjob_1411747.err myjob_1411747.out my-job.slurm

$ scontrol show job 1411747 -M nautilus

$ scancel 1411747

36

Monitoring Your Job
● Monitoring Your Job

$ squeue -u $USER

CLUSTER: nautilus
 JOBID PARTITION NAME USER ST TIME NODES QOS PRIORITY NODELIST(REASON)

CLUSTER: waves
 JOBID PARTITION NAME USER ST TIME NODES QOS PRIORITY NODELIST(REASON)

37

Hands-on: TP 1
● Submit your first job!

○ Download “nautilus-tutorial” → https://indico.mathrice.fr/event/498/manage/attachments/
○ Compress and transfer this folder to this location using SCP → /scratch/users/username
○ Connect to cluster
○ Open a text editor and write a slurm script that will run the “hostname” command
○ Submit the job
○ Monitor your job

38Reference: https://mirjunaid26.github.io/docs/tutorial-basics/slurm

https://indico.mathrice.fr/event/498/manage/attachments/
https://mirjunaid26.github.io/docs/tutorial-basics/slurm

Monitoring Your Job
● squeue

○ The squeue command will show what jobs are currently scheduled
$ squeue
CLUSTER: nautilus
 JOBID PARTITION NAME USER ST TIME NODES QOS PRIORITY
NODELIST(REASON)
 1443980 all Exchange_Second nassaad2017@ PD 0:00 1 short 37307 (Dependency)
1443979_[all Advection nassaad2017@ PD 0:00 1 short 37307 (Dependency)
 1443978 all Exchange_First nassaad2017@ R 0:05 1 short 37307 cnode321
 1439197 all edw_wave adermatis202 R 25:12 1 medium 37026 cnode324
 1439000 all edw_wave adermatis202 R 26:02 1 medium 37026 cnode321
 1430806 all edw_wave adermatis202 R 1:09:23 1 medium 37026 cnode323
 1440954 all SnappyMesh ahernandez20 R 16:05 1 medium 36825 cnode325
 1441150 all diff_284_29_Tdiv580_moreRefin_ sakkari2022@ R 15:15 1 medium 36624 cnode325
 1406284 all diff_300_46_Tdiv600_check sakkari2022@ R 3:24:53 1 medium 36624 cnode324
 1349601 all diff_284_29_Tdiv580_moreRefin sakkari2022@ R 18:39:15 1 medium 36624 cnode322
 1308984 all diff_400_46_Tdiv800_check sakkari2022@ R 1-03:07:33 1 medium 36624 cnode321
 1405888 all train_model melaarabi202 R 3:26:58 1 long 27508 gnode1
 1404124 standard test_stability jlopez@ec-na R 4:00:14 1 long 23725 cnode323

CLUSTER: waves
 JOBID PARTITION NAME USER ST TIME NODES QOS PRIORITY
NODELIST(REASON)

39

Monitoring Your Job
● The squeue command gives us the following information:

○ JOBID: The unique ID for your job
○ PARTITION: The partition your job is running on (or scheduled to run on)
○ NAME: The name of your job
○ USER: The username for whomever submitted the job
○ ST: The status of the job. The typical status codes you may see are:

■ CD (Completed): Job completed successfully
■ CG (Completing): Job is finishing, Slurm is cleaning up
■ PD (Pending): Job is scheduled, but the requested resources aren’t available yet
■ R (Running): Job is actively running TIME: How long your job has been running

○ TIME: How long your job has been running
○ NODES: How many nodes your job is using
○ QOS: Quality of Service
○ PRIORITY: Priority of your job
○ NODELIST(REASON): List of nodes and which nodes your job is running on (or scheduled to run on). If

your job is not running yet, you will also see reason

40

Partition Information
● sinfo

○ available partitions on the cluster and partitions time limit
○ how many nodes are available on the partition and what is the state of those nodes

$ sinfo
CLUSTER: nautilus
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
standard up infinite 5 mix cnode[321-325]
standard up infinite 35 idle cnode[301-320,326-340]
bigmem up infinite 1 down* cnode707
bigmem up infinite 7 idle cnode[701-706,708]
gpu up infinite 1 mix gnode1
gpu up infinite 3 idle gnode[2-4]
visu up infinite 4 idle visu[1-4]
all* up infinite 1 down* cnode707
all* up infinite 6 mix cnode[321-325],gnode1
all* up infinite 49 idle cnode[301-320,326-340,701-706,708],gnode[2-4],visu[1-4]

CLUSTER: waves
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
all* up 9:00:00 1 unk* budbud018
all* up 9:00:00 8 idle budbud[014-017,019-022]
med up 4-04:00:00 3 idle budbud[020-022]
devel up 20:00 1 unk* vmworker-001

