Reproducible Research using
Containers (Apptainer/ Singularity)

Mir Junaid

January 18, 2023

- — CENTRALE
@LICID MESQNET Eyay.zs%owml NANTESE

eeeeeeeeeeeeeeeeeeee

Contents

Reproducibility in Science
Introduction to Containerization
Benefits of Containers
What about Docker?
Apptainer/Singularity Containers for HPC
o Design Goals
o Access Privileges
Virtual Machines vs. General Containers vs. Apptainers
Containers on GLiCID Cluster
Downloading and interacting with a container
TP 1: Fun with Containers
Building a Container from Scratch
TP 2: Build from Scratch
TP 3: Anaconda Container

Reproducibility in Science

e More than 70% of researchers have tried and failed to reproduce another scientist's experiments,
and more than half have failed to reproduce their own experiments

® 31% think that failure to reproduce published results means that the result is probably wrong but
most say that they still trust the published literature

e Containers is a way forward for computational reproducibility

% TIUT

The Reproducibility Crisis

Introduction to Containerization

Introduction to Containerization

e Fast-paced development of computational tools has enabled tremendous scientific progress
In recent years

e However, this rapid surge of technological capability also comes at a cost
It leads to an increase in the complexity of software environments and potential
compatibility issues across systems

e Advanced workflows in processing or analysis often require specific software versions and
operating systems to run smoothly

e Discrepancies across machines and researchers can prevent/delay reproducibility and
efficient collaboration

e As a result, scientific teams are increasingly relying on containers to implement robust,
dependable research ecosystems

Introduction to Containerization

Originally popularized in software engineering, containers have become common in scientific
projects, particularly in large collaborative efforts

Containers store the software and all of its dependencies (including a minimal operating
system) in a single image so that there is nothing to install and when it comes time to run
the software

Everything "just works"

This makes the software both shareable and portable while ensuring reproducibility
Containerization allows applications to be “written once and run everywhere”

In a nutshell, containers are encapsulations of system environments

Introduction to Containerization

e (ontainer technologies have been designed for the enterprise computing

micro-service containers

Containers for HPC

e QOur use case is the opposite of enterprise computing

Containers for HPC

e Scientists are like Pirates, pillaging for resources instead of booty!
We want to run our jobs. We want to get results.

e When we find available resources, we need to ensure application and environment
compatibility
This is where containers can be a perfect fit

e Butas|mentioned, our use-case and needs are different from enterprise...

What about Docker?

Docker is the most well known and utilized container platform
Designed primarily for network and micro-service virtualization
Facilitates creating, maintaining and distributing container images
Containers are kinda reproducible

Easy to install, well documented, standardized

For these reasons, it appears to be the solution.

10

So why not just keep using about Docker?

e The good news
o You can! It works great for local and private resources
o You can use it to develop and share your work with others using Docker-Hub

e The bad news

o If you ever need to scale beyond your local resources, it maybe a dead end path

o Docker, and other enterprise focused containers, are not designed for, efficient or even compatible
with traditional HPC

o No HPC centers allow it

e Docker images are not secure because they provide a means to gain root access to the
system they are running on

11

Apptainer/Singularity Containers

e Designed from necessity, Apptainer/Singularity is an alternative to Docker that is both
secure and designed for HPC

e Singularity started as an open-source project at Lawrence Berkeley National Laboratory in
2015
First public release in April 2016

e (reated for and by the people who need and use it

o Scientists, HPC Engineers, Linux Developers

Tighter integration with other scientific apps (SLURM, MPI, etc.)

e Singularity/Apptainer is compatible with all Docker images and it can be used with GPUs and
MPI applications

e Integration with other container technologies

12

https://apptainer.org/

Apptainer/Singularity: Design Goals

e Single file based container images
o Facilitates distribution, archiving, and sharing
o \Very efficient for parallel file systems

No system, architectural or workflow changes necessary to integrate on HPC

Limits user’s privileges (inside user == outsider user)

No root owned container daemon

Simple integration with resource managers, Infiniband, GPUs, MPI, file system, and supports
multiple architectures (x86_64, PPC, ARM, etc.)

13

Apptainer/Singularity: Access and Privilege

User contexts are always maintained when the container is launched

When launched by a particular user, the programs inside will be running as that user

Any escalation pathways inside a container are blocked

Thus, if you want to be root inside the container, you must be the root outside the container!

