
Getting Started With GLiCID:
Advanced Session

Mir Junaid

May 16, 2024

1

OUTLINE
● Why HPC?
● Guix Package Manager
● Modules
● SLURM Workload Manager

○ Why do we need Slurm?
○ Slurm Configuration Options
○ Example Slurm Script
○ TP

■ Basic Slurm Script
■ Slurm for Parallel Programming
■ Install Conda/Micromamba
■ Fortran: Hello World

● Validate Doctoral School Formation (Amethis)

2

Why HPC?
Q. Why would I be interested in High Performance Computing (HPC)?

Frequently, research problems that use computing can outgrow the capabilities of the desktop or laptop. For
example,

Use Case 1: AI/ML/Statistics

● A statistics/data science researcher wants to cross-validate a model.
● This involves running the model 1000 times – but each run takes an hour.
● Running the model on a laptop will take over a month.
● In this research problem, final results are calculated after all 1000 models have run, but typically only one

model is run at a time (in serial) on the laptop.
● Since each of the 1000 runs is independent of all others, and given enough computers, it’s theoretically

possible to run them all at once (in parallel) and complete the task in one hour.

3

Why HPC?
Use Case 2: Genomics

● A genomics researchers use some type of sequencing datasets that are huge.
● It’s challenging to open these datasets on a computer – analyzing these larger datasets will probably

crash it.
● In this research problem, the calculations required might be impossible to parallelize, but a computer

with more memory would be required to analyze the much larger future data set.

4

Why HPC?
Use Case 3: Fluid Dynamics/Mechanics

● An engineer using a fluid dynamics package has an option to run in parallel.
● In going from 2D to 3D simulations, the simulation time has more than tripled.
● In this research problem, the calculations in each region of the simulation are largely independent of

calculations in other regions of the simulation.
● It’s possible to run each region’s calculations simultaneously (in parallel), communicate selected results to

adjacent regions as needed, and repeat the calculations to converge on a final set of results.
● In moving from a 2D to a 3D model, both the amount of data and the amount of calculations increases

greatly, and it’s theoretically possible to distribute the calculations across multiple computers
communicating over a shared network.

In all these cases, access to more computers with larger memories is needed.

5

Software Modules

6

Software Modules
● Modules

○ Lot of useful software packages
○ Different versions
○ Maintained by experts
○ Optimized for the architecture
○ Users cannot install a module
○ Have to request the administrator

7

How to use Modules?
● Useful commands

Command Description

module avail List modules

module avail <module_name> List all installed versions of python

module load <module_name> Load the default python version

module load <module_name/3.11.5> Load a specific version of python

module unload <module_name> Unload python

module list List currently loaded modules

8

 Guix Package Manager

9

What is Guix?
● Package building system/Package manager
● Why Guix? Why is it better than modules?

○ Allows each user to manage his/her own packages
○ without root privilege
○ without interfering with other users
○ Easy creation of isolated environments with designated packages
○ useful for per-project dependency management

10

Guix Package Manager
● Useful commands

Search packages here https://packages.guix.gnu.org/

Note: To use Guix on Nautilus, load the guix module (module load guix)

Command Description

guix pull You need to run this at least once(maybe weekly :p)

guix search <package_name> Look for a package to install

guix install <package_name> To install a package

guix remove <package_name> To remove a package

guix package -l List of installed packages

11

https://packages.guix.gnu.org/

Bringing Order To Chaos

12

Chaos of an unmanaged system
● Clusters are a different environment than a standalone, single user workstation.
● Once the cluster is up, dozens of users log in and launch jobs.
● Multiple parallel jobs can collide, causing slowdowns and crashes.
● Growing HPC systems need management to maintain order and performance.
● Installing a batch scheduler helps manage jobs efficiently.

13

Competition for limited resources
● Busy clusters have lots of users and lots of work.
● It is essential to know how to effectively use the system while being considerate of other users.
● We’ll give you some stated and unstated social rules so as to not become a nuisance on a busy cluster.
● First let us consider how these typical systems are set-up.

14

User 1 User 2

User 3

Admin

GPU

This is how it works

15

But you don’t use the whole Supercomputer

16

Enter the queue, and wait
● Your job(s) enter the queue,

 and wait for its turn

● When there are enough resources for

that job, it runs

17

Results

18

SLURM - Workload Manager/Job Scheduler
● Simple Linux Utility for Resource Management (SLURM)
● Open source, fault-tolerant, and highly scalable cluster management and job scheduling system for large

and small Linux clusters
● It has centralized manager, slurmctld, to monitor resources and work
● Each compute node has a slurmd daemon, which can be compared to a remote shell: it waits for work,

executes that work, returns status, and waits for more work.