● Try sinfo -N
41

Track Your Jobs
● sacct

○ Track your recent jobs to find their job IDs and other details
$ sacct
JobID JobName Partition Account AllocCPUS State ExitCode
------------ ---------- ---------- ---------- ---------- ---------- --------
1404103 myjob standard glicid 1 COMPLETED 0:0
1404103.bat+ batch glicid 1 COMPLETED 0:0
1404103.ext+ extern glicid 1 COMPLETED 0:0
1419267 myjob all glicid 4 COMPLETED 0:0
1419267.bat+ batch glicid 4 COMPLETED 0:0
1419267.ext+ extern glicid 4 COMPLETED 0:0

● To view a specific job

$ sacct --jobs=1411747
JobID JobName Partition Account AllocCPUS State ExitCode
------------ ---------- ---------- ---------- ---------- ---------- --------
1419267 myjob all glicid 4 COMPLETED 0:0
1419267.bat+ batch glicid 4 COMPLETED 0:0
1419267.ext+ extern glicid 4 COMPLETED 0:0

42

Check Job State
● scontrol

○ To check job state, start time/end time, command, workdir, stderr, stdout
$ scontrol show job 1411747 -M nautilus
JobId=1446614 JobName=myjob
 UserId=jmir@ec-nantes.fr(8000019) GroupId=jmir@ec-nantes.fr(8000019) MCS_label=N/A
 Priority=45942 Nice=0 Account=glicid QOS=short
 JobState=COMPLETED Reason=None Dependency=(null)
 Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0
 RunTime=00:00:00 TimeLimit=00:05:00 TimeMin=N/A
 SubmitTime=2023-10-17T14:40:47 EligibleTime=2023-10-17T14:40:47
 AccrueTime=2023-10-17T14:40:47
 StartTime=2023-10-17T14:40:47 EndTime=2023-10-17T14:40:47 Deadline=N/A
 SuspendTime=None SecsPreSuspend=0 LastSchedEval=2023-10-17T14:40:47 Scheduler=Backfill
 Partition=all AllocNode:Sid=nautilus-devel-001:883696
 ReqNodeList=(null) ExcNodeList=(null)
 NodeList=cnode321
 BatchHost=cnode321
 NumNodes=1 NumCPUs=4 NumTasks=2 CPUs/Task=2 ReqB:S:C:T=0:0:*:*
 TRES=cpu=4,node=1,billing=4
 Socks/Node=* NtasksPerN:B:S:C=0:0:*:* CoreSpec=*
 MinCPUsNode=2 MinMemoryCPU=10G MinTmpDiskNode=0
 Features=(null) DelayBoot=00:00:00
 OverSubscribe=OK Contiguous=0 Licenses=(null) Network=(null)
 Command=/scratch/users/jmir@ec-nantes.fr/nautilus-tutorial/task_1/my-job.slurm
 WorkDir=/scratch/users/jmir@ec-nantes.fr/nautilus-tutorial/task_1
 Comment=Run My Job
 StdErr=/scratch/users/jmir@ec-nantes.fr/nautilus-tutorial/task_1/myjob_1446614.err
 StdIn=/dev/null
 StdOut=/scratch/users/jmir@ec-nantes.fr/nautilus-tutorial/task_1/myjob_1446614.out
 Power=

43

Job Priority Factors
● Slurm takes into account two different factors when scheduling jobs:

○ Requested Resources and Priority
○ If you request a lot of resources, your job may take longer to start than someone who requests very few

resources because Slurm needs to wait for the resources you requested to be available
○ If you are constantly submitting and running jobs, Slurm may assign your jobs a lower priority than

someone who rarely submits jobs.

Job_priority =
site_factor +
(PriorityWeightAge) * (age_factor) +
(PriorityWeightAssoc) * (assoc_factor) +
(PriorityWeightFairshare) * (fair-share_factor) +
(PriorityWeightJobSize) * (job_size_factor) +
(PriorityWeightPartition) * (priority_job_factor) +
(PriorityWeightQOS) * (QOS_factor) +
SUM(TRES_weight_cpu * TRES_factor_cpu,
 TRES_weight_<type> * TRES_factor_<type>,
 ...) - nice_factor

44

Job Priority Factors
● Nine factors in the Multifactor Job Priority plugin that influence job priority:

