Pour plus d'informations concernant ce document :

- http://www.ods.cnrs.fr/contacts.html
- https://aide.core-cloud.net/mycore/Pages/Accueil.aspx

www.cnrs.fr

Plan

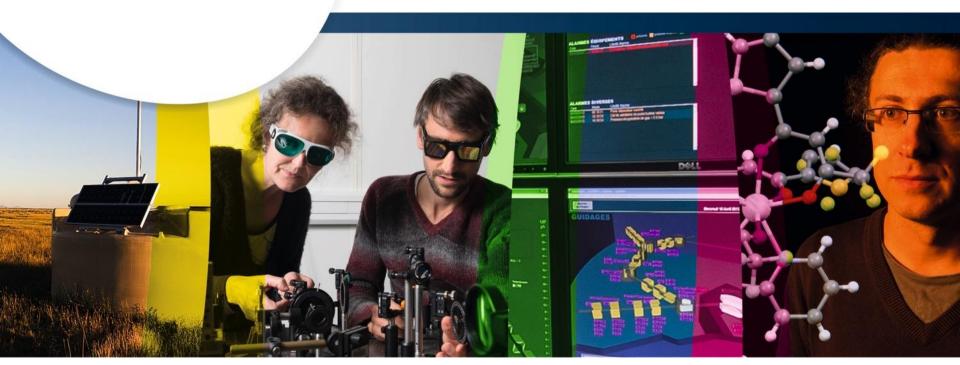
OS My CORE

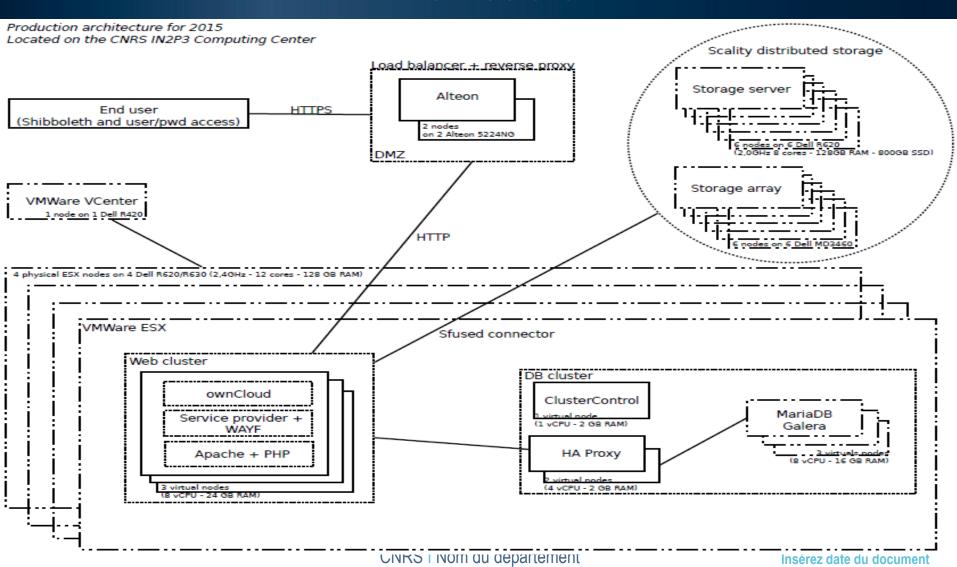
- Description du contexte My CoRe
- Description de la plateforme technique
- Concepts d'architectures Scality
- RETEX
- Points de vigilance
- Conclusion
- Fond documentaire

Contexte

www.cnrs.fr

Contexte


- Objet de cette nouvelle Offre De Service (ODS)
 - Répondre à un besoin existant et identifié d'une ODS sécurisée de partage et de synchronisation de fichiers de travail
 - Proposer une ODS pour copier en ligne ses fichiers de travail locaux (plus communément appelé « Mes documents »)
 - ODS à destination des agents des unités CNRS, avec 20 Go d'espace utile gratuit par utilisateur
- Intérêt de cette nouvelle Offre De Service
 - ODS « anti-Dropbox » : offre sur un cloud souverain CNRS permettant de réduire les risques d'exploitation d'informations de recherche inhérentes à des solutions « Dropbox-like »
 - ODS qui facilitera le nomadisme



www.cnrs.fr

Architecture Plateforme My CoRe

- Choix de la solution de backend de stockage pour My CoRe
 - o une forte résilience, car pas de « sauvegarde » nécessaire
 - Très fortement scalable
 - qui soit unique pour toute la volumétrie
 - oun accès « file system" stable
 - oun coût au Go faible
 - la possibilité d'être multi sites
- Choix initiale de Scality en mai 2014

