Julia for simulation using a planning model for helping SMEs in Decision Making

Julia & Optimization days 2024

Jérémy TRAVERSAC François GALASSO Caroline THIERRY Pascale ZARATE jeremy.traversac@iut-rodez.fr

I. introduction

<u>2. top-down decision process in traditional SMEs</u>

3. group decision process

4. production planning model for simulation

5. production planning model

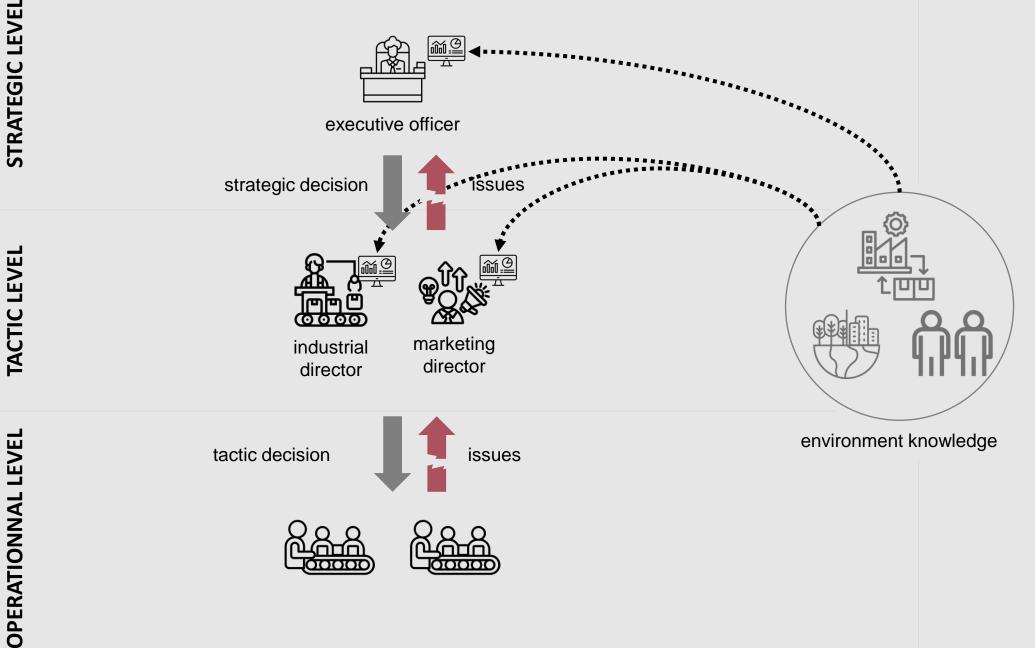
6. focus on an industrial problem

7. perspectives & conclusion

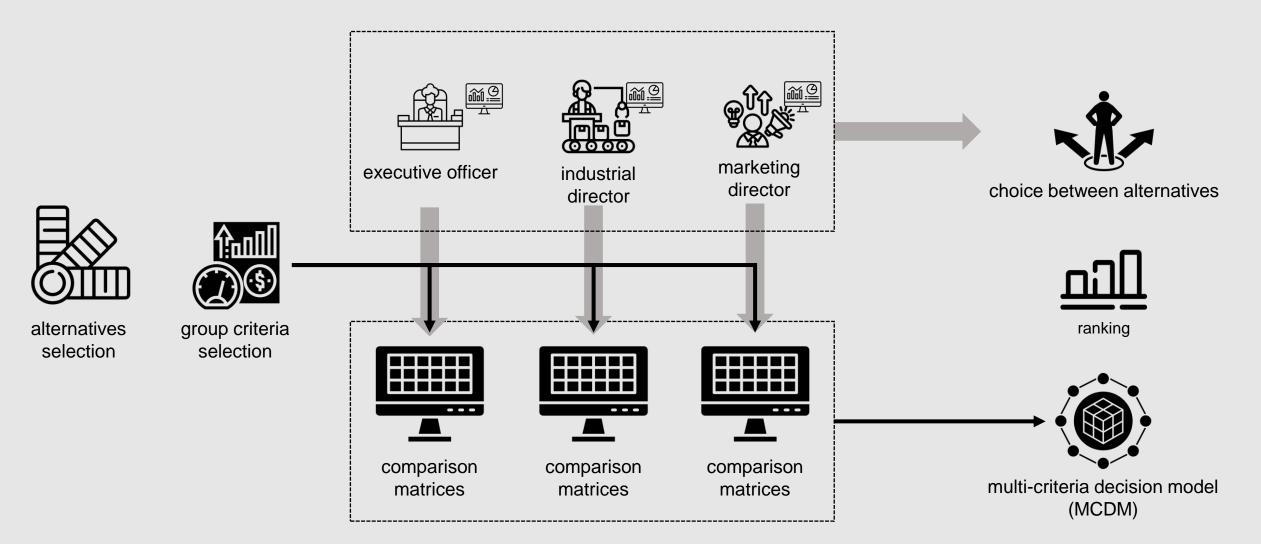
I. introduction

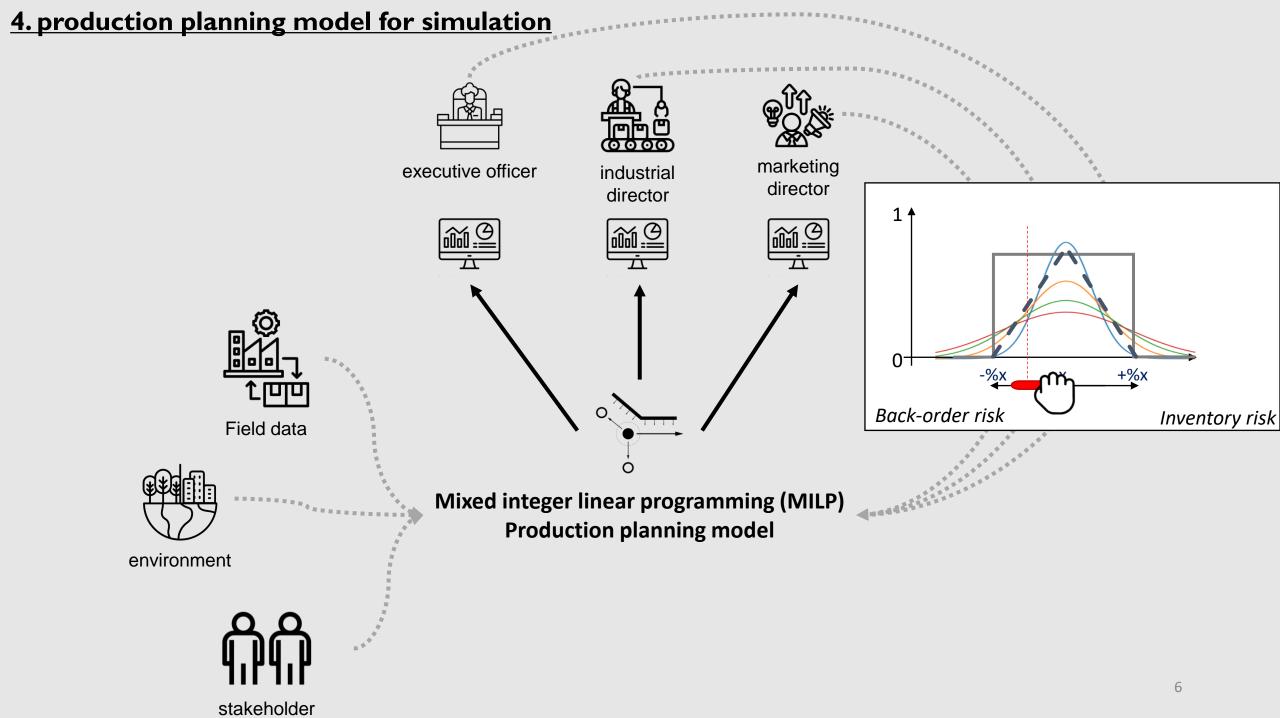
Small and Medium Enterprise

Volatile Uncertain Complex Ambiguous



Industry 5.0


solutions


2. top-down decision process in traditional SMEs

EXTERNAL ENVIRONMENT

<u>3. group decision process</u>

5. production planning model

Mixed integer linear programming (MILP) Production planning model

Optimization model

SIMULATION USE

Cbc (COIN-OR Branch and cut) solver

5. production planning model 🔶 data

	Uncontrollable parameters
t	indexes of period
HP	total number of periods
i,j	indexes of items
ITEMS	set of items
BOM _{ii}	BOM links between any items,

	Controllable parameters
$D_{i,t}$	Demand of any end-items
r	indexes of resources
R	Sets of resources
ROU _{ir}	Usage of resource for each items
	unitary cost of a sourced items
ic _i	inventory cost
bc _i	backorder cost
rc,	resources cost
C _r	Capacity of resources