19

Layout of a batch system for clusters
● Most clusters have some nodes set aside to be front nodes.
● These front-end nodes are also called login nodes because that is where you will be when you log in to

the cluster.
● The rest of the system is then set-up as back-end nodes that are controlled and allocated by the batch

system.
● There back-end nodes are organized into one or more queues.
● Each queue has a set of policies for things like the size of jobs (such as the no. of processors or memory)

and how long these jobs can run.

20

How to be courteous on busy clusters
● For interactive work

○ Check the load on your front end with the top command and move to a lightly loaded frontal node.
○ On GLicid we have nautilus-devel-001, nautilus-devel-002, and guix-devel-001.
○ Watch for heavy file-transfer on the front end.
○ Don’t tie up nodes with batch interactive sessions and then go off for a meeting/coffee.
○ GLiCID has a special queue for debugging. Use it when you need to debug but don’t abuse the debug

queue.

21

How to be courteous on busy clusters
● For big jobs

○ Big parallel jobs should be run on the back-end nodes through the batch system queues.
○ Keep the number of jobs in the queue small; don’t monopolize the queues.
○ Try to run your big jobs during non-work hours so other users can get interactive nodes for their

work.

22

How to be courteous on busy clusters
● For storage

○ Store large data in the appropriate place.
○ Move files to long-term storage. Preferably in /LAB-DATA
○ GLiCID will purge files in some of the scratch directories on periodic basis.
○ Clean up your files regularly and keep file systems below 90% full.
○ File system performance drops off as file systems become full.

23

Further cluster wisdom
● Heavy front-end node usage can cause instabilities and crashes.
● Instabilities affect the entire system, halting job scheduling for back-end nodes.
● Follow the spirit of the rules and optimize your code and file storage.
● Proper optimization allows you and others to get more work done.
● Submitting hundreds of jobs at once is inconsiderate.
● Submit a few jobs at a time and add more as each completes.

24

Submitting your first batch script
● There are two basic system modes.

○ Interactive command line
○ Batch file syntax

● Most of the commands used in one mode can also be used in the other.
● The interactive command-line mode is generally used for program development, testing, or short jobs.
● For submitting longer jobs, it is more common to use batch file to submit a batch job.
● The batch file allows the user to run applications overnight or unattended.

25

Submitting your first batch script: Example

26

Interactive command line
● Let’s start on the front end of the cluster, where everybody log in.
● Now we want 2 compute nodes(-N 2) with a total of 32 processors(-n 32) for an hour(-t 1:00:00).
● Notice the difference in capitalization for number of nodes(N) and number of processors(n).
● Also, you can limit your run to specified minutes, although many systems have a minimum and maximum

run-time policy.
● Some systems even have minimums and maximums for the number of compute nodes you use.
● The salloc command for this specific request would be

frontend> salloc -N 2 -n 32 -t 1:00:00

nautilus-devel-001 ~] salloc -M nautilus --qos short -N 2 -n 32 -t 1:00:00

27

Interactive command line
● The salloc command for this specific request would be

frontend> salloc -N 2 -n 32 -t 1:00:00

nautilus-devel-001 ~] salloc -M nautilus --qos short -N 2 -n 32 -t 1:00:00

● The salloc command allocates and logs into two compute nodes.
● Note that the command prompt changes to indicate that we are on a different system.
● Once we have two nodes, we can launch our parallel application with:

frontend> mpirun -n 32 ./my_parallel_app

nautilus-devel-001 ~] mpirun - 32 ./my_parallel_app

● The example shows starting up a parallel job with mpirun.
● When we are done, we just exit:

nautilus-devel-001 ~] exit 28

Batch file syntax
● Slurm batch script for salloc -N 2 -n 32 -t 1:00:00

#!/bin/bash

#SBATCH -N 2
#SBATCH -n 32
#SBATCH -t 01:00:00

● Add this line to run the code

mpirun -n 32 ./my_parallel_app

● Submit the job

Sbatch my_parallel_job.slurm

29

my_parallel_job.slurm

#!/bin/bash

#SBATCH -N 2
#SBATCH -n 32
#SBATCH -t 01:00:00

mpirun -n 32 ./my_parallel_app

Batch file syntax
● To tell Slurm what resources you need, you will have to create an sbatch script/ Slurm script
● The sbatch scripts generally follow this format:

#!/bin/bash

Declaring Slurm Configuration Options

Loading Software/Libraries

Running Code

● Note: #!/bin/bash above tells our terminal what program to run this file with. In this case, bash.
● You can write an sbatch script in any language as long as #SBATCH doesn’t result in errors
● Examples: Ruby, Python, Bash, R.