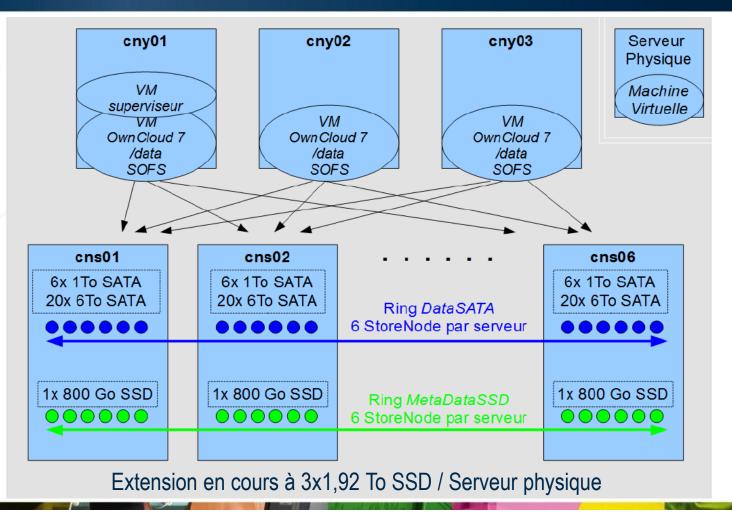
- Eléments Clés du Ring
 - Stockage logiciel d'objets
 - Capacité illimitée (scale-out)
 - Stockage mutualise
 - La notion d'ARC
- Les Points forts
 - Compatible tout serveur x86
 - Ratio brut/utile d'environ 1.6
 - Très hautement disponible
 - Pas de RAID matériel

1 Disques SSD 800 Go /serveur

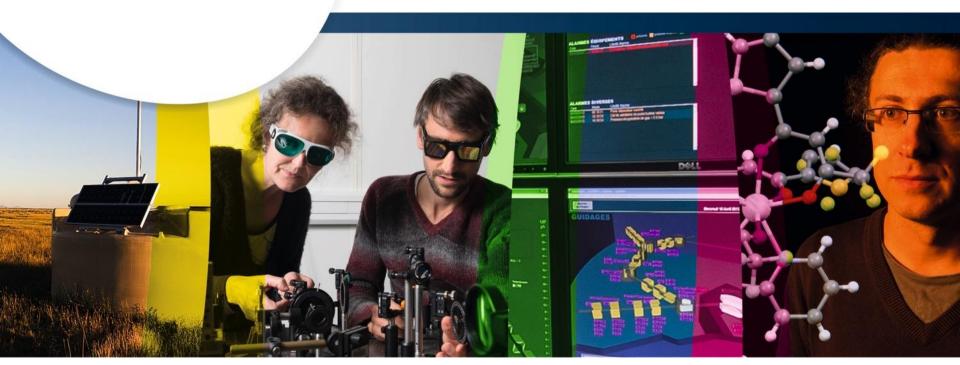
R630 Dell

Châssis Dell MD3460

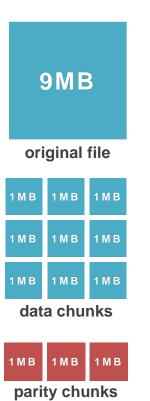
20 Disques de 6 To 6 Disques de 1 To SATA 7,2 K