	Variables
INV _{i,t} ≥0	inventory of any items
BO _{i.t} ≥0	backorder of any items
T	Transfert or deliveries of any
$Tr_{i,t} \ge 0$	items
<i>X_{i,t}≥0</i>	supply of any resources, either internal or external

5. production planning model

$$maximize \sum_{t=1}^{HP} \left[\sum_{i} pv_i Tr_{i,t} - \sum_{i} ic_i INV_{i,t} - \sum_{i} bc_i BO_{i,t} - \sum_{i} c_i X_{i,t} \right]$$
(1)

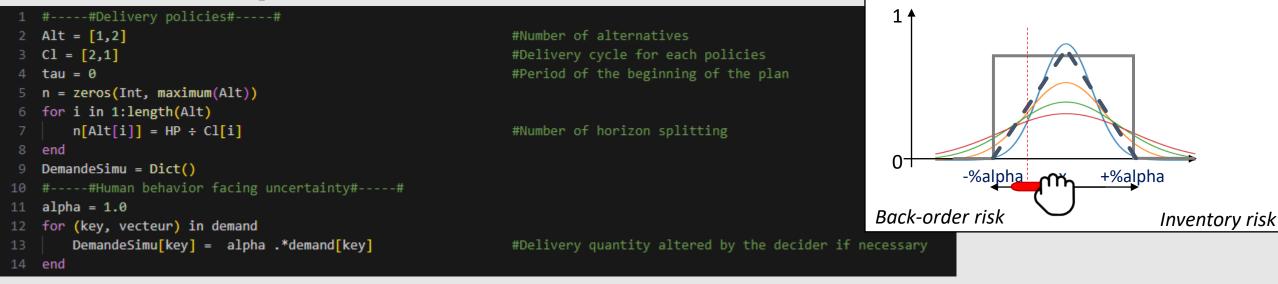
s.t.
$$INV_{i,t} - BO_{i,t} = INV_{i,t-1} - BO_{i,t-1} + X_{i,t} - \sum_{j \neq i} BOM_{j,i} * X_{j,t} - Tr_{i,t}, \forall i \in ITEMS, \forall j \in ITEMS, \forall t \in \{1:HP\}$$
(2)
$$\sum_{i} ROU_{i,r} * X_{i,t} \leq C_r, \forall t \in \{1:HP\}, \forall r$$
(3)
$$Tr_{i,t} + BO_{i,t} = D_{i,t} + BO_{i,t-1}, \forall i \in ITEMS, \forall t \in \{1:HP\}$$
(4)
$$Tr_{i,t}, BO_{i,t}, INV_{i,t}, X_{i,t} \geq 0, \forall i \in ITEMS, \forall t \in \{1:HP\}$$
(5)

SMEs strategic decision (planning horizon of one year)

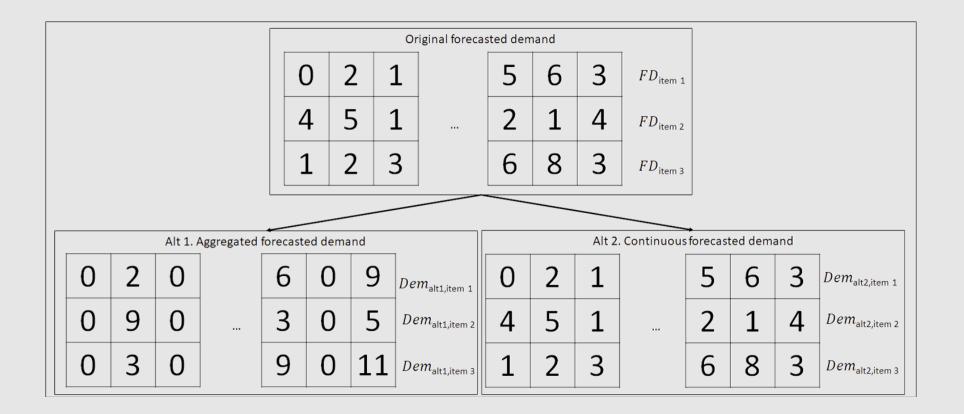
choice between two alternatives: deliveries aggregated every 15 days or continuous deliveries

3 decider : Executive officer, Marketing director, and industrial director

3 decision criteria	Executive officer	Industrial director	Marketing director
Inventory impact	Global cost	Inventory quantity	Back-order quantity
Corporate Social Responsibility	CO2e/unit of added	M3 lost by truck	CO2e/unit of added
(CSR) performance	value	NIS IOST OY HUCK	value
Client satisfaction	Delivery time	Delivery time	Delivery time
	▲	▲	▲