30

Configuration Options for Slurm
● There are many configuration options for Slurm
● Some options are cluster specific and may not work
● We can help you find the best set of configurations for your computing needs
● Configuration options are specified in your sbatch script like this:

#SBATCH <option_1>=<value>
#SBATCH <option_2>=<value>
…
#SBATCH <option_3>=<value>

● Note the pound sign(#) is not the comment here.
● Slurm looks for lines starting with #SBATCH so it can find configuration options

31

Accounting Configurations
● Job Name: #SBATCH --job-name=<job_name>

○ First thing you need to do is give your job a name and it should be descriptive
○ Example: #SBATCH --job-name=RandomWalk
○ The point of the job name is to remind yourself what you are doing
○ If it is not descriptive, you can easily get confused

● Comment: #SBATCH --comment=<comment>
○ To extend the description of your job, add a comment
○ Example: #SBATCH --comment=“To explore the nodes.”

● Account: #SBATCH --account=<account_name>
○ You need to tell Slurm which account to run your job under
○ This is not user account, but your project account
○ Example: #SBATCH --account=glicid

32

Accounting Configurations
● Partition: #SBATCH --partition=<Partition_name>

○ Slurm needs to know which partition to run your job on
○ Example: #SBATCH --partition=standard
○ Each partition has access to different resources and has a specific use case

● Time Limit: #SBATCH --time=D-HH:MM:SS
○ You need to tell Slurm how long your job needs to run
○ The format is Days-Hours:Minutes:Seconds
○ Example: #SBATCH --time=1-12:30:00 (1 Day, 12 Hours, 30 Minutes, 0 Seconds)

33

Job Output Configurations
● Output File: #SBATCH --output=%x_%j.out

○ Any output from your compute job will be saved to the output file that you specify
○ %x is a variable that fills in your job name. %j is a variable that filles in your job ID number
○ Example: #SBATCH --output=logs/%x_%j.out

● Error File: #SBATCH --error=%x_%j.err
○ Any errors from your compute job will be saved to the error file that you specify
○ %x is a variable that fills in your job name. %j is a variable that filles in your job ID number
○ Example: #SBATCH --error=logs/%x_%j.err

34

Node Configurations
● A node is just a computer in a cluster
● Most of the time, it probably makes sense to only use one node

● Nodes: #SBATCH --nodes=<num_nodes>
○ The default is 1 node, so if you’re using 1 node, you don’t need to specify it in configuration
○ We recommend that you include it to remind yourself what resources your job is using
○ Example: #SBATCH --nodes=4

● Excluding Nodes: #SBATCH --exclude=<node1, node2, …>

○ If for some reason you want to make sure your job does not run a specific node
○ Example: #SBATCH --exclude=cnode301

● Exclusive Access to a Node: #SBATCH --exclusive
○ If your job can utilize all of the resources on a single node, you can specify it

35

Nautilus Architecture

#Computing Nodes Processor and Speed RAM #Cores

40 cnode[301-340] BullSequana X440 (2 AMD EPYC 9474@3.6GHz 48c) 384 GB 3840

8 cnode[701-708] BullSequana X440 (2 AMD EPYC 9474@3.6GHz 48c) 768 GB 768

4 visu[1-4] BullSequana X450 (2 AMD EPYC 9474@3.6GHz 48c)
with Nvidia A40 (48G) 2 GPUs per node

768 GB 384

4 gnode[1-4] 4 BullSequana X410 (2 AMD EPYC 9474@3.6GHz
48c) with Nvidia A100 (80G) 4 GPUs per node

768 GB 384

36Note: Other than Nautilus, we have Waves and (Philias)MesoNET cluster as well.