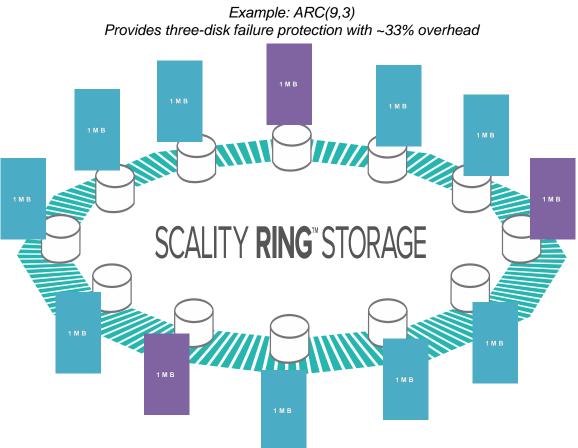


Nb: superviseur sur VM

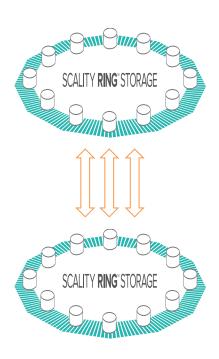


Concepts

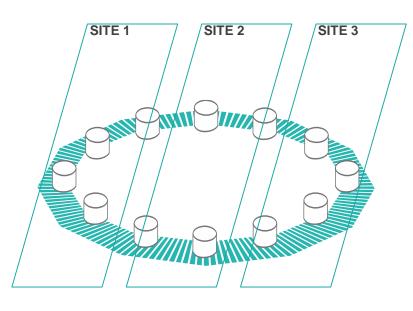

d'architectures Scality www.cnrs.fr



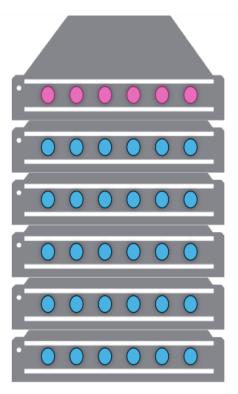
Concepts



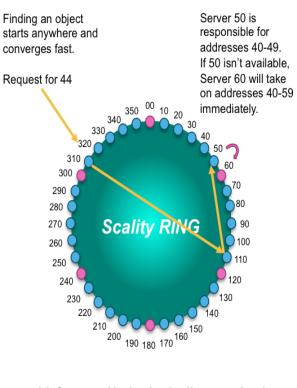
Concepts – Topologie du Ring



Multi-RING, multi-site durability, asynchronous data



Multi-site durability, synchronous data


Configuration

A minimum of six servers

Six Storage Nodes per server

36 Storage Nodes logically organized into a binary addressing space

Configuration Minimale: 6 Serveurs physiques 6 Storage nodes (process) / serveur

Différents « Connectors »

FILE

NFS v3 SMB 2.0/3.0 Linux FS (Sfused)

OBJECT

REST (Sproxyd) CDMI REST S3 (RS2)

OPENSTACK

CINDER GLANCE SWIFT

15

SCALITY **RING** — Connectors

Performances observées des « Connectors »

FUSE

READ: 700MB/s

WRITE: 450MB/s - 650MB/s

NFS

READ: 250MB/s – 350MB/s

WRITE: 250MB/s - 350MB/s

SMB

READ: 300MB/s – 700MB/s

WRITE: 250MB/s - 350MB/s

REST

READ: 2,500MB/s

WRITE: 2,500MB/s

Linear Performance Scaling

- Le Ring-Data (disque à plateau)
 - Contient les données brutes des applications ou des utilisateurs
 - Organisé dans des containeurs
 - o pas de limitation d'inodes
 - o pas de limitation de block-size
 - pas de fragmentation, les données sont intelligemment réarrangés au fil du temps
 - La répartition des blocs est fonction de l'architecture de l'ARC
 - Utilise des disques à faible coûts

- Le Ring MétaData
 - Contient les données utiles des applications ou des utilisateurs pour les fichiers ayant une taille inférieur à la taille du bloc défini lors de la mise en œuvre du Ring Datas
 - Pas de répartition de la données sur plusieurs disques
 - Contient les entrées et indexes de répertoires
 - Contient les liens symboliques
 - la liste des "morceaux" de fichiers bruts existants

- Les bizobjs
 - Stockage sur les SSD en dehors du Ring METADATA
 - Contient les users metadata des données brutes pour un disque donné
 - Un fichier bizobj par disque et par ring géré sur ce disque
 - Données contenues
 - Filename
 - Crc (Cyclic Redundancy Check)
 - Permissions
 - Emplacement dans le conteneurs
 - Taille
 - Version
 - o Etc...

- Usage de la RAM ou stockage des Clés (Indexes)
 - La localisation de chaque bloc d'un ficher de data utile est stocké en
 RAM dans un fichiers dit de « Clé » celle-ci représente 47octets / fichier
 - Ces fichiers seront supprimés par les mécanismes de purges une fois le ficher de donnée source supprimé
- Les purges
 - Ces mécanismes positionnent un « flag » sur les différents items à supprimer sur les Rings (Méta ou Data)
- Eléments clés sur les purges
 - Clé (en RAM)
 - Méta Datas (dans le fichier bizobj)
 - Blocs de données utiles
 - Les mécanismes de purges sont réglables