○ Age: the length of time a job has been waiting in the queue, eligible to be scheduled
○ Association: a factor associated with each association
○ Fair-share: the difference between the portion of the computing resource that has been promised and the

amount of resources that has been consumed
○ Job size: the number of nodes or CPUs a job is allocated
○ Nice: a factor that can be controlled by users to prioritize their own jobs
○ Partition: a factor associated with each node partition
○ QOS: a factor associated with each Quality Of Service
○ Site: a factor dictated by an administrator or a site-developed job_submit or site_factor plugin
○ TRES: each TRES Type has its own factor for a job which represents the number of requested/allocated

TRES Type in a given partition

45

Priorities in GLiCID Cluster
● sacctmgr

○ To view or modify Slurm account information

$ sacctmgr show qos format="name%20,priority,MaxJobsPerUser,MaxWall"
 Name Priority MaxJobsPU MaxWall
-------------------- ---------- --------- -----------
 normal 1 00:05:00
 short 50 1-00:00:00
 medium 40 3-00:00:00
 long 30 8-00:00:00
 unlimited 10 1
 debug 100 00:20:00
 priority 200 8-00:00:00

46

Different Resource Scenarios
Here is a summary of different resource utilization scenarios:

● RAM:
○ Request too little: Job will die when it runs out of RAM
○ Request too much: Lots of RAM will sit idle and no one else can use it
○ Ideal: Request slightly more RAM than you need
○ Recommendation: Try to keep idle RAM at less than 10% of the total RAM you requested

● CPUs:
○ Request too little: Your job will trip over itself because of kernel scheduling; your job will take a

massive performance hit as a result
○ Request too much: Lots or CPUs will sit idle and no one else can use them
○ Ideal: Request exactly the number of CPUs that your job can use

47

Different Resource Scenarios
● GPUs:

○ Request too little: You may not actually see a speedup (due to communication overhead between
CPUs and GPUs)

○ Request too much: Your code may not be able to use multiple GPUs; idle GPUs cannot be used by
anyone else until your job finishes

○ Ideal: Request exactly the number of GPUs that your job can use
○ Recommendation: Get your job working with one GPU, and make sure you’re actually using the GPU

before trying to use more
● Time:

○ Request too little: Your job will not finish before the time limit runs out; lots of time will be wasted
○ Request too much: Slurm may give your job a lower priority to let smaller jobs go first. If a

maintenance window is coming up, your job may not schedule until after the maintenance window
○ Ideal: Request slightly more time than you need, but not too much

48

Parallel Programming Examples using Slurm
Parallel programming on a cluster can be challenging, but it is a powerful technique for harnessing the
computational resources of a cluster effectively.

● Some reasons why parallel programming can be tricky on a cluster:
○ Distributed computing, load balancing, synchronization, communication overhead, debugging and

troubleshooting, scalability, heterogeneous resources
● To overcome these challenges, developers often use parallel programming libraries,

○ such as MPI (Message Passing Interface) for distributed memory systems and
○ OpenMP for shared memory systems

● These libraries provide abstractions and tools for handling parallelism, communication, and
synchronization

● Additionally, understanding the architecture of the cluster and the specifics of the job scheduler (e.g.,
Slurm) can be crucial for resource allocation and job management

49

Example 1: Intel/IntelMPI
Sample Script: job-intel.slurm

#!/bin/bash
#SBATCH --job-name=HelloWorldMpi
#SBATCH --partition=standard
#SBATCH --ntasks=4

module purge
module load intel/compiler intel/mpi

export I_MPI_PMI_LIBRARY=/lib64/libpmi2.so
export I_MPI_COLL_EXTERNAL=0
export I_MPI_ADJUST_BCAST=0
export I_MPI_FABRICS=shm:ofi
export FI_PROVIDER=psm3

srun --mpi=pmi2 hello-mpi

50

Example 1: Intel/IntelMPI
● Intel Compiler and IntelMPI

$ module load intel/compiler intel/mpi

$ mpicxx -cxx=icpx -O3 -o hello-mpi hello-mpi.cpp

● Submit your slurm script
$ sbatch -M nautilus -p standard -q short job-intel.slurm

51

Example 2: GNU/OpenMPI
Sample script: job-mpi.slurm

#!/bin/bash
#SBATCH --job-name=HelloWorldMpi
#SBATCH --partition=standard
#SBATCH --ntasks=4

module purge
module load gcc openmpi/ucx/4.1.5_gcc_8.5.0_ucx_1.14.1_rdma_46.0

export UCX_WARN_UNUSED_ENV_VARS=n
export OMPI_MCA_btl=^openib
export UCX_NET_DEVICES=mlx5_2:1

srun ./hello-openmpi

52

Example 2: GNU/OpenMPI
● GNU Compiler and OpenMPI

○ module load gcc openmpi/ucx/4.1.5_gcc_8.5.0_uxc_1.14.1_rdma_46.0

○ mpicxx -O3 -o hello-openmpi hello-mpi.cpp

● Submit your slurm script
$ sbatch -M nautilus -p standard -q short job-mpi.slurm