Task Configurations
● In the context of computing, a "job" and a "task" refer to different entities and have distinct meanings

● Job:
○ A job is a higher-level unit of work or a computational task that you submit to a cluster
○ It represents a specific computational workload, which can consist of one or more tasks
○ When you submit a job, you provide information about the resources it needs, such as the number

of nodes, CPU cores, memory, runtime, etc.
● Task:

○ A task is a lower-level unit of work that is part of a job
○ It represents a specific computational operation or process
○ These tasks are typically parallelized to take advantage of the cluster's computing power

37

Task Configurations
● Number of Tasks: #SBATCH --ntasks=<num_tasks>

○ By default, Slurm will assign one task per node
○ These tasks can run on the same node or the different nodes
○ Example: #SBATCH --ntasks=2

● Number of Tasks per Node: #SBATCH --ntasks-per-node=<num_tasks>
○ If your job is using multiple nodes, you can specify the number of tasks per node
○ Example: #SBATCH --ntasks-per-node=2
○ For instance, if your job is allocated four compute nodes, each node will run two tasks, resulting in a

total of eight tasks running in parallel
○ This option is used when you want to control how many tasks are executed on each individual node

in your cluster

38

CPU and GPU Configurations
● CPUs per Tasks: #SBATCH --cpus-per-task=<num_cpus>

○ By default, Slurm will assign 1 CPU per task if you do not specify in the configuration
○ Slurm needs to know how many CPUs your job needs
○ Example: #SBATCH --cpus-per-task=4

● GPUs per Job: #SBATCH --gres=gpu:<gpu_num>
○ By default, Slurm will not assign any GPU to your job
○ You need to specify how many GPUs your job needs
○ Example: #SBATCH --gres=gpu:4

39

Memory Configurations
● Memory per Node: #SBATCH --mem=<memory>

○ You need to tell Slurm how much memory you need per node
○ Example: To get 10 GB of memory per node, use #SBATCH --mem=10g
○ Default is megabytes(MB), so if you specify #SBATCH --mem=10, you will be assigned only 10 MB

● Memory per CPU: #SBATCH --mem-per-cpu=<memory>
○ You can also specify a memory required per CPU core
○ Example: To get 10 GB of memory per CPU, use #SBATCH --mem-per-cpu=10g
○ You need to make sure --mem and --mem-per-cpu don’t conflict with each other
○ Default value is 4 GB for cnode301 to cnode340
○ 8 GB for cnode701 to cnode708

40

Job Scheduling
● When you submit your job, Slurm checks #SBATCH configurations and finds a time/place to run your job
● Four things that impact when you run your job

○ The resources you request
○ The frequency that you submit jobs
○ The other jobs in the queue
○ The maintenance windows (sometimes)

● Note
○ If you request a lot of resources, you’ll have to wait until those resources are available
○ If you submit a lot of jobs with a small amount of resources, they’ll likely execute quickly

41

Job Speed
● Using GPUs may or may not result in a speedup for your job
● There are a lot of factors in play when it comes to GPUs

○ Your code needs to be able to use GPUs
○ Not all libraries can leverage GPUs, make sure you read the documentation of libraries/frameworks
○ If using multiple GPUs, make sure your code can use GPUs on different nodes
○ Some code can leverage GPUs, but not in an impactful way
○ Some code just isn’t doing enough computations to make it with the overhead of communicating

between CPUs and GPUs, it may actually slow down your job

42

Basic Slurm Commands

Command Syntax Description

sbatch sbatch <job_name> Submit a job

sinfo sinfo View information about nodes and partitions

squeue squeue --me View information about jobs in the scheduling
queue

scancel scancel <job-id> To terminate queued or running jobs

salloc salloc
<resource-parameters>

To get resources and manually run jobs on those
allocated resources

sacct sacct Show information about current and previous jobs

43

Example Slurm Script
#!/bin/bash

#SBATCH --job-name=myjob # Name for your job
#SBATCH --comment="Run My Job" # Comment for your job
#SBATCH --output=%x_%j.out # Output file
#SBATCH --error=%x_%j.err # Error file

#SBATCH --time=0-00:05:00 # Time limit
#SBATCH --nodes=1 # How many nodes to run on
#SBATCH --ntasks=2 # How many tasks per node
#SBATCH --cpus-per-task=2 # Number of CPUs per task
#SBATCH --mem-per-cpu=10g # Memory per CPU
#SBATCH --qos=short # priority/quality of service

hostname # Run the command hostname

● Submitting Your Job
$ sbatch my-job.slurm
$ sbatch -M nautilus --reservation=training my-job.slurm
Submitted batch job 1411747 on cluster nautilus 44

So, in this example, we have
requested a job with the following
dimensions:

● Max Run Time: 5 Minutes
● Number of Nodes: 1
● Number of Tasks Per Node: 2
● Number of CPUs Per Task: 2
● Memory Per CPU: 10GB