- Les réallocations
 - Les mécanismes de réallocations sont des processs d'arrière plan qui viennent compléter les process purges
 - Ce sont eux qui sont responsable de la libération de l'espace physique sur les disques
 - Il y a un process par disque physique, ceux-ci sont lancées par les process biziod
 - Les mécanismes de réallocation sont réglables
- Warning
 - Tout ces paramètres ont un impact sur les performances
 - Il convient de rester attentif après un changement afin de valider qu'il n'y a pas d'effet de bord

www.cnrs.fr

- Implémentation
 - Étapes du choix de Scality, avec délai et manpower faibles pour faire ce choix
 - Tour d'horizon sur "papier" de diverses solutions (HDFS, CephFS, GlusterFe S, iRODS)
 - Définition d'une short list
 - Dell Compellent : le plus économique mais volumétrie limitée à 2
 Po et résilience limitée
 - EMC Isilon : le plug and play mais matériel spécifique
 - Scality : le plus souple
 - O Grille de choix : cf. https://github.com/CNRS-DSI-Dev/mycore_press/blob/master/CNRS-INSERM-20160502.pdf, slide 11
 - Étude de Scality en détail : maquettage et récupérations de divers retours d'expérience sur la solution

- Implémentation
 - Étapes du choix de Scality, avec délai et manpower faibles pour faire ce choix
 - Tour d'horizon sur "papier" de diverses solutions (HDFS, CephFS, GlusterFe S, iRODS)
 - Définition d'une short list
 - Dell Compellent : le plus économique mais volumétrie limitée à 2
 Po et résilience limitée
 - EMC Isilon : le plug and play mais matériel spécifique
 - Scality : le plus souple
 - O Grille de choix : cf. https://github.com/CNRS-DSI-Dev/mycore_press/blob/master/CNRS-INSERM-20160502.pdf, slide 11
 - Étude de Scality en détail : maquettage et récupérations de divers retours d'expérience sur la solution

- Exploitation
 - Le récurent
 - Assez peu de charge en dehors des opérations de maintenance, le système tourne « tout seul » seulement rester attentif à la supervision
 - Les montées de versions
 - 2 montées de version déjà réalisées sans arrêt de service
 - Nécessite de faire monter les différents composants au fur et à mesure dans un ordre précis et dans le respect de la matrice de compatibilité
 - Superviseur
 - Connecteurs
 - Storage Node

- Nécessite de bien planifier les opérations en amont
- Support de l'éditeur réactif et compétent
- Evolutions possibles
 - Passage du mode fichier (SFUSED) au mode objet depuis les VM clientes ownCloud si les améliorations du connecteurs SFUSED annoncées début 2016 ne sont pas suffisantes
 - Chirage du systeme de chiers via Scality

Points de vigilance

www.cnrs.fr

- La formation
 - Nécessite des connaissance de base en solution de stockage distribué
 - Nécessite des connaissances spécifiques pour appréhender correctement les différents éléments de l'architecture logicielle
 - Nécessite de connaitre le fonctionnement du superviseur
 - Nécessite de connaitre les commandes spécifiques ainsi que la façon de passer les options
- Dimensionnement initiale de l'ARC du Ring
 - Choix du nombre serveurs physiques
 - Définition de l'ARC
 - Choix du nombre de SSD

- Les I/O sur les SSD
 - La lecture / écriture des fichiers sur le Ring Data passe par une lecture / écriture des fichiers bizobjs stockés sur les SSD
 - La lecture / écriture des fichiers stockés sur le Ring Méta-Data
- Le capacity planning du Ring Méta-Data
 - L'occupation de l'espace disque sur les SSD n'est pas linéaire et proportionnelle à la montée en charge du Ring Data
- Bien connaitre son application:
 - Les différents accès sur le Ring via les différents mécanismes de l'application
 - Listing de fichiers
 - Forte profondeur de l'arborescence de fichiers

Conclusion

www.cnrs.fr

Conclusion

- Les points positifs
 - Une technologie intéressante ouvrant des perspectives d'avenir (cf road map)
 - Un produit robuste
 - 2 incidents majeurs sans perte de données
 - Une technologie à maitriser
 - Attention aux effets de bords!!!
 - Suffisamment fiable et robuste pour conserver la technologie et penser à la pérennisation de la plateforme
 - Réflexions autour de nouveaux usages :
 - Stockage via une interface S3 pour une nouvelle offre de service
 - Stockage via Api Rest

Conclusion

- Les points moins positifs
 - Limitations du connecteur SFUSED (mauvaise performance des accès au de la de 2 millions de fichiers lors de certaines opérations, type listing, et corruption de fichiers lors d'accès concurrents en écriture sur un même objet)

Fond documentaire

www.cnrs.fr

Fond documentaire

- Présentation préalables de David Rousse:
 - mycore_press/CNRS-JoSy-20140519.pdf
 - <u>mycore_press/CNRS-INSERM-20160502.pdf</u>
- Fond documentaire Scality:
 - Documents avant vente
 - Documents de formation

