
Reproducible Research using
Containers (Apptainer/ Singularity)

Mir Junaid

May 30, 2024

1

Contents

● Reproducibility in Science
● Introduction to Containerization
● Benefits of Containers
● What about Docker?
● Apptainer/Singularity Containers for HPC

○ Design Goals
○ Access Privileges

● Virtual Machines vs. General Containers vs. Apptainers
● Containers on GLiCID Cluster
● Downloading and interacting with a container
● TP 1: Fun with Containers
● Building a Container from Scratch
● TP 2: Build from Scratch
● TP 3: Anaconda Container

2

Reproducibility in Science

● More than 70% of researchers have tried and failed to reproduce another scientist's experiments,
and more than half have failed to reproduce their own experiments

● 31% think that failure to reproduce published results means that the result is probably wrong but
most say that they still trust the published literature

● Containers is a way forward for computational reproducibility

3

Introduction to Containerization

4

Introduction to Containerization

● Fast-paced development of computational tools has enabled tremendous scientific progress
in recent years

● However, this rapid surge of technological capability also comes at a cost
● It leads to an increase in the complexity of software environments and potential

compatibility issues across systems
● Advanced workflows in processing or analysis often require specific software versions and

operating systems to run smoothly
● Discrepancies across machines and researchers can prevent/delay reproducibility and

efficient collaboration
● As a result, scientific teams are increasingly relying on containers to implement robust,

dependable research ecosystems

5

Introduction to Containerization

● Originally popularized in software engineering, containers have become common in scientific
projects, particularly in large collaborative efforts

● Containers store the software and all of its dependencies (including a minimal operating
system) in a single image so that there is nothing to install and when it comes time to run
the software

● Everything "just works"
● This makes the software both shareable and portable while ensuring reproducibility
● Containerization allows applications to be “written once and run everywhere”
● In a nutshell, containers are encapsulations of system environments
● With containers, you don’t need to install everything on your machine to run or test

6

Introduction to Containerization

● Container technologies have been designed for the enterprise computing

7

Containers for HPC

● Our use case is the opposite of enterprise computing

8

Containers for HPC

● Scientists are like Pirates, pillaging for resources instead of booty!
● We want to run our jobs. We want to get results.
● When we find available resources, we need to ensure application and environment

compatibility
● This is where containers can be a perfect fit
● But as I mentioned, our use-case and needs are different from enterprise…

9

What about Docker?

● Docker is the most well known and utilized container platform
● Designed primarily for network and micro-service virtualization
● Facilitates creating, maintaining and distributing container images
● Containers are kinda reproducible
● Easy to install, well documented, standardized

For these reasons, it appears to be the solution.

10

So why not just keep using about Docker?

● The good news
○ You can! It works great for local and private resources
○ You can use it to develop and share your work with others using Docker-Hub

● The bad news
○ If you ever need to scale beyond your local resources, it maybe a dead end path
○ Docker, and other enterprise focused containers, are not designed for, efficient or even compatible

with traditional HPC
○ No HPC centers allow it

● Docker images are not secure because they provide a means to gain root access to the
system they are running on

11

Apptainer/Singularity Containers

● Designed from necessity, Apptainer/Singularity is an alternative to Docker that is both
secure and designed for HPC

● Singularity started as an open-source project at Lawrence Berkeley National Laboratory in
2015

● First public release in April 2016
● Created for and by the people who need and use it

○ Scientists, HPC Engineers, Linux Developers
● Tighter integration with other scientific apps (SLURM, MPI, etc.)
● Singularity/Apptainer is compatible with all Docker images and it can be used with GPUs and

MPI applications
● Integration with other container technologies

12

https://apptainer.org/

Apptainer/Singularity: Design Goals

● Single file based container images
○ Facilitates distribution, archiving, and sharing
○ Very efficient for parallel file systems

● No system, architectural or workflow changes necessary to integrate on HPC
● Limits user’s privileges (inside user == outsider user)
● No root owned container daemon
● Simple integration with resource managers, Infiniband, GPUs, MPI, file system, and supports

multiple architectures (x86_64, PPC, ARM, etc.)

13

Apptainer/Singularity: Access and Privilege

● User contexts are always maintained when the container is launched
● When launched by a particular user, the programs inside will be running as that user
● Any escalation pathways inside a container are blocked
● Thus, if you want to be root inside the container, you must be the root outside the container!