Monitoring Your Job
● Monitoring Your Job

$ ls
myjob_1411747.err myjob_1411747.out my-job.slurm

$ scontrol show job 1411747 -M nautilus

$ scancel 1411747

45

Monitoring Your Job
● Monitoring Your Job

$ squeue -u $USER

$ squeue --me

CLUSTER: nautilus
 JOBID PARTITION NAME USER ST TIME NODES QOS PRIORITY NODELIST(REASON)

CLUSTER: waves
 JOBID PARTITION NAME USER ST TIME NODES QOS PRIORITY NODELIST(REASON)

46

Data Management - Compress/Decompress Large Files
● Compress

$ tar -czvf <folder_name.tar.gz> <foldername>

● Decompress

$ tar -xzvf <folder_name.tar.gz>

47

Data Management: File Transfer
● Local to Remote

$ scp -r folder_name nautilus:/scratch/nautilus/users/username

● Remote to Local

$ scp -r nautilus:/scratch/nautilus/users/username/folder_name /local_location

Note: Run both commands from the local machine.

48

Hands-on: TP 1
● Try submitting a couple of jobs both in interactive and batch file, one with 32 processors and one with 16

processors. Check to see that these are submitted and whether they are running.
● Another simple job!

○ Download “nautilus-tutorial” → https://indico.mathrice.fr/event/576/manage/attachments/
○ Compress and transfer this folder to this location using SCP → /scratch/nautilus/users/username
○ Connect to cluster
○ Open a text editor and write a slurm script that will run the “hostname” command
○ Submit the job
○ Monitor your job

49Reference: https://mirjunaid26.github.io/docs/tutorial-basics/slurm

https://indico.mathrice.fr/event/576/manage/attachments/
https://mirjunaid26.github.io/docs/tutorial-basics/slurm

Monitoring Your Job
● squeue

○ The squeue command will show what jobs are currently scheduled
$ squeue
CLUSTER: nautilus
 JOBID PARTITION NAME USER ST TIME NODES QOS PRIORITY
NODELIST(REASON)
 1443980 all Exchange_Second nassaad2017@ PD 0:00 1 short 37307 (Dependency)
1443979_[all Advection nassaad2017@ PD 0:00 1 short 37307 (Dependency)
 1443978 all Exchange_First nassaad2017@ R 0:05 1 short 37307 cnode321
 1439197 all edw_wave adermatis202 R 25:12 1 medium 37026 cnode324
 1439000 all edw_wave adermatis202 R 26:02 1 medium 37026 cnode321
 1430806 all edw_wave adermatis202 R 1:09:23 1 medium 37026 cnode323
 1440954 all SnappyMesh ahernandez20 R 16:05 1 medium 36825 cnode325
 1441150 all diff_284_29_Tdiv580_moreRefin_ sakkari2022@ R 15:15 1 medium 36624 cnode325
 1406284 all diff_300_46_Tdiv600_check sakkari2022@ R 3:24:53 1 medium 36624 cnode324
 1349601 all diff_284_29_Tdiv580_moreRefin sakkari2022@ R 18:39:15 1 medium 36624 cnode322
 1308984 all diff_400_46_Tdiv800_check sakkari2022@ R 1-03:07:33 1 medium 36624 cnode321
 1405888 all train_model melaarabi202 R 3:26:58 1 long 27508 gnode1
 1404124 standard test_stability jlopez@ec-na R 4:00:14 1 long 23725 cnode323

CLUSTER: waves
 JOBID PARTITION NAME USER ST TIME NODES QOS PRIORITY
NODELIST(REASON)

50

Monitoring Your Job
● The squeue command gives us the following information:

○ JOBID: The unique ID for your job
○ PARTITION: The partition your job is running on (or scheduled to run on)
○ NAME: The name of your job
○ USER: The username for whomever submitted the job
○ ST: The status of the job. The typical status codes you may see are:

■ CD (Completed): Job completed successfully
■ CG (Completing): Job is finishing, Slurm is cleaning up
■ PD (Pending): Job is scheduled, but the requested resources aren’t available yet
■ R (Running): Job is actively running

○ TIME: How long your job has been running
○ NODES: How many nodes your job is using
○ QOS: Quality of Service
○ PRIORITY: Priority of your job
○ NODELIST(REASON): List of nodes and which nodes your job is running on (or scheduled to run on). If

your job is not running yet, you will also see reason

51

Partition Information
● sinfo

○ available partitions on the cluster and partitions time limit
○ how many nodes are available on the partition and what is the state of those nodes