53

Example 3: GNU/OpenMP
Sample script → job-omp.slurm

#!/bin/bash
#SBATCH --job-name=HelloWorldOmp
#SBATCH --partition=standard
#SBATCH --cpus-per-task=12

module purge
module load gcc

if [["${SLURM_CPUS_PER_TASK}"]]
then
 c=${SLURM_CPUS_PER_TASK}
else
 c=1
fi

export OMP_NUM_THREADS=$c
srun ./hello-omp 54

Example 3: GNU/OpenMP
● GNU Compiler and OpenMP

○ module load gcc

○ g++ -fopenmp -o hello-omp hello_omp.cpp

● Submit your slurm script
$ sbatch -M nautilus -p standard -q short job-omp.slurm

55

Example 4: GNU/hybrid OpenMPI/OpenMP
Sample script: job-hybrid.slurm
#!/bin/bash
#SBATCH --job-name=HelloWorldHybrid
#SBATCH --partition=standard
#SBATCH --cpus-per-task=6
#SBATCH --ntasks=16

module purge
module load gcc openmpi/ucx/4.1.5_gcc_8.5.0_ucx_1.14.1_rdma_46.0

export UCX_WARN_UNUSED_ENV_VARS=n
export OMPI_MCA_btl=^openib
export UCX_NET_DEVICES=mlx5_2:1

if [["${SLURM_CPUS_PER_TASK}"]]
then
 c=${SLURM_CPUS_PER_TASK}
else
 c=1
fi

export OMP_NUM_THREADS=$c
srun ./hello-hybrid 56

Example 4: GNU/OpenMP
● GNU Compiler and OpenMP

○ module load gcc

○ mpicxx -fopenmp -o hello-hybrid hello-mpi-omp.cpp

● Submit your slurm script
$ sbatch -M nautilus -p standard -q short job-hybrid.slurm

57

Hands-on: TP 2
● Create a Slurm script for any of the above 4 examples

○ Submit your job
○ Monitor your job

Reference: https://mirjunaid26.github.io/docs/tutorial-basics/slurm

58

https://mirjunaid26.github.io/docs/tutorial-basics/slurm

Micromamba/Anaconda
● No Anaconda module for now
● But you can use Micromamba - lighter version of conda

Download micromamba
mkdir -p $HOME/.local/bin
wget -P $HOME/.local/bin https://s3.glicid.fr/pkgs/micromamba
chmod u+x $HOME/.local/bin/micromamba

Initilize micromamba
$HOME/.local/bin/micromamba -r /micromamba/$USER/ shell init --shell=bash
--prefix=/micromamba/$USER/

[OPTIONAL] Add a `conda` alias
echo -e '\n\n#Alias conda with micromamba\nalias conda=micromamba' >> ~/.bashrc

Recharger le .bashrc
source ~/.bashrc

● Source: https://doc.glicid.fr/GLiCID-PUBLIC/0/logiciels/logiciels.html 59

https://doc.glicid.fr/GLiCID-PUBLIC/0/logiciels/logiciels.html

Mircomamba/Anaconda
$ micromamba --version
$ conda create --name myenv
$ conda env list
$ conda activate myenv
$ conda install numpy
$ conda list
$ conda deactivate

60

Hands-on: TP 3
● Install Micromamba and check version
● Create a Conda environment and check environment list
● Try to install numpy and check installed packages

Reference: https://mirjunaid26.github.io/docs/tutorial-basics/slurm

61

https://mirjunaid26.github.io/docs/tutorial-basics/slurm

Hands-on: TP_Fortan
● Load gcc compiler and compile

$ module load gcc/13.1.0
$ gfortran hello-fortran.f90 -o hello

● Submit your slurm script

$ sbatch -M nautilus -p standard -q short my-job.slurm

62

Thank you. Any questions?

Useful links:

User Doc: https://doc.glicid.fr

Support: https://help.glicid.fr or help@glicid.fr

Chat: On CLAM website

Admins: tech@glicid.fr

Forum: Coming soon

Status page: https://ckc.glicid.fr

Please answer the survey if you haven't yet
https://forms.gle/B4dto4axGm4EVPwaA

63

https://doc.glicid.fr
https://doc.glicid.fr
mailto:support@glicid.fr
mailto:tech@glicid.fr
https://doc.glicid.fr
https://forms.gle/B4dto4axGm4EVPwaA