14

Popular Container Registries

Docker Hub

NVIDIA GPU Cloud
Singularity Cloud Library
Singularity Hub

Quay.io

BioContainers

IBM PowerAl (Traverse only)
AMD InfinityHub (AMD GPUs)

15

https://hub.docker.com/
https://ngc.nvidia.com/catalog/containers
https://cloud.sylabs.io/library
https://singularityhub.github.io/singularityhub-docs/
https://quay.io/
https://biocontainers.pro/registry
https://hub.docker.com/r/ibmcom/powerai
https://www.amd.com/en/technologies/infinity-hub

VM vs. General Container vs. HPC Container

N

)

uonedyddy)

(vy)

(vomossty)

|

)

)

General VM

General Container

HPC Container

16

Apptainers on GLICID

e On GLICID, you just have to load the Apptainer module
$ module load guix $ guix install squashfs-tools
$ module load apptainer/1.1.6
or

$ cd /opt/software/glicid/containers/apptainer/bin

(A\ APPTAINER

17

The Apptainer Command Line Interface

e Apptainer provides a CLI to interact with the containers
You can search, build, or run containers in a single line
e To check the version of the Apptainer or Singularity you are using

$ module load apptainer
$ apptainer --version

apptainer version 1.2.2

e You can check the available options and subcommands using
$ apptainer --help

18

Downloading Images

e Downloading an image from the Container Library is pretty straightforward and
the image is stored locally as .sif file (Singularity Image Format)

$ apptainer pull docker://alpine
$ apptainer pull docker://python (Try this one if you don’t have Python)

$ Apptainer> python

e Apptainer is also compatible with Docker images

19

Running Containers

e Initializing a shell and exiting it
$ apptainer shell docker://alpine
$ Apptainer>
$ Apptainer> id
uid=1001(jmir) gid=1001(jmir) groups=1001(jmir)
$ Apptainer> exit

20

Running Containers

e The command exec starts the container from a specified image and executes a
command inside it

$ apptainer exec docker://alpine cat /etc/os-release

21

TP 1: Fun with Containers

apptainer
appatiner
apptainer

A A A A B

apptainer
$ Apptainer
$ Apptainer
$ Apptainer
$ Apptainer
$ Apptainer

Try these commands after exiting the container and know the difference

module load apptainer

--version

--help

pull docker://alpine
shell docker://alpine
> whoami

id

1s

cat /etc/os-release
exit

22

Bind Paths and Mounts

e When Apptainer swaps the host operating system for the one inside your container, the host file becomes
inaccessible.
e However, you may want to read and write files on the host system from within the container.
e Apptainer allows to map directories on your host system to directories within your container using bind
mounts
e This allows you to read and write data on the host system with ease
e To enable this functionality, Apptainer will bind directories back into the container via two primary
methods:
o system-defined bind paths
o user-defined bind paths

23

Bind Paths and Mounts

S\/stem defined bind paths

O

System admin has the ability to define what bind paths will be included automatically inside each container

Some bind paths are automatically derived (eg., a user's home directory) and some are statically defined (e.g., bind
paths in Apptainer configuration file).

In the default configuration, the system default bind points are $HOME, /sys:/sys, /proc:/proc, /tmp:/tmp,
/var/tmp:/var/tmp, /etc/resolv.conf:/etc/resolv.conf, /etc/passwd:/etc/passwd, and $PWD.

Here the first path before : is the path from the host and the second path is the path in the container

You can disable the system bind paths using --no-mount flag.

For example, if admin has configured apptainer.conf to always mount /data, you can disable this with

$ apptainer run --no-mount /data mycontainer.sif
To disable all bind path entries set in apptainer.conf, use --no-mount bind-paths

$ apptainer run --no-mount bind-paths mycontainer.sif

24

Bind Paths and Mounts

e User-defined bind paths
o Unless system admin has disabled user control of binds, you will be able to request your own bind paths

within your container.
o The Apptainer action commands (run, exec, and shell) will accept the --bind/-B command-line option to

specify bind paths
o Here's an example of using --bind option and binding /scratch on the host to the container

$ apptainer shell --bind /scratch/nautilus/users/user_name mycontainer.sif

25

Building Containers

e Apptainer Definition File (or “def file") is like a set of blueprints explaining how to
build a custom container

e |tincludes

o specifics about the base OS to build or the base container to start from
o software to install
o environment variables to set at runtime

o files to add from the host system, and container metadata

e Apptainer Definition file is divided into two parts, Header and Sections

26

Building Containers

e Header

o It describes the core operating system to build within the container
o Configure the base operating system features needed within the container
o Specify the Linux distribution, the specific version, and the packages that must be part of the core
install (borrowed from the host system).
e Sections

o Each section is defined by a % character followed by the name of the particular section

o All sections are optional, and a def file may contain more than one instance of a given section