$ sinfo
CLUSTER: nautilus
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
standard up infinite 5 mix cnode[321-325]
standard up infinite 35 idle cnode[301-320,326-340]
bigmem up infinite 1 down* cnode707
bigmem up infinite 7 idle cnode[701-706,708]
gpu up infinite 1 mix gnode1
gpu up infinite 3 idle gnode[2-4]
visu up infinite 4 idle visu[1-4]
all* up infinite 1 down* cnode707
all* up infinite 6 mix cnode[321-325],gnode1
all* up infinite 49 idle cnode[301-320,326-340,701-706,708],gnode[2-4],visu[1-4]

CLUSTER: waves
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
all* up 9:00:00 1 unk* budbud018
all* up 9:00:00 8 idle budbud[014-017,019-022]
med up 4-04:00:00 3 idle budbud[020-022]
devel up 20:00 1 unk* vmworker-001

● Try sinfo -N
52

Track Your Jobs
● sacct

○ Track your recent jobs to find their job IDs and other details
$ sacct
JobID JobName Partition Account AllocCPUS State ExitCode
------------ ---------- ---------- ---------- ---------- ---------- --------
1404103 myjob standard glicid 1 COMPLETED 0:0
1404103.bat+ batch glicid 1 COMPLETED 0:0
1404103.ext+ extern glicid 1 COMPLETED 0:0
1419267 myjob all glicid 4 COMPLETED 0:0
1419267.bat+ batch glicid 4 COMPLETED 0:0
1419267.ext+ extern glicid 4 COMPLETED 0:0

● To view a specific job

$ sacct --jobs=1411747
JobID JobName Partition Account AllocCPUS State ExitCode
------------ ---------- ---------- ---------- ---------- ---------- --------
1419267 myjob all glicid 4 COMPLETED 0:0
1419267.bat+ batch glicid 4 COMPLETED 0:0
1419267.ext+ extern glicid 4 COMPLETED 0:0

53

Check Job State
● scontrol

○ To check job state, start time/end time, command, workdir, stderr, stdout
$ scontrol show job 1411747 -M nautilus
JobId=1446614 JobName=myjob
 UserId=jmir@ec-nantes.fr(8000019) GroupId=jmir@ec-nantes.fr(8000019) MCS_label=N/A
 Priority=45942 Nice=0 Account=glicid QOS=short
 JobState=COMPLETED Reason=None Dependency=(null)
 Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0
 RunTime=00:00:00 TimeLimit=00:05:00 TimeMin=N/A
 SubmitTime=2023-10-17T14:40:47 EligibleTime=2023-10-17T14:40:47
 AccrueTime=2023-10-17T14:40:47
 StartTime=2023-10-17T14:40:47 EndTime=2023-10-17T14:40:47 Deadline=N/A
 SuspendTime=None SecsPreSuspend=0 LastSchedEval=2023-10-17T14:40:47 Scheduler=Backfill
 Partition=all AllocNode:Sid=nautilus-devel-001:883696
 ReqNodeList=(null) ExcNodeList=(null)
 NodeList=cnode321
 BatchHost=cnode321
 NumNodes=1 NumCPUs=4 NumTasks=2 CPUs/Task=2 ReqB:S:C:T=0:0:*:*
 TRES=cpu=4,node=1,billing=4
 Socks/Node=* NtasksPerN:B:S:C=0:0:*:* CoreSpec=*
 MinCPUsNode=2 MinMemoryCPU=10G MinTmpDiskNode=0
 Features=(null) DelayBoot=00:00:00
 OverSubscribe=OK Contiguous=0 Licenses=(null) Network=(null)
 Command=/scratch/users/jmir@ec-nantes.fr/nautilus-tutorial/task_1/my-job.slurm
 WorkDir=/scratch/users/jmir@ec-nantes.fr/nautilus-tutorial/task_1
 Comment=Run My Job
 StdErr=/scratch/users/jmir@ec-nantes.fr/nautilus-tutorial/task_1/myjob_1446614.err
 StdIn=/dev/null
 StdOut=/scratch/users/jmir@ec-nantes.fr/nautilus-tutorial/task_1/myjob_1446614.out
 Power=

54

Job Priority Factors
● Slurm takes into account two different factors when scheduling jobs:

○ Requested Resources and Priority
○ If you request a lot of resources, your job may take longer to start than someone who requests very few

resources because Slurm needs to wait for the resources you requested to be available
○ If you are constantly submitting and running jobs, Slurm may assign your jobs a lower priority than

someone who rarely submits jobs.