14

Popular Container Registries

● Docker Hub
● NVIDIA GPU Cloud
● Singularity Cloud Library
● Singularity Hub
● Quay.io
● BioContainers
● IBM PowerAI
● AMD InfinityHub (AMD GPUs)

15

https://hub.docker.com/
https://ngc.nvidia.com/catalog/containers
https://cloud.sylabs.io/library
https://singularityhub.github.io/singularityhub-docs/
https://quay.io/
https://biocontainers.pro/registry
https://hub.docker.com/r/ibmcom/powerai
https://www.amd.com/en/technologies/infinity-hub

VM vs. General Container vs. HPC Container

16

Apptainers on GLiCID

● On Nautilus, you just have to load the Apptainer module
$ module load guix $ guix install squashfs-tools

$ module load apptainer/1.1.6

● On Waves
$ cd /opt/software/glicid/containers/apptainer/bin

$ /opt/software/glicid/containers/apptainer/bin/./apptainer --help

17

The Apptainer Command Line Interface

● Apptainer provides a CLI to interact with the containers
● You can search, build, or run containers in a single line
● To check the version of the Apptainer or Singularity you are using

$ module load apptainer

$ apptainer --version

apptainer version 1.2.2

● You can check the available options and subcommands using
$ apptainer --help

18

Downloading Images

● Downloading an image from the Container Library is pretty straightforward and
the image is stored locally as .sif file (Singularity Image Format)
$ apptainer pull docker://alpine

$ apptainer pull docker://python (Try this one if you don’t have Python)

$ Apptainer> python

● Apptainer is also compatible with Docker images

19

Running Containers

● Initializing a shell and exiting it
$ apptainer shell docker://alpine

$ Apptainer>

$ Apptainer> id

uid=1001(jmir) gid=1001(jmir) groups=1001(jmir)

$ Apptainer> exit

20

Running Containers

● The command exec starts the container from a specified image and executes a
command inside it
$ apptainer exec docker://alpine cat /etc/os-release

21

TP 1: Fun with Containers
$ module load apptainer

$ apptainer --version

$ appatiner --help

$ apptainer pull docker://alpine

$ apptainer shell docker://alpine

$ Apptainer > whoami

$ Apptainer > id

$ Apptainer > ls

$ Apptainer > cat /etc/os-release

$ Apptainer > exit

Try these commands after exiting the container and know the difference

22

Bind Paths and Mounts

● When Apptainer swaps the host operating system for the one inside your container, the host file becomes
inaccessible.

● However, you may want to read and write files on the host system from within the container.
● Apptainer allows to map directories on your host system to directories within your container using bind

mounts
● This allows you to read and write data on the host system with ease
● To enable this functionality, Apptainer will bind directories back into the container via two primary

methods:
○ system-defined bind paths
○ user-defined bind paths

23

Bind Paths and Mounts

● System-defined bind paths
○ System admin has the ability to define what bind paths will be included automatically inside each container
○ Some bind paths are automatically derived (eg., a user’s home directory) and some are statically defined

(e.g., bind paths in Apptainer configuration file).
○ In the default configuration, the system default bind points are $HOME, /sys:/sys, /proc:/proc, /tmp:/tmp,

/var/tmp:/var/tmp, /etc/resolv.conf:/etc/resolv.conf, /etc/passwd:/etc/passwd, and $PWD.
○ Here the first path before : is the path from the host and the second path is the path in the container
○ You can disable the system bind paths using --no-mount flag.
○ For example, if admin has configured apptainer.conf to always mount /data, you can disable this with

$ apptainer run --no-mount /data mycontainer.sif

○ To disable all bind path entries set in apptainer.conf, use --no-mount bind-paths

$ apptainer run --no-mount bind-paths mycontainer.sif

24

Bind Paths and Mounts

● User-defined bind paths
○ Unless system admin has disabled user control of binds, you will be able to request your own bind

paths within your container.
○ The Apptainer action commands (run, exec, and shell) will accept the --bind/-B command-line

option to specify bind paths
○ Here’s an example of using --bind option and binding /scratch on the host to the container