27

Building Containers

e The following recipe shows how to build and run a hello-world container

Step 1. Open a text editor

$ nano hello-world.def

Step 2. Include the following script in the hello-world.def
file to define the environment

BootStrap: docker

From: ubuntu:20.04

%runscript

echo "Hello World"

Print Hello World when the image is loaded

BootStrap: docker indicates that apptainer will
use the docker protocol to retrieve the base 0S
to start the image

From: ubuntu:20.04 is given to apptainer to start
from a specific image/0S in docker Hub

Any content within the %runscript will be written
to a file that is executed when one runs the
apptainer image

The echo "Hello World” command will print the
Hello World on the terminal

Finally the # hash is used to include the
comments within the definition file

28

Building Containers

Step 3. Build the image

$ apptainer build hello-world.sif hello-world.def
Step 4. Run the image

$./hello-world.sif

29

TP 2: Build from Scratch

e (reate a Hello-World Container
e Use the definition file to create a container
e [Interact with container

30

Miniconda3 on GLIiCID Cluster

e Let's create a Apptainer container based on the specified Docker image
e Setting up an environment with Miniconda and additional configurations,
e and running a Python script when the container is executed

31

Miniconda3: Definition File

Bootstrap: docker
From: ubuntu:22.04

%help
This container provides a Python script and research data. To run the script:

$ apptainer run myimage.sif # or ./myimage.sif
The script is found in /ml-container/scripts and the data is found in /ml-container/data.

%labels
AUTHOR_NAME Junaid Mir
AUTHOR EMAIL junaid.mir@ec-nantes.fr
VERSION 1.0

%senvironment
export PATH=/opt/miniconda3/bin:${PATH}
set system locale
export LC ALL="C"'

%post -c /bin/bash
apt-get -y update && apt-get -y upgrade
apt-get -y install wget

INSTALL SCRIPT=Miniconda3-py38 4.9.2-Linux-x86 64.sh

wget https://repo.anaconda.com/miniconda/${INSTALL SCRIPT}
bash ${INSTALL SCRIPT} -b -p /opt/miniconda3

rm ${INSTALL SCRIPT}

/opt/miniconda3/bin/conda install pandas -y

cleanup
apt-get -y autoremove --purge
apt-get -y clean

%srunscript
python /home/jmir@ec-nantes.fr/ml-container/scripts/myscript.py

Stest
/opt/miniconda3/bin/python --version

32

Miniconda3: Definition File

e Let's break down the different sections of the definition file
1. Bootstrap: docker

- Specifies that the container should be built using a Docker image as the base.

2. From: ubuntu:22.04

- Specifies the base Docker image to use, in this case, Ubuntu 22.04.

3. %help

- This section provides information on how to use the container. Here, it gives instructions on running the Python script inside the container.

4. %labels

- These are metadata labels for the container, providing information such as the author's name and email, and the version of the container.

33

Miniconda3: Definition File

5. %environment

- This section sets environment variables within the container. It adds the Miniconda3 binary path to the "PATH" variable and sets the system locale.

6. %post -c /bin/bash

- This is a script that runs during the container build process. It updates the package manager, installs "wget’, downloads and installs Miniconda3, installs
the pandas package using conda, and then performs cleanup.

7. %runscript

- This specifies the command that will be executed when the container is run. In this case, it runs a Python script located at
“/home/jmir@ec-nantes.fr/ml-container/scripts/myscript.py".

8. %test

- This section provides a test command to check if the container is working correctly. It checks the version of Python installed in the container.

34

Slurm Script

#!/bin/bash

#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH
#SBATCH

hostname

--job-name=myjob
--comment="Run My Job"
--time=0-00:05:00
--nodes=1

--ntasks=2
--cpus-per-task=2
--mem-per-cpu=10g
--qos=short

H H HF HHF H B H

#

Name for your job

Comment for your job

Time limit

How many nodes to run on
How many tasks per node
Number of CPUs per task
Memory per CPU
priority/quality of service

Run the command hostname

cd /home/jmir@ec-nantes.fr/ml-container
module purge

module load apptainer/1.1.6
apptainer --version
./myimage.sif

#

run the container

35

TP 3: dl-container

Create a Miniconda Container
Create a Slurm script
Submit the Job
Monitor the job
Check the results

$ apptainer shell --bind /scratch/nautilus/users/username myimage.sif

$ python myscript.py

36

Thank you

Any Questions?

37