Job_priority =
site_factor +
(PriorityWeightAge) * (age_factor) +
(PriorityWeightAssoc) * (assoc_factor) +
(PriorityWeightFairshare) * (fair-share_factor) +
(PriorityWeightJobSize) * (job_size_factor) +
(PriorityWeightPartition) * (priority_job_factor) +
(PriorityWeightQOS) * (QOS_factor) +
SUM(TRES_weight_cpu * TRES_factor_cpu,
 TRES_weight_<type> * TRES_factor_<type>,
 ...) - nice_factor

55

Priorities in GLiCID Cluster
● sacctmgr

○ To view or modify Slurm account information

$ sacctmgr show qos format="name%20,priority,MaxJobsPerUser,MaxWall"
 Name Priority MaxJobsPU MaxWall
-------------------- ---------- --------- -----------
 normal 1 00:05:00
 short 50 1-00:00:00
 medium 40 3-00:00:00
 long 30 8-00:00:00
 unlimited 10 1
 debug 100 00:20:00
 priority 200 8-00:00:00

56

Different Resource Scenarios
Here is a summary of different resource utilization scenarios:

● RAM:
○ Request too little: Job will die when it runs out of RAM
○ Request too much: Lots of RAM will sit idle and no one else can use it
○ Ideal: Request slightly more RAM than you need
○ Recommendation: Try to keep idle RAM at less than 10% of the total RAM you requested

● CPUs:
○ Request too little: Your job will trip over itself because of kernel scheduling; your job will take a

massive performance hit as a result
○ Request too much: Lots or CPUs will sit idle and no one else can use them
○ Ideal: Request exactly the number of CPUs that your job can use

57

Different Resource Scenarios
● GPUs:

○ Request too little: You may not actually see a speedup (due to communication overhead between
CPUs and GPUs)

○ Request too much: Your code may not be able to use multiple GPUs; idle GPUs cannot be used by
anyone else until your job finishes

○ Ideal: Request exactly the number of GPUs that your job can use
○ Recommendation: Get your job working with one GPU, and make sure you’re actually using the GPU

before trying to use more
● Time:

○ Request too little: Your job will not finish before the time limit runs out; lots of time will be wasted
○ Request too much: Slurm may give your job a lower priority to let smaller jobs go first. If a

maintenance window is coming up, your job may not schedule until after the maintenance window
○ Ideal: Request slightly more time than you need, but not too much

58

Parallel Programming Examples using Slurm
Parallel programming on a cluster can be challenging, but it is a powerful technique for harnessing the
computational resources of a cluster effectively.

● Some reasons why parallel programming can be tricky on a cluster:
○ Distributed computing, load balancing, synchronization, communication overhead, debugging and

troubleshooting, scalability, heterogeneous resources
● To overcome these challenges, developers often use parallel programming libraries,

○ such as MPI (Message Passing Interface) for distributed memory systems and
○ OpenMP for shared memory systems

● These libraries provide abstractions and tools for handling parallelism, communication, and
synchronization

● Additionally, understanding the architecture of the cluster and the specifics of the job scheduler (e.g.,
Slurm) can be crucial for resource allocation and job management

59

Example 1: Intel/IntelMPI
Sample Script: job-intel.slurm

#!/bin/bash
#SBATCH --job-name=HelloWorldMpi
#SBATCH --partition=standard
#SBATCH --ntasks=4

module purge
module load intel/compiler intel/mpi

export I_MPI_PMI_LIBRARY=/lib64/libpmi2.so
export I_MPI_COLL_EXTERNAL=0
export I_MPI_ADJUST_BCAST=0
export I_MPI_FABRICS=shm:ofi
export FI_PROVIDER=psm3

srun --mpi=pmi2 hello-mpi

60

Example 1: Intel/IntelMPI
● Intel Compiler and IntelMPI

$ module load intel/compiler intel/mpi

$ mpicxx -cxx=icpx -O3 -o hello-mpi hello-mpi.cpp

● Submit your slurm script
$ sbatch -M nautilus -p standard -q short job-intel.slurm