KPI for each deciders

<u>6. production planning model</u> $\stackrel{}{\succ}$ <u>usage</u>


Demand recuperation for each items

<pre>1 demand = ReadData(raw".\DataUsine - V2\Dem-i_t.csv")</pre>			
√ 1.2s			
Dict{Any, Any} with 8 entries:			
"creche"	=> [0, 0, 5, 7, 0, 9, 9, 4, 10, 1 3, 6, 6, 5, 0, 7, 5, 10, 4,		
"salon"	=> [0, 2, 2, 2, 2, 3, 3, 3, 4, 4 2, 3, 2, 1, 2, 2, 1, 2, 1, 2]		
"sdj"	=> [0, 5, 4, 3, 2, 1, 0, 0, 0, 0 1, 0, 2, 1, 4, 6, 4, 8, 6, 5]		
"chaise"	=> [0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0]		
"bois_brut"	=> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]		
"vis"	=> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0]		
"table"	=> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0]		
"meuble"	=> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0]		

First step to take care of human behaviour

<u>6. production planning model</u> $\stackrel{}{\succ}$ <u>usage</u>

6. production planning model 👌 usage

Demand aggregation depending on the alternative for each items

 $Cl = \{Cl1, Cl2, \dots, CLn\}$

Delivery cycle for each alternative in period of time

 $FD_{i,t}, \forall i \in ITEMS, \forall t \in \{1: HP\}$

The forecasted demand is aggregated in function of each alternative:

$$n_{Alt} = \frac{HP}{CL_{Alt}}$$
, $\forall Alt \in \{1;2\}$

Number of aggregations in the planning horizon for each alternative

 $EC_{Alt,i,d_{Alt}*CL_{Alt}} = \sum_{t=(d_{Alt}-1)*CL_{Alt}}^{t=d_{Alt}*CL_{Alt}} FD_t, \forall d_{Alt} \in \{1; ...; n_{Alt}\}$

 $EC_{Alt,i,t}$ represent the delivery plan for each alternative, items and period

For each alternative, a demand $D_{i,t}$ equal to the delivery plan for each alternative is

extract and treated by the model:

$$D_{i,t} = EC_{Alt,i,t} \ \forall i \in ITEMs, \forall t \in [1:HP]$$

6. production planning model 👌 usage

Row	Column1	creche	salon	sdj	chaise	table	meuble	vis	bois_brut
	String15	Int64	Int64	Int64	Int64	Int64	Int64	Int64	Int64
1	creche	0	0	0	8	2	1	0	0
2	salon	0	0	0	4	2	2	0	0
3	sdj	0	0	0	10	0	3	0	0
4	chaise	0	0	0	0	0	0	4	1
5	table	0	0	0	0	0	0	4	1
6	meuble	0	0	0	0	0	0	6	2
7	vis	0	0	0	0	0	0	0	0
8	bois_brut	0	0	0	0	0	0	0	0

Bills of Materials

Routes between product and resources

Row	Column1	assemblage	production	supplier
	String15	Int64	Int64	Int64
1	creche	1	0	0
2	salon	1	0	0
3	sdj	1	0	0
4	chaise	0	1	0
5	table	0	1	0
6	meuble	0	1	0
7	vis	0	0	1
8	bois_brut	0	0	1

Resources capacity

Row	Ressource	capacity
	String15	Int64
1	assemblage	50
2	production	120
3	supplier	99999

Row	ITEMS	cost
	String15	Int64
1	creche	2
2	salon	1
3	sdj	3
4	chaise	1
5	table	2
6	meuble	2
7	vis	3
8	bois_brut	2

Items sale price

		1
Row	ITEMS	saleprice
	String15	Int64
1	creche	1000
2	salon	1000
3	sdj	1000
4	chaise	0
5	table	0
6	meuble	0
7	vis	0
8	bois_brut	0

Items backorder cost

Row	ITEMS	cost
	String15	Int64
1	creche	100
2	salon	100
3	sdj	100
4	chaise	0
5	table	0
6	meuble	0
7	vis	0
8	bois_brut	0