$ apptainer shell --bind /scratch/nautilus/users/user_name mycontainer.sif

$ export

APPTAINER_BINDPATH=/scratch/nautilus/users/jmir@ec-nantes.fr/TP_ContainerWorkshop/

$ unset APPTAINER_BINDPATH

25

Building Containers

● Apptainer Definition File (or “def file”) is like a set of blueprints explaining how to

build a custom container

● It includes

○ specifics about the base OS to build or the base container to start from

○ software to install

○ environment variables to set at runtime

○ files to add from the host system, and container metadata

● Apptainer Definition file is divided into two parts, Header and Sections

26

Building Containers

● Header

○ It describes the core operating system to build within the container

○ Configure the base operating system features needed within the container

○ Specify the Linux distribution, the specific version, and the packages that must be part of the core

install (borrowed from the host system).

● Sections

○ Each section is defined by a % character followed by the name of the particular section

○ All sections are optional, and a def file may contain more than one instance of a given section

27

Building Containers

● The following recipe shows how to build and run a hello-world container
Step 1. Open a text editor

$ vim hello-world.def

Step 2. Include the following script in the hello-world.def

file to define the environment

BootStrap: docker

From: ubuntu:20.04

%runscript

echo "Hello World"

Print Hello World when the image is loaded

● BootStrap: docker indicates that apptainer will
use the docker protocol to retrieve the base OS
to start the image

● From: ubuntu:20.04 is given to apptainer to start
from a specific image/OS in docker Hub

● Any content within the %runscript will be written
to a file that is executed when one runs the
apptainer image

● The echo “Hello World” command will print the
Hello World on the terminal

● Finally the # hash is used to include the
comments within the definition file

28

Building Containers

Step 3. Build the image

 $ apptainer build hello-world.sif hello-world.def

Step 4. Run the image

$./hello-world.sif

29

TP 2: Build from Scratch

● Create a Hello-World Container
● Use the definition file to create a container
● Interact with container

30

Miniconda3 on GLiCID Cluster

● Let’s create a Apptainer container based on the specified Docker image
● Setting up an environment with Miniconda and additional configurations,
● and running a Python script when the container is executed

31

Miniconda3: Definition File

32

Miniconda3: Definition File

● Let's break down the different sections of the definition file
1. Bootstrap: docker
 - Specifies that the container should be built using a Docker image as the base.

2. From: ubuntu:22.04
 - Specifies the base Docker image to use, in this case, Ubuntu 22.04.

3. %help
 - This section provides information on how to use the container. Here, it gives instructions on running the Python script inside the container.

4. %labels
 - These are metadata labels for the container, providing information such as the author's name and email, and the version of the container.

33

Miniconda3: Definition File

5. %environment
 - This section sets environment variables within the container. It adds the Miniconda3 binary path to the `PATH` variable and sets the system locale.

6. %post -c /bin/bash
 - This is a script that runs during the container build process. It updates the package manager, installs `wget`, downloads and installs Miniconda3, installs
the pandas package using conda, and then performs cleanup.

7. %runscript
 - This specifies the command that will be executed when the container is run. In this case, it runs a Python script located at
`/home/jmir@ec-nantes.fr/ml-container/scripts/myscript.py`.

8. %test
 - This section provides a test command to check if the container is working correctly. It checks the version of Python installed in the container.

34

Slurm Script
#!/bin/bash
#SBATCH --job-name=myjob # Name for your job
#SBATCH --comment="Run My Job" # Comment for your job
#SBATCH --time=0-00:05:00 # Time limit
#SBATCH --nodes=1 # How many nodes to run on
#SBATCH --ntasks=2 # How many tasks per node
#SBATCH --cpus-per-task=2 # Number of CPUs per task
#SBATCH --mem-per-cpu=10g # Memory per CPU
#SBATCH --qos=short # priority/quality of service

hostname # Run the command hostname

cd /home/jmir@ec-nantes.fr/ml-container
module purge
module load apptainer/1.1.6
apptainer --version
./myimage.sif # run the container

35

TP 3: dl-container

● Create a Miniconda Container
● Create a Slurm script
● Submit the Job
● Monitor the job
● Check the results

$ apptainer shell --bind /scratch/nautilus/users/username myimage.sif

$ python myscript.py

36

Thank you
Any Questions?

37