61

Example 2: GNU/OpenMPI
Sample script: job-mpi.slurm

#!/bin/bash
#SBATCH --job-name=HelloWorldMpi
#SBATCH --partition=standard
#SBATCH --ntasks=4

module purge
module load gcc openmpi/ucx/4.1.5_gcc_8.5.0_ucx_1.14.1_rdma_46.0

export UCX_WARN_UNUSED_ENV_VARS=n
export OMPI_MCA_btl=^openib
export UCX_NET_DEVICES=mlx5_2:1

srun ./hello-openmpi

62

Example 2: GNU/OpenMPI
● GNU Compiler and OpenMPI

○ module load gcc openmpi/ucx/4.1.5_gcc_8.5.0_uxc_1.14.1_rdma_46.0

○ mpicxx -O3 -o hello-openmpi hello-mpi.cpp

● Submit your slurm script
$ sbatch -M nautilus -p standard -q short job-mpi.slurm

63

Example 3: GNU/OpenMP
Sample script → job-omp.slurm

#!/bin/bash
#SBATCH --job-name=HelloWorldOmp
#SBATCH --partition=standard
#SBATCH --cpus-per-task=12

module purge
module load gcc

if [["${SLURM_CPUS_PER_TASK}"]]
then
 c=${SLURM_CPUS_PER_TASK}
else
 c=1
fi

export OMP_NUM_THREADS=$c
srun ./hello-omp 64

Example 3: GNU/OpenMP
● GNU Compiler and OpenMP

○ module load gcc

○ g++ -fopenmp -o hello-omp hello_omp.cpp

● Submit your slurm script
$ sbatch -M nautilus -p standard -q short job-omp.slurm

65

Example 4: GNU/hybrid OpenMPI/OpenMP
Sample script: job-hybrid.slurm
#!/bin/bash
#SBATCH --job-name=HelloWorldHybrid
#SBATCH --partition=standard
#SBATCH --cpus-per-task=6
#SBATCH --ntasks=16

module purge
module load gcc openmpi/ucx/4.1.5_gcc_8.5.0_ucx_1.14.1_rdma_46.0

export UCX_WARN_UNUSED_ENV_VARS=n
export OMPI_MCA_btl=^openib
export UCX_NET_DEVICES=mlx5_2:1

if [["${SLURM_CPUS_PER_TASK}"]]
then
 c=${SLURM_CPUS_PER_TASK}
else
 c=1
fi

export OMP_NUM_THREADS=$c
srun ./hello-hybrid 66

Example 4: GNU/OpenMP
● GNU Compiler and OpenMP

○ module load gcc openmpi/ucx/4.1.5_gcc_8.5.0_uxc_1.14.1_rdma_46.0

○ mpicxx -fopenmp -o hello-hybrid hello-mpi-omp.cpp

● Submit your slurm script
$ sbatch -M nautilus -p standard -q short job-hybrid.slurm

67

Hands-on: TP 2
● Create a Slurm script for any of the above 4 examples

○ Submit your job
○ Monitor your job

68

Micromamba/Anaconda
● No Anaconda module for now
● But you can use Micromamba - lighter version of conda

Download micromamba
mkdir -p $HOME/.local/bin
wget -P $HOME/.local/bin https://s3.glicid.fr/pkgs/micromamba
chmod u+x $HOME/.local/bin/micromamba

Initilize micromamba
$HOME/.local/bin/micromamba -r /micromamba/$USER/ shell init --shell=bash
--prefix=/micromamba/$USER/

[OPTIONAL] Add a `conda` alias
echo -e '\n\n#Alias conda with micromamba\nalias conda=micromamba' >> ~/.bashrc

Recharger le .bashrc
source ~/.bashrc

● Source: https://doc.glicid.fr/GLiCID-PUBLIC/0/logiciels/logiciels.html 69

https://doc.glicid.fr/GLiCID-PUBLIC/0/logiciels/logiciels.html

Micromamba/Anaconda
$ micromamba --version
$ conda create --name myenv
$ conda env list
$ conda activate myenv
$ conda install numpy
$ conda list
$ conda deactivate

70

Hands-on: TP 3
● Install Micromamba and check version
● Create a Conda environment and check environment list
● Try to install numpy and check installed packages

71

Hands-on: TP4_Fortan
● Load gcc compiler and compile

$ module load gcc/13.1.0
$ gfortran hello-fortran.f90 -o hello

● Submit your slurm script

$ sbatch -M nautilus -p standard -q short my-job.slurm

72

Thank you. Any questions?

Useful links:

User Doc: https://doc.glicid.fr

Support: https://help.glicid.fr

Chat on CLAM: https://clam.glicid.fr/

Forum: https://forum.glicid.fr/

Status page: https://ckc.glicid.fr

73

https://doc.glicid.fr
https://doc.glicid.fr
https://clam.glicid.fr/
https://forum.glicid.fr/
https://doc.glicid.fr