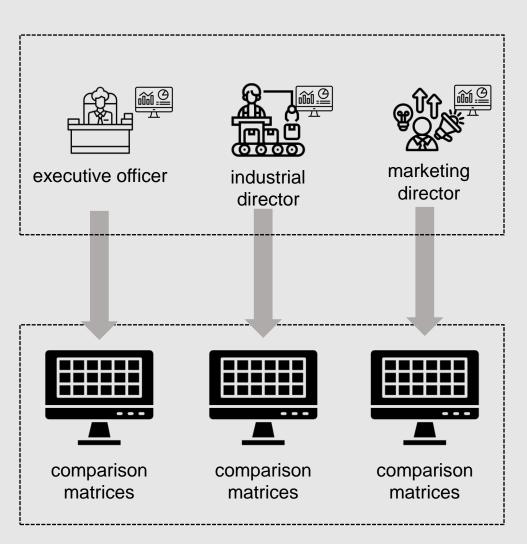
Items inventory cost

Row	ITEMS	cost
	String15	Int64
1	creche	5
2	salon	5
3	sdj	5
4	chaise	5
5	table	5
6	meuble	5
7	vis	5
8	bois_brut	5

<u>6. production planning model</u>

$$maximize \sum_{t=1}^{HP} \left[\sum_{i} pv_{i}Tr_{i,t} - \sum_{i} ic_{i}INV_{i,t} - \sum_{i} bc_{i}BO_{i,t} - \sum_{i} c_{i}X_{i,t} \right]$$
(1)

s.t.
$$INV_{i,t} - BO_{i,t} = INV_{i,t-1} - BO_{i,t-1} + X_{i,t} - \sum_{j \neq i} BOM_{j,i} * X_{j,t} - Tr_{i,t}, \forall i \in ITEMS, \forall j \in ITEMS, \forall t \in \{1:HP\}$$
(2)
$$\sum_{i} ROU_{i,r} * X_{i,t} \leq C_r, \forall t \in \{1:HP\}, \forall r$$
(3)
$$Tr_{i,t} + BO_{i,t} = D_{i,t} + BO_{i,t-1}, \forall i \in ITEMS, \forall t \in \{1:HP\}$$
(4)
$$Tr_{i,t}, BO_{i,t}, INV_{i,t}, X_{i,t} \geq 0, \forall i \in ITEMS, \forall t \in \{1:HP\}$$
(5)


6. production planning model 📜 usage

	Executive officer	Industrial director	Marketing director
Inventory impact	Global inventory cost	Inventory quantity	Back-order quantity
	$\sum_{t} INV_{i,t} * ic_i + BO_{i,t} * bc$	$\sum_{t} INV_{i,t}$	$\sum_{t} BO_{i,t}$
Corporate Social	CO2e/unit of added value	M3 lost by truck	CO2e/unit of added value
Responsibility (CSR)			
performance	$\sum_{t} \sum_{i} (\frac{D_{i,t}}{CT}) * 772$	$\sum_{t} \sum_{i} \left(\frac{D_{i,t}}{CT} \right) * CT - D_{i,t}$	$\sum_{t} \sum_{i} \frac{D_{i,t}}{CT} * 772$
Client satisfaction	Delivery time	Delivery time	Delivery time
	$\overline{FD_{i,t} - D_{i,t}}, \forall i \in ITEMs, \forall t \in \{1: HP\}$	$\boxed{FD_{i,t} - D_{i,t}}, \forall i \in ITEMs, \forall t \in \{1: HP\}$	$\left \overline{FD_{i,t} - D_{i,t}}, \forall i \in ITEMs, \forall t \right $
			$\in \{1: HP\}$

<u>6. production planning model</u> 🔆 <u>usage</u>

	Executive officer	Industrial director	Marketing director
Inventory impact	Global inventory cost	Inventory quantity	Back-order quantity
	ALT.1 : 93 211 euros	ALT.1 :514 end-items + 40 produced	ALT.1 :309 end-items
	ALT.2 : 95 744 euros	items	ALT.2 :21 end-items
		ALT.2 :834 end-items + 603 produced	
		items	
Corporate Social	CO2e/unit of added value	M3 lost by truck	CO2e/unit of added value
Responsibility (CSR)	ALT.1 :172.6 CO2e/UVA	ALT.1 :0,52 m3	ALT.1 :172.6 CO2e/UVA
performance	ALT.2 :184.9 CO2e/UVA	ALT.2 :0,825 m3	ALT.2 :184.9 CO2e/UVA
Client satisfaction	Delivery time	Delivery time	Delivery time
	ALT.1 :1,49 week	ALT.1 :1,49 week	ALT.1 :1,49 week
	ALT.2 : <1 week	ALT.2 : <1 week	ALT.2 : <1 week

<u>6. production planning model</u> $\stackrel{}{\succ}$ <u>usage</u>

AHP METHOD PROCESS

1. Matrices aggregation

$$a_{i,j} = \frac{1}{n} * (a_{dec1} + \dots + a_{decn})$$
 (6)

2. Matrices normalization

$$a_{i,j}^{norm} = \frac{a_{i,j}}{\sum_{i=1}^{n} a_{i,j}}$$
(7)

3. Computation of priority vector

$$v_i = \frac{1}{n} \sum_{j=1}^n a_{i,j}^{norm}$$

(8)

4. Consistency ratio5. Ranking of alternatives

W

The analytic hierarchy process—what it is and how it is used – Saaty, 1987

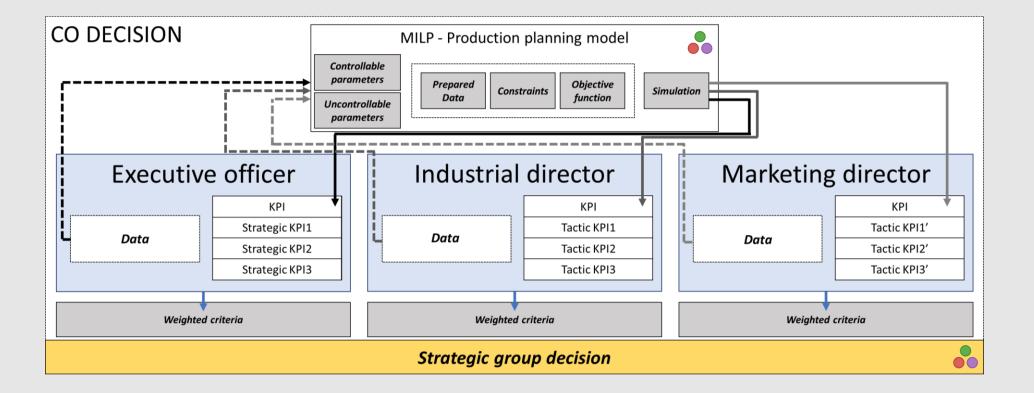
6. production planning model 🔆 MCDM

AHP Method implemented in Julia result

Poids des critères : [0.333333333333333, 0.333333333333333, 0.3333333333
Classement final des alternatives : Alternative : Alternative 2, Poids : 0.5020163109214799 Alternative : Alternative 1, Poids : 0.49798368907852
Matrices pour chaque critère : Matrice pour le critère 1: [1.0 1.289231989389298; 0.7756555904835206 1.0] Matrice pour le critère 2: [1.0 2.7144176165949063; 0.36840314986403866 1.0] Matrice pour le critère 3: [1.0 0.25; 3.999999999999999996 1.0]
Matrices normalisées pour chaque critère : Matrice normalisée pour le critère 1: [0.5631722758396489 0.5631722758396489; 0.43682772416035104 0.43682772416035104] Matrice normalisée pour le critère 2: [0.7307787913959111 0.7307787913959111; 0.2692212086040889 0.2692212086040889] Matrice normalisée pour le critère 3: [0.2 0.2; 0.79999999999999999 0.8]
Vecteurs de priorités pour chaque critère : Critère 1: [0.5631722758396489, 0.43682772416035104] Critère 2: [0.7307787913959111, 0.2692212086040889] Critère 3: [0.2, 0.8]

Take care of the human behavior facing uncertainty

Improve our model and use it with a user interface tool


?

Solutions you use ?

Implement different decision support systems

<u>7. conclusion</u>

Julia for simulation using a planning model for helping SMEs in Decision Making

Thanks !

Jérémy TRAVERSAC – PhD student

jeremy.traversac@iut-rodez.fr

GDNICDSST 2024 : Poster – "Preference Selection Dashboard for SMEs in Industry 5.0: Integrating Data from Varied Hierarchical Levels and Simulating Diverse Behaviors facing Uncertainty"

EURO Journal on Decision Process 2024 : Article -"Adapting SMEs to the Challenges of Industry 4.0 and 5.0: a preference selection framework integrating Data from Varied Hierarchical Levels" (submitted)

Jérémy TRAVERSAC François GALASSO Caroline THIERRY Pascale ZARATE jeremy.traversac@iut-rodez.fr

Julia & Optimization days 2024

